一元二次方程△和根与系数关系
一元二次方程根的判别式、根与系数关系

上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
(x 1-x 2) 2=3 x 1·x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1·x 2
一元二次方程根与系数的关系公式有哪些

⼀元⼆次⽅程根与系数的关系公式有哪些
韦达定理指出了⼀元⼆次⽅程根与系数的关系,让我们⼀起来了解⼀下吧。
下⾯是由店铺编辑为⼤家整理的“⼀元⼆次⽅程根与系数的关系公式有哪些”,仅供参考,欢迎⼤家阅读本⽂。
⼀元⼆次⽅程根与系数的关系
韦达定理指出:⼀元⼆次⽅程中两根的和等于它的⼀次项系数除以⼆次项系数所得的商的相反数;两根的积等于它的常数项除以⼆次项系数所得的商。
设⼀元⼆次⽅程ax²+bx+c=0中(a,b,c∈R,a≠0),设此⼀元⼆次⽅程有两根x₁、x₂,有如下关系:
由⼀元⼆次⽅程求根公式如下:
达定理与根的判别式的关系更是密不可分。
⼀元⼆次⽅程的根的判别式为:△=b2-4ac(a,b,c分别为⼀元⼆次⽅程的⼆次项系数,⼀次项系数和常数项)。
根的判别式是判定⽅程是否有实根的充要条件,韦达定理说明了根与系数的关系。
⽆论⽅程有⽆实数根,实系数⼀元⼆次⽅程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定⼀元⼆次⽅程根的状况和特征。
韦达定理为数学中的⼀元⽅程的研究奠定了基础,对⼀元⽅程的应⽤创造开拓了⼴泛的发展空间。
已知两个根其中的⼀个,就可以代⼊韦达定理的关系式⾥求得另⼀个根,并且还可以⽤另⼀个关系式来检验。
数学一元二次方程根与系数的关系

数学一元二次方程根与系数的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊数学里超有趣的一元二次方程根与系数的关系。
你知道吗?这就像一个神秘的密码,一旦掌握,就能解开好多数学难题的大门。
比如说,当我们有一个一元二次方程ax² + bx + c = 0 (a ≠ 0),它的两个根 x₁和 x₂之间可是有着特别的联系哦!那就是 x₁ + x₂ = b/a ,x₁ · x₂ = c/a 。
是不是感觉有点神奇?想象一下,我们不用费劲去求解方程,就能通过系数 a、b、c 大概知道根的情况。
比如说,如果b² 4ac 大于 0,那就有两个不同的实数根。
这时候,根与系数的关系就能派上大用场啦,能帮我们更快地了解根的特点。
有时候做题,看到那些复杂的方程,别害怕!想起这个关系,说不定就能找到突破口。
而且哦,这个知识在生活中也有用呢。
就像算一些增长、衰减的问题,或者设计一些东西的时候,都能靠它来帮忙。
怎么样,是不是觉得一元二次方程根与系数的关系还挺有意思的?稿子二哈喽呀!今天咱们要好好唠唠一元二次方程根与系数的关系,准备好和我一起探索这个神奇的数学世界了吗?来,先看看这个方程ax² + bx + c = 0 (a ≠ 0),它的根可藏着小秘密呢。
你想啊,当我们知道了 a、b、c 的值,就能算出根的和与根的积。
比如说,x₁ + x₂等于 b/a ,这就好像是数学世界里的一条隐藏规则。
还有 x₁ · x₂等于 c/a ,是不是感觉很奇妙?有时候,老师出的题目故意不给咱具体的根,就看咱们能不能用这个关系来解决问题。
就像是玩一个解谜游戏,找到关键线索,就能揭开答案的面纱。
而且哦,这可不仅仅是为了考试。
在实际生活里,像工程计算啦,经济问题啦,都可能用到它。
想象一下,你要是能熟练掌握这个关系,那在解决问题的时候,就像是有了一把超级厉害的武器,轻松打败难题怪兽。
所以呀,别小看这一元二次方程根与系数的关系,好好琢磨琢磨,它能给你带来好多惊喜呢!。
一元二次方程根的判别式、根与系数关系

