第5讲 归一问题

合集下载

三年级数学归一问题和归总问题

三年级数学归一问题和归总问题

一、引言在三年级数学课程中,归一问题和归总问题是两个常见而重要的概念。

通过这两个概念,学生可以培养归纳和总结的能力,培养逻辑思维和解决问题的能力。

本文将对三年级数学中的归一问题和归总问题进行介绍和解析,以帮助学生更好地理解和掌握这些概念。

二、归一问题1.1 什么是归一问题归一问题是指将一个整体分解成若干个部分,然后按照一定的规律重新组合成原来的整体。

在这个过程中,学生需要观察、分析和归纳,培养逻辑思维和解决问题的能力。

1.2 归一问题的例子举例来说,假如一个盒子里有12颗糖果,老师让学生分成三组,每组有几颗糖果,这就是一个典型的归一问题。

学生需要计算出每组有几颗糖果,然后将它们重新组合成原来的12颗糖果。

1.3 归一问题的解决方法学生可以通过绘图、列式、分组或其他方法来解决归一问题。

在解决问题的过程中,学生需要注意观察规律,运用数学知识进行分析和计算,最终得出正确答案。

三、归总问题2.1 什么是归总问题归总问题是指将一些零散的信息或现象按照一定的规律进行总结和分类,以便更好地理解和掌握这些信息或现象。

通过归总,学生可以培养整理和总结的能力,培养系统性思维和分析问题的能力。

2.2 归总问题的例子举例来说,假如老师让学生总结小学三年级所有学过的数字,包括自然数、负数、小数、分数等,这就是一个典型的归总问题。

学生需要按照不同的规律进行分类和总结,以便更好地理解和记忆这些数字。

2.3 归总问题的解决方法学生可以通过绘图、表格、分类、总结或其他方法来解决归总问题。

在解决问题的过程中,学生需要注意分类规律,进行信息整合和比对,最终得出清晰和系统的总结结果。

四、归一问题和归总问题的通信3.1 归一问题和归总问题的共同点归一问题和归总问题都需要学生观察、分析、归纳和总结,培养学生的逻辑思维和解决问题的能力。

在解决这些问题的过程中,学生需要动脑筋、灵活思维,注重细节和整体,积极探索和实践,从而培养全面发展的学习能力。

归一归总问题【讲义】

归一归总问题【讲义】

归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数[小结]总工作量=每份的工作量(单一量)⨯份数 (正归一)例如⑴题份数=总工作量÷每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件(2)如果要生产6300个零件几小时可完成【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务同例5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

归一问题教案

归一问题教案

归一问题教案第一篇:归一问题教案解决问题(归一问题)教学目标:1.通过解决简单的实际问题,了解归一问题的基本结构。

2.会借助画示意图的方法分析归一问题的数量关系并列式解答,能正确找到中间问题,初步掌握这类问题的解题规律。

3.密切数学与生活的联系,增强应用意识。

教学重点:归一问题的数量关系及解答方法。

教学难点:正确找到中间问题。

教学过程:一.创设情境,提出问题。

1.揭示课题:同学们,前几天我们学习了笔算乘法,今天我们用这些知识来解决一些生活中的实际问题。

(板书课题)2.出示例8:3.提问:同学们请看大屏幕,请您默读题目。

谁能用自己的话说说你知道了什么?要解决的问题是什么?你能用画图的方式来表示题意吗?二.自主探究,合作交流。

1.画图分析题意(1)学生独立画图,教师搜集资源。

(2)四人小组说一说自己的想法。

(3)交流:先请选中的同学介绍自己的图意,再由其与其他学生互动交流。

关注:题目中的三条信息与一个问题在图中是如何表示的。

2.列式解答提出要求:你能列式解决这个问题吗?(1)学生独立列式,教师搜集资源。

(2)两人组说说算式的意思。

(3)交流:先请选中的同学介绍自己的算式的意思,再与其他学生互动交流。

预设1:分步关注:为什么用除法和乘法。

预设2:综合关注:算式的意思。

3.检验提问:我们解决对了吗?怎样检验。

关注:(1)鼓励方法多样化。

(2)如果没有出现书上的方法,要由教师出示。

4.拓展(1)出示想一想:提问:你能解决这个问题吗?(2)学生独立解答,师搜集资源。

关注:有画图及检验的。

(3)交流:先请选中的同学介绍自己的想法,再与其他学生互动交流。

5.小结提问:这两个问题有什么相同点吗?监控:都要先求出一个碗的价钱。

三.巩固提升 1.出示:提问:你能自己解决一个这样的问题吗?请大家独立完成。

2.学生独立完成,师关注学困生。

3.交流:先请选中的同学介绍自己的想法,再与其他学生互动交流。

4.这两个问题和例题的两个问题有什么共同点?监控:都是先求出一样东西的价钱。

四年级下册数学奥数试题—第五讲归一和归总沪教版(含答案)

四年级下册数学奥数试题—第五讲归一和归总沪教版(含答案)

