八年级数学专题复习---分式方程-
人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
解分式方程50题八年级数学上册精选全文完整版

可编辑修改精选全文完整版【专题】解分式方程(50题)一、计算题1.解分式方程(1)3−x x−4+14−x=1(2)x+1x−1−4x 2−1=12.计算:15x+2x 2+x =31+x .3.解分式方程(1)3x x+2+2x−2=3;(2)1x−1−2x+1=4x 2−1.4.解方程:3+x x−4+1=34−x .5.解下列分式方程: (1)x 2x−5+55−2x =1(2)4x 2−4−1x−2=3x+26.解下列分式方程:(1)1x+2=1 3x(2)3x+1−x1−x=17.解方程:2x−2=6x2−4.8.解分式方程:xx+1+1=32x+2.9.解分式方程:1x−2=1−x2−x−410.解关于x的方程:xx+3=1+2x−1.11.解方程:4x2−1=x x+1−112.解方程:(1)3x=2x−2(2)2x 2x−1+51−2x=313.解分式方程:1+4x−5=2x5−x.14.解方程:x+1x−1−3x+1=1 .15.解方程:x−1x+1−2x 2−1=1.16.解分式方程: (1)21−x +1x =0.(2)x x−1+3(x−1)(x−4)=1.17.解分式方程:2x 2x−1+512x =3.18.解方程:xx−3−3(x−3)2=1.19.解分式方程:x−1x +3x+2=1.20.解方程:(1)x x−1=2x−1x−1(2)x x 2+x −3x+1=121.解分式方程:(1)x 2−8x 2−4=1+12−x ;(2)x−2x−3=2−16−2x.22.解分式方程: (1)2x−1=1x+1(2)1+6x 2−9=x x−323.1x−5=10x 2−25.24.解分式方程:x x−1−2x+1=1.25.解方程:2x−3x 2−1−1x+1=2x−1.26.解方程:5x−2−3x =027.解方程:x x−1−1=2x+128.解下列分式方程:(1)2−x x−3+4=13−x(2)x x−2−1=1x 2−429.解方程1x−2+1=2x 2x+1.30.解方程:(1)x x−2−1=1x 2−4(2)3x x+2+2x−2=331.解方程:(1)x−1x+1−3x 2−1=1 ;(2)x x−2−8x 2−2x =1 .32.解分式方程: (1)1x +11.5x =772(2)x−2x−3+13−x =533.解方程:(1)5x 2+x −1x 2−x =0(2)x−2x+2−16x 2−4=x+2x−234.解分式方程(1)x 2x−3+53−2x =4(2)1x−1−2x+1=4x 2−135.解方程:2x3+2x−1=39−4x2.36.解方程:2x3x+3+1=xx+1.37.解方程:xx−2−8x2−4=138.解方程:1−x2−x=1x−2+3.39.解方程:2−2yy+1=3y−1.40.解分式方程:3(x−1)(x+2)+1=xx−1.41.解方程:(1)x−8x−7−17−x=8;(2)xx−2+1x2−4=1.42.解方程: 2x+1−31−x =61−x 2.43.解方程:(1)1x−3−2=3x 3−x ;(2)x+1x−1−4x 2−1=1 .44.解方程(1)x−3x−2+1=32−x(2)x x−1−1=3(x+2)(x−1)45.解方程:(1)x x+3=1+2x−1(2)x−1x 2+x =43x+346.解方程: x x−1 = 2x 3x−3 +147.解分式方程:(1)2x−2+3=1−x 2−x(2)xx+3+6x2−9=x−2x−348.解方程:32−13x−1=56x−2.二、解答题49.阅读下面材料,解答后面的问题.解方程:x−1x -4xx−1=0.解:设y=x−1x,则原方程可化为y-4y=0,方程两边同时乘y,得y2-4=0,解得y1=2,y2=-2.经检验,y1=2,y2=-2都是方程y-4y=0的解.当y=2时,x−1x=2,解得x=-1;当y=-2时,x−1x=-2,解得x=13.经检验,x1=-1,x2=13都是原分式方程的解.所以原分式方程的解为x1=-1,x2=13.上述这种解分式方程的方法称为换元法.问题:(1)若在方程x−14x-x x−1=0中,设y=x−1x,则原方程可化为;(2)若在方程x−1x+1-4x+4x−1=0中,设y=x−1x+1,则原方程可化为;(3)模仿上述换元法解方程:x−1x+2-3x−1-1=0.50.已知a,b,c,d都是互不相等的正数.(1)若ab=2,cd=2,则badc,acbd(用“>”,“<”或“=”填空);(2)若ab=cd,请判断ba+b和dc+d的大小关系,并证明;(3)令ac=bd=t,若分式2a+ca−c−3b+db−d+2的值为3,求t的值.。
八年级(下)数学期中专题复习(分式)