的蛛网雁胸圣!这个巨大的蛛网雁胸圣,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分悠闲的雁胸!这巨圣有着水绿色烤鸭模样的身躯和深绿色细小樱桃般 的皮毛,头上是绿宝石色磨盘一样的鬃毛,长着紫罗兰色菊花模样的虎尾雨萍额头,前半身是米黄色柳叶模样的怪鳞,后半身是扁扁的羽毛。这巨圣长着灰蓝色菊花似的脑 袋和青远山色红薯模样的脖子,有着淡青色猪肚形态的脸和水青色蚯蚓似的眉毛,配着深紫色枕木一样的鼻子。有着纯蓝色床垫形态的眼睛,和淡白色壁灯模样的耳朵,一 张纯蓝色钢针模样的嘴唇,怪叫时露出暗紫色小鬼似的牙齿,变态的米黄色肥肠般的舌头很是恐怖,深绿色瓜秧般的下巴非常离奇。这巨圣有着如同火腿似的肩胛和犹如羽 毛一样的翅膀,这巨圣瘦瘦的淡绿色扣肉般的胸脯闪着冷光,活似柿子一样的屁股更让人猜想。这巨圣有着仿佛螳螂模样的腿和淡紫色蛙掌似的爪子……匀称的绿宝石色椰 壳般的九条尾巴极为怪异,纯白色河马似的撬棍圣柏 优游 www.youyoupingta 优游 肚子有 种野蛮的霸气。淡绿色牙刷一样的脚趾甲更为绝奇。这个巨圣喘息时有种深 紫色鸡爪般的气味,乱叫时会发出深青色狮子形态的声音。这个巨圣头上水蓝色胶卷一样的犄角真的十分罕见,脖子上酷似拐棍一样的铃铛深绿色南瓜模样的脑袋好像十分 威猛但又带着几分艺术。这时那伙校精组成的巨大梦唇怪忽然怪吼一声!只见梦唇怪抖动水红色粉条形态的鬃毛,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突 然,整个怪物像巨大的湖青色种子一样裂开……五十五条深青色泡菜模样的腐烂巨根急速从里面伸出然后很快钻进泥土中……接着,一棵暗黄色蝎子模样的邪恶巨大怪芽疯 速膨胀起来……一簇簇灰蓝色蜜桃模样的腐臭巨大枝叶疯速向外扩张……突然!一朵青古磁色标枪模样的阴冷巨蕾恐怖地钻了出来……随着淡蓝色长绳模样的贪婪巨花狂速 盛开,无数绿宝石色贝壳模样的变质花瓣和亮青色花蕊飞一样伸向远方……突然,无数白象牙色试管模样的阴森果实从巨花中窜出,接着飞一样射向魔墙!只见每个巨大果 实上都骑着一个梦唇怪的小替身,而那伙校精的真身也混在其中……“哇!真有假货性!”壮扭公主道。“还多少带点凶暴性!咱们让他们看看什么高层次!嘻嘻!”月光 妹妹和壮扭公主一边说着一边念动咒语……只见巨大梦唇怪猛然间长啸一声!巨大果实的飞速顿时变得慢如蜗牛,只见狗腿玉喉圣转动绿宝石色椰壳般的九条尾巴,整个身 体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的淡蓝色花蕾一样绽开……七十二条深青色橱窗模样的时尚尾
一元二次方程根的判别式、根与系数关系

以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
四、不解方程,求与根有关的代数式的值
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
; https:///product-selection/pushbutton/ 超小型按动开关 ; https:///product-selection/dip/ ck拨码开关 ; https:///contact-us/ ck开关代理商
分析:①方程有一个根是-1,需将x=-1代入原方程 ②方程有两个相等的实根,既△=0
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根 ②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0
;
一根普通的老茅草,也不知是红色还是绿色。”作者为什么要
一元二次方程根与系数的关系