精讲精练 四年级思维数学 第五讲归一和归总思维目标:运用正确的方法求出归一和归总类型的应用题。

数学目标:掌握减法性质和除法的性质思维:归一问题:先算出一份是多少。

归总问题:先算出总数是多少。

数学:1、减法的性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。

2、除法的性质:一个数连续除以两个数,可以先把两个除数乘起来,再去除被除数。

【例1】学校买3只同样的足球用去240元,照这样计算,买8只同样的足球需要多少元? 金钥匙:知道3只同样的足球用去240元,那么我们就可以求出1只足球的价格,知道1只足球的价格,就可以求出8只的价钱了:240÷3=80(元)…………归一80×8=640(元)…………归总答:买8只同样的足球需要640元。

试金石:1、 一台幻灯机,第一次放映50张幻灯片用了7秒钟,照这样计算,第二次用同样的幻灯机放映150张幻灯片要多少时间?2、某商场在进行促销活动,3包同样的餐巾纸售价7元,这天售货员卖这种餐巾纸共收款 2170元,那么这天共卖出多少包这样的餐巾纸?学习目标 知识梳理3.6个工人5天能生产360个的玩具,照这样计算,10个工人7天可以生产多少个同样玩具?【例2】小杰用相同的速度4分钟走了280米的路,那么照这样的速度,走490米路需要多少时间?金钥匙:这题我们要运用“速度=路程÷时间”来求出速度。

知道速度后,再运用“时间=路程÷速度”来求出最终的解:280÷4=70米/分490÷70=7分钟答:走490米路需要7分钟。

试金石:1、一列动车从甲地开往乙地,每小时行200千米,5小时到达,动车提速后,4小时可以到达乙地,动车提速后每小时可以行多少千米?2、某车间要完成一批零件,计划平均每天生产420个零件,30天可以完成,如果每天比计划多生产30个,那么几天可以完成?3、5辆相同的卡车7次共运水果140吨,照这样计算,如果要求6次就运走192吨,要用同样的卡车多少辆?。

归一归总问题【讲义】

归一归总问题【讲义】

归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。

归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。

如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。

归一问题的基本关系式:总工作量每份的工作量(单一量)份数 (正归一)份数总工作量每份的工作量(单一量) (反归一)每份的工作量(单一量) 总工作量份数[小结]总工作量每份的工作量(单一量)份数 (正归一)例如⑴题份数总工作量每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) 总工作量份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米?【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天?【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时?【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克?【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件?(2)如果要生产6300个零件几小时可完成?【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务?同例 5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件?【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

第五讲归一问题

第五讲归一问题
原有水量+10 小时进水量=5 人 10 小时的舀水量=5×10=50 比较可得 10-3=7(小时)的进水量=50-36=14 每小时进水量=14÷7=2 每次需 2 人去舀每小时进入的水,原有水量=(12-2)×3=30 2 人去舀每小时进的水,其他人在 2 小时内要舀尽原有的水,需要的人数是:30÷2=15(人) 共需人数:15+2=17(人)
- 59 -
关爱成长每一天
3、锅炉房按照每天 4.5 吨的用量储备了 120 天的供暖煤。供暖 40 天后,由于进行了技术改造,
每天能节约 0.9 吨煤。问:这些煤共可以供暖多少天?
例 2.修一条公路,原计划 60 人工作,80 天完成。现在工作 20 天后,又增加了 30 人,这样剩下
的部分再用多少天可以完成?
8、修一条公路,原计划 60 人工作,80 天完成。现在工作 20 天后,又增加了 30 人,这样剩下的 部分再用多少天可以完成?
3、 一批产品,28 人 25 天可以收割完,生产 5 天后,此项任务要提前 10 天完成,应增加多少人?
第二关:我能会
例 1.食堂管理员去农贸市场买鸡蛋,原计划按每千克 3.00 元买 35 千克。结果鸡蛋价格下调了, 他用这笔钱多买了 2.5 千克鸡蛋。问:鸡蛋价格下调后是每千克多少元? 解析:此题关键是买鸡蛋的钱不变,即总量不变。因此先求出买鸡蛋的总钱数,再除以实际买到 的鸡蛋数,就能求出价格下调后的单价。
- 64 -
第五讲 归一归总应用题
3、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多,从开始检票到没有人排队 等候检票,同时开 4 个检票口需 30 分钟,同时开 5 个检票口需 20 分钟,如果想要在 12 分钟后使 没有人排队等候检票,需要同时开几个检票口?