(一)分式的加减1.计算:x x y ++yy x+=________. 2.计算:32b a -32a a =________.3.计算:32ab +214a=________. 4.计算:2129m -+23m -+23m +.5.计算:21a -+21(1)a -=________. 6.当分式211x --21x +-11x -的值等于零时,则x=_________. 7.已知a+b=3,ab=1,则a b +ba的值等于________ 8.化简1x +12x +13x 等于( ) A .12x B .32x C .116x D .56x9.计算34x x y -+4x y y x +--74yx y-得( )A .-264x y x y +- B .264x yx y+- C .-2 D .210.计算a-b+22b a b+得( )A .22a b b a b -++B .a+bC .22a b a b ++ D .a-b11.计算:222x x x +--2144x x x --+. 12.计算:21x x --x-1.13.先化简,再求值:3a a --263a a a +-+3a,其中a=32(二)分式乘除一、选择题1、计算(2x y)2·(2y x )3÷(-y x )4得( )A .x 5B .x 5yC .y 5D .x 152、计算(2x y)·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y3、化简:(3x y z )2·(xzy)·(2yz x )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z4、(-3ab)÷6ab 的结果是( ) A .-8a 2B .-2a bC .-218a bD .-212b5、-3xy ÷223y x的值等于( )A .-292x yB .-2y 2C .-229y xD .-2x 2y2二、计算:1、(-223a b c)3. 2、(2b a )2÷(b a -)·(-34b a )3.3、2223x y mn ·2254m n xy÷53xym n . 4、22121a a a -++÷21a a a -+.5、2216168m m m -++÷428m m -+·22m m -+.(三) 分式方程1.在有理式2x ,13(x+y ),53π-,21x a -,36x y +中,分式有( )A .1个B .2个C .3个D .4个2.如果分式43311x x +-无意义,则x 的值是( )A .x ≠0B .x ≠113C .x=113D .x ≠-343.分式214x -,42xx-的最简公分母为( )A .(x+2)(x-2)B .-2(x+2)(x-2)C .2(x+2)(x-2)D .-(x+2)(x-2) 4.•在解方程43x -+254x +=•1•时,•需要去分母时,•可以把方程两边都乘以_______,•根据是______. 5.下列方程中①35x -=1,②3x =2,③15x x ++=12,④2x +2x =5中是分式方程的有( )A .①②B .②③C .③④D .②③④ 6.把分式方程224x -=32x化为整式方程,方程两边需同时乘以( ) A .2x B .2x-4 C .2x (x-2) D .2x (2x-4)7.解方程:10.(拓展题)如果解分式方程242x x --2xx -=-2出现增根,则增根为( )A .0或2B .0C .2D .1 8.(拓展题)若关于x 的方程211k x ---21x x -=25k x x-+有增根x=-1,那么k 的值为( )A .1B .3C .6D .9 二、解方程: (1)27x x ++23x x -=261x -; (2)25x x --1=552x-.三、若关于x 的方程21x x x +--13x =33x kx +-有增根,求增根和k 的值.(四)分式专项训练(1)1.若分式x yx y+-中的x 、y 的值都变为原来的3倍,则此分式的值 ( ) A 、不变 B 、是原来的3倍 C 、是原来的13 D 、是原来的162.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km 。
八上数学分式方程