第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。
一元二次方程根与系数的关系

(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
一元二次方程根的判别式及根与系数的关系
【教学目标】
目标一:一元二次方程的判别式 目标二:一元二次方程根与系数的关系
【1.方程
2+ax (1(2(3情况2.一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,
(1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.
【例题讲解】
例1、不解方程,判断下列方程的根的情况:
(1)???2x 2+3x-4=0 (2)ax 2+bx=0(a≠0)
例2、不解方程,判别方程根的情况:2210x ax a -++=
例3、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范
A .k 1.A .2()A 3A 45.
6.m 为任意实数,试说明关于x 的方程x 2
-(m-1)x-3(m+3)=0恒有两个不相等的实数根.
目标二:一元二次方程根与系数的关系
【知识讲解】
1.一元二次方程的根与系数的关系
如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a
b x x -=+21,a
c x x =21.
注意它的使用条件为a ≠0,Δ≥0.
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
2.一元二次方程的根与系数的关系的应用
(1)
(2)(3)例1、已知方程2560x kx +-=的一个根是2,求另一个根及k 的值. 例2、已知方程220x x c -+=的一个根是3,求它的另一根及c 的值. 例3、求作一个一元二次方程,使它的两根分别是1
33
-,122
.
例4、求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.
【堂上练习二】
1.关于方程2230x x ++=的两根12,x x 的说法正确的是() A.122x x += B.123x x +=- C.122x x +=- D.无实数根
2.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为(). A .3B .6C .18D .24
3.已知3x -2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,1
2
1
1
x x +=••_______,•
x 12+x 22=_______,x 1-x 2=________. 4.若方程
的两根是x 1、x 2,则代数式
的值是 。
5.设一元二次方程2320x x --=的两根分别为1x 、2x ,以21x 、22x 为根的一元二次方程是________.
6.已知a ,b ,c 是△ABC 的三边长,且方程(a 2+b 2)x 2-2cx+1=0有两个相等的实数根.
请你判断△ABC 的形状.
【提高训练】
1.关于x 的方程2210mx x ++=无实数根,则m 的取值范围为(). A .m ≠0B .m >1C .m <1且m ≠0D .m >-1
2.已知a 、b 、c 是△ABC 的三条边,且方程22有两个相等的实数根,那么这个三角形是()
A .等腰三角形
B .等边三角形
C .直角三角形
D .等腰直角三角形 3.若1x 、2x 是一元二次方程2210x x +-=的两根,则12
11
x x +的值为(). A .-1B .0C .1D .2
4.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为(). A .2010B .2011C .2012D .2013
5.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则a b
的值是().
A .95
B .59
C .20125-
D .2012
9
- 6.已知关于x 的方程221
(3)04
x m x m --+=有两个不相等的实数根,那么m 的最大整数
值是________.
7.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是_____. 8.求以21+和21-为根的一元二次方程是.
9.设x 1、x 2是方程22610x x --=的两根,不解方程,求下列各式的值:
(1)2212x x +;(2)212()x x -;(3)122111x x x x ⎛
⎫⎛⎫
+
+ ⎪⎪⎝
⎭⎝⎭
. 【当堂检测】
1.关于方程2230x x ++=的两根12,x x 的说法正确的是() A.122x x += B.123x x +=- C.122x x +=- D.无实数根
2.已知4x 2-2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,12
1
1
x x +=••_______,•
x 12+x 22=_______,x 1-x 2=________.
3.设一元二次方程2320x x --=的两根分别为1x 、2x ,以21x 、22x 为根的一元二次方程是________.
4.在Rt △ABC 中,∠C=900
,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程
的两根,那么AB 边上的中线长是.
5.当k 为何值时,关于x 的方程x 2-(2k-1)x =-k 2+2k+3,
(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?
6.已知关于x 的方程22210x mx m --+=的两根的平方和等于
29
4
,求m 的值. 7.已知关于x 的方程kx 2-2(k +1)x +k -1=0有两个不相等的实数根, (1)求k 的取值范围;
(2)是否存在实数k ,使此方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.
【课后作业】
1.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为(). A .3B .6C .18D .24
2.已知方程2(k+1)x 2+4kx+3k-2=0,(1)当k 为时,两根互为相反数;(2)当k 为时,有一根为零,另一根不为零. 3.已知:关于x 的方程
①的两个实数根的倒数和等于3,关于x 的方程
②有实数根且k 为正整数,则代数式
的值为.
4.已知:x 1、x 2是关于x 的方程x 2+(2a -1)x +a 2=0的两个实数根且 (x 1+2)(x 2+2)=11,求a 的值.
5.已知方程组220,10
x y a x y ⎧-++=⎨
-+=⎩①②
的两个解为11,x x y y =⎧⎨
=⎩和22
,
x x y y =⎧⎨=⎩ 且x 1、x 2是两个不相等的实数,若222121238611x x x x a a +-=--, (1)求a 的值;
(2)不解方程组判断方程组的两个解能否都为正数,为什么?。