解决问题(归一问题,县优质课课件)

解决问题(归一问题,县优质课课件)

实例总结与拓展
总结
通过以上两个实例的分析和讲解,我们可以看出归一问题是一类非常常见的问题,其本质是将不同量纲或不同 单位的数据转换到同一标准下进行比较或计算。解决归一问题的方法通常是先确定一个统一的标准或单位,然 后将其他数据转换到这个标准或单位下进行计算。
拓展
除了以上两个实例外,还有许多其他类型的归一问题。例如,在经济学中,常常需要将不同国家或地区的经济 数据转换到同一货币单位下进行比较;在物理学中,常常需要将不同物理量的数值转换到同一量纲下进行比较 或计算。因此,掌握归一问题的解决方法对于学习和应用数学知识具有重要意义。
方程法
1 2 3
明确未知数
在解决归一问题时,我们通常需要找出某个未知 数,而方程法正是通过设立方程来求解未知数的 方法。
建立等量关系
方程法的核心在于建立等量关系,即根据问题中 的条件列出方程,然后通过解方程来找出问题的 解决方法。
适用范围广
方程法不仅适用于解决归一问题,还可以用于解 决其他类型的问题,是一种通用的解题方法。
是复杂归一问题。
03
解题方法与策略
画图法
直观展示问题
提高解题效率
通过画图的方式,将问题中的信息直 观地展示出来,有助于理解问题的本 质和找出问题的解决方法。
画图法可以使问题更加形象化,有助 于我们更快地理解问题,提高解题效 率。
便于发现规律
在解决归一问题时,画图可以帮助我 们发现数量之间的关系和规律,从而 更快地找到问题的解决方法。
1. 计算每种水果需要付 2. 计算每种水果需要付 钱的数量:苹果需要付2 的钱数:苹果需要付 个的钱,梨需要付2个的 2×2=4元,梨需要付 钱,桃子需要付1个的钱。 2×3=6元,桃子需要付

归一归总问题【讲义】

归一归总问题【讲义】

归一归总问题【讲义】归一问题是一类典型的应用题,它可以用等分除法来求解一个单位的数值,然后再根据题目要求求解问题,这种解法被称为归一法。

归一问题可以分为正归一问题和反归一问题。

正归一问题是指求总量,需要先求出一个单位量,然后利用乘法求出结果。

例如,一辆汽车3小时行150千米,求7小时行驶多少千米。

解决这类问题的关键是先求出单位数量,再求几个单位数量是多少。

反归一问题是指求份数,需要先求出一个单位量,然后用包含除法的方法求出所求的结果。

例如,修路队6小时修路180千米,求修路240千米需要几小时。

解决这类问题的关键是先求出单位数量,再求一共包含多少个单位数量。

归一问题的基本关系式包括总工作量等于每份的工作量乘以份数(正归一),份数等于总工作量除以每份的工作量(反归一),每份的工作量等于总工作量除以份数。

有些问题需要进行两次归一或与倍比相结合才能解决。

归总问题与归一问题类似,但是它是找出“总量”,再根据其他条件求出结果。

所谓“总量”可以是总路程、总产量、工作总量、物品的总价等。

举例来说,正归一问题可以是某人步行3小时行15千米,求7小时行驶多少千米;XXX骑车3分钟行600米,求从家到学校行了10分钟,XXX家到学校有多少米;一个打字员15分钟打了1800个字,求1小时能打多少个字。

反归一问题可以是一艘轮船4小时航行108千米,求继续航行270千米共需多少小时;绿化队3天种树210棵,还要种420棵,求完成任务共需多少天。

例6】一个工人要磨面粉200千克,3小时磨了60千克。

剩下的面粉还需要多少小时才能磨完?例7】王奶奶家有5头奶牛,7天产牛奶630千克。

如果有8头奶牛,需要多少天才能生产出15天内的牛奶总量?例8】某车间原本用4台车床5小时生产零件600个。

增加3台同样的车床后,8小时可以生产多少个零件?如果要生产6300个零件,需要多少小时才能完成?例9】3名工人在5小时内加工了90个零件。

如果要在10小时内完成加工540个零件,需要多少名工人?例10】XXX组织16只小猴子摘桃子,2小时内摘了640个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲归一问题
例题4
3台电脑6小时可以设计图纸1440张,照这样计算,如果增加4台电脑,多少小时可以设计2800张图纸?
练习4
1、3辆汽车8小时运货120吨,照这样计算,如果增加6辆同样的汽车,几小时可以运货630吨?
2、扬子江饲养场原来喂养了20匹马,7天喂精饲料280千克,照这样计算,增加5匹马,450千克精饲料能喂几天?
3、4台吊车7小时卸沙1428吨,如果增加5台同样的吊车,工作8小时,可以卸沙多少吨?
例题5
一个加工厂要加工大米5000千克,3小时加工了1500千克,照这样计算,加工完剩下的大米还要几小时?
练习5
1、服装厂要加工3960件大衣,3个人10天完成1320件,剩下的还由这3人加工,还需要多少天完成?
2、甲乙两地相距2250千米,一架飞机从甲地飞往乙地,2小时飞行了900千米,照这样计算,飞完剩下的路程还要几小时?
3、育英小学四年级有42名学生帮助学校搬运1512块砖,3次搬了总数的一半,照这样计算,再增加21人,剩下的砖几次搬完?
单元复习题
1、2013-2012+2011-2010+...+3-2+1
2、262+345+638+455+517
3、720÷(36×5)44×25
4、2, 5,11, 23 ()()()
5、60, 63, 68, 75,()()()
6、125×498×8 35×25×4。

相关文档
最新文档