八上数学分式方程数学作为一门学科,无处不在,贯穿于我们生活的方方面面。
而在数学的学习中,分式方程是一个非常重要且常见的内容。
在八年级的数学课程中,我们将开始接触和学习关于分式方程的知识。
什么是分式方程呢?简单来说,分式方程就是含有分式的方程。
分式是数的比的形式。
而分式方程则是含有未知数的分式的等式。
解分式方程的过程就是找出未知数的值,使得等式成立。
学习八年级的数学分式方程,需要掌握一些基本的知识。
首先要了解分式的概念,明确分子和分母的含义。
然后要学会如何化简分式,将分式化为最简形式。
接着就是学习如何解分式方程,常见的方法有通分、去分母、因式分解等。
在解题过程中,还需要注意约束条件,确保得到的解符合题目的要求。
在学习过程中,要多做练习,熟练掌握各种解题方法。
可以通过做题册、练习册、习题集等方式进行练习,巩固所学知识。
同时,要注意归纳总结,将不同类型的题目进行分类整理,形成自己的解题思路和方法。
除了理论知识外,实际问题的分析和解决也是学习分式方程的重要内容。
在解决实际问题时,要将问题转化为数学语言,建立分式方程,然后通过求解方程得到问题的答案。
这样可以帮助我们将抽象的数学知识与实际生活相结合,提高解决问题的能力。
此外,学习数学分式方程也需要培养逻辑思维和分析问题的能力。
在解题过程中,要善于观察、分析和推理,找出问题的关键点和解题思路。
通过不断练习和思考,提高自己的数学思维能力,培养解决问题的能力。
总的来说,八年级数学分式方程是一个重要且必要的学习内容。
通过学习分式方程,可以帮助我们提高数学能力,培养逻辑思维,解决实际问题。
希望大家在学习数学的过程中,能够认真对待,多加练习,提高自己的数学水平。
愿大家都能在数学的海洋中畅游,享受数学带来的乐趣!。
初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。
北师大版八年级数学下册第五章分式与分式方程

八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。
例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。
(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。
检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
八年级数学分式与分式方程

八年级数学分式与分式方程分式与分式方程学习资料。
一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。
2. 分式有意义的条件。
- 分式(A)/(B)有意义的条件是B≠0。
例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。
3. 分式值为零的条件。
- 分式(A)/(B)的值为零的条件是A = 0且B≠0。
例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。
二、分式的基本性质。
1. 性质内容。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
2. 约分。
- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。
3. 通分。
- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。
三、分式的运算。
1. 分式的乘除法。
- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。
例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程
一.选择题(共8小题)
1.分式方程的解为()
A.1 B.2 C.3 D.4
2.解分式方程+=3时,去分母后变形正确的是()
A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)
3.若关于x的方程+=3的解为正数,则m的取值范围是()
A.m<B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣
4.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C 两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()
A.=B.=C.=D.=
5.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()
A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+5
6.若关于x的方程有增根,则m的值为()
A.0 B.1 C.﹣1 D.2
7.周末,几名同学包租一辆面包车前往“黄冈山”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,设原来参加游玩的同学为x人,则可得方程()
A.﹣=3 B.﹣3180x=3
C.﹣=3 D.﹣=3
8.如果关于x的方程无解,则m的值等于()
A.﹣3 B.﹣2 C.﹣1 D.3
二.填空题(共9小题)
9.分式方程的解是.
10.关于x的方程的解是负数,则a的取值范围是.
11.要使与的值相等,则x=.
12.分式方程+1=的解是.
13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.
14.要使方程=有正数解,则a的取值范围是.
15.若分式方程有增根,则m=.
16.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为元.
17.已知,甲队修路120m与乙队修路100m所用天数相同,且甲队比乙队每天多修10m.设甲队每天修路xm,请根据题意列出方程:.
三.解答题(共6小题)
18.解方程:.
19.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?20.阅读材料:
关于x的方程:
x+的解为:x1=c,x2=
x﹣(可变形为x+)的解为:x1=c,x2=
x+的解为:x1=c,x2=
x+的解为:x1=c,x2=
…
根据以上材料解答下列问题:
(1)①方程x+的解为
②方程x﹣1+=2+的解为
(2)解关于x方程:x﹣(a≠2)
21.已知关于x的方程﹣=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;
(2)求方程x2+kx+6=0的另一个根.
22.小芳每次骑车从家到学校都要经过一段坡度相同的上坡路和下坡路,假设她骑车坡度相等的上坡路与下坡路平均速度基本相同,且上坡路骑行50米与下坡路骑行80米所用的时间相等.当她从家到学校时,下坡路的长为400米,下坡路比上坡路多花一分钟,设她骑行下坡路的速度为x米/分钟.
(1)用含x的代数式表示她从家到学校时上坡路段的路程.
(2)当她从学校回家时,在这两个坡道所花的时间为10分30秒,请求出她回家时在下坡路段所花的时间.
23.若关于x的方程+=有增根,求增根和k的值.
参考答案
一.选择题(共8小题)
1.D;2.D;3.B;4.A;5.B;6.C;7.A;8.B;
二.填空题(共9小题)
9.x=9;10.a<6且a≠4;11.6;12.x=1;13.;14.a<2且a≠1;
15.2;16.28;17.=;
三.解答题(共6小题)
18.;19.;20.;;21.;22.;23.;。