概率论习题解答3
概率论第三章部分习题解答

ydxdy.
定理1 cov(X ,Y ) E( XY ) E( X )E(Y )
定理2 若X与Y 独立,则:covX ,Y 0. 逆命题不成立。
注 设X与Y是任两个随机变量,
10
D( X Y ) D( X ) D(Y ) 2cov(X ,Y )
2、X与Y 的相关系数
定义 R( X ,Y ) cov( X ,Y )
EX
xf
xdx
1
二、二维随机变量的数学期望
(1)设二维离散随机变量(X,Y)的联合概率函数为p(xi , yj),则
随机变量X及Y 的数学期望分别定义如下:
EX xi p xi , y j , EY y j p xi , y j .
i j
ji
即: EX xi pX xi , EY y j pY y j .
第三章 随机变量的数字特征
(一)基本内容 一、一维随机变量的数学期望
定义1:设X是一离散型随机变量,其分布列为:
X x1 x2 xi
P p( x1 ) p( x2 )p( xi )
则随机变量X 的数学期望为: EX xi pxi
i
定义2:设X是一连续型随机变量,其分布密度为 f x,
则随机变量X的数学期望为
i
j
假定级数是绝对收敛的.
(2)设二维连续随机变量(X,Y)的联合概率密度为f(x, y),则
随机变量X及Y 的数学期望分别定义如下:
EX
xf
x,
ydxdy,
EY
yf x, ydxdy.
即:EX
xf X x dx,
EY
yfY y dy.
2
假定积分是绝对收敛的.
概率统计练习题3答案

概率统计练习题3答案《概率论与数理统计》练习题3答案考试时间:120分钟题目部分,一、选择题1、设A,B,C 为随机试验中的三个事件,则A?B?C等于()。
A、A?B?C B、A?B?C C、A?B?C D、A?B?C 答案:B 2、同时抛掷3枚匀称的硬币,则恰好有两枚正面向上的概率为()。
A、B、C、0125.D、答案:D 3、设?是一个连续型变量,其概率密度为?(x),分布函数为F(x),则对于任意x 值有()。
A、P(??0)?0 B、F?(x)??(x)C、P(??x)??(x)D、P(??x)?F(x) 答案:A 4、设?,?相互独立,并服从区间[0,1]上的均匀分布则()。
A、?????服从[0,2]上的均匀分布,B、?????服从[??1,1]上的均匀分布,C、??Max{?,?}服从[0,1]上的均匀分布,D、(?,?)服从区域?答案:D5、随机变量?服从[?3, 3]上的均匀分布,则E(?)?()。
A、3 B、2?0?x?1上的均匀分布0?y?1?9 C、9D、18 2答案:A 试卷答案第 1 页6、D??4, D??1, ????,则D(3??2?)?()。
A、40B、34C、D、答案:C7、设?1,?2,???,?100服从同一分布,它们的数学期望和方差均是2,那么n??P?0???i?4n??()。
i?1??A、12n?111B、C、D、2n22nn答案:B8、设T~t(n),则T2~()。
A、t(2n) 答案:D9、设某种零件的寿命Y~N(?,?2),其中?和?均未知。
现随机抽取4只,测得寿命(单位小时)为1502,1453,1367,1650,则用矩法估计可求得2B、?2(n) C、F(n,1)D、F(1, n) ?2=___________。
?=________ __,??答案:1493,14069 10、设对统计假设H0构造了一种显著性检验方法,则下列结论错误的是()。
概率论练习册答案第三章

习题3-11.而且12{0}1P X X ==. 求X 1和X 2的联合分布律.解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律.解 从7只球中取4球只有3547=C 种取法. 在4只球中, 黑球有i 只, 红球有j 只(余下为白球4i j --只)的取法为4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4.于是有0223221{0,2}3535P X Y C C C ====,1113226{1,1}3535P X Y C C C ====,1213226{1,2}3535P X Y C C C ====,2023223{2,0}3535P X Y C C C ====,21132212{2,1}3535P X Y C C C ====,2203223{2,2}3535P X Y C C C ====,3013222{3,0}3535P X Y C C C ====, 3103222{3,1}3535P X Y C C C ====,{0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============.3. (,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以 18k =. (2) 3121,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰. (3) 1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰44201d (6)d 8x y x y x -=--⎰⎰ 4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=. 图3-8 第4题积分区域4. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它. 试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由21114001(,)d d d (1)d 26x k kf x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k .因而 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 5. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 6. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-⎧⎨⎩若≤若 1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==12133=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2){22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. 而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成, 二维随机变量(X , Y )在区域D 上服从均匀分布, 求(X , Y )关于X 的边缘概率密度在x =2处的值.解 由题设知D 的面积为22e e111d ln 2D S x x x ===⎰. 因此, (X ,Y )的密度为 1,(,),(,)20x y D f x y ∈=⎧⎪⎨⎪⎩,其它.由此可得关于X 的边缘概率密度 ()(,)d X f x f x y y +∞-∞=⎰.显然, 当x ≤1或x ≥e 2时,()0X f x =; 当21e x <<时,111()d 22x X f x y x==⎰.故(2)14X f =. 3. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =. 故 2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0<z <2时, (){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24z z =-.故 1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 4. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此 ⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律.解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立? 解由于边缘分布满足23111,1i j i j p p ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为 p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组 21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立.因此当29α=,19β=时, X 与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它(1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独立? 解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得 111eb -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()2Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它 (2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈⎰.图3-3 第6题积分区域 习题3-41. 设二维随机变量(X ,Y )的概率分布为YX0 1若随机事件{X =0}与{X +Y =1}相互独立, 求常数a , b .解 首先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+⨯. 解得0.4,0.1a b ==.2. 设两个相互独立的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律. 解 随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=⨯=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===⨯+⨯=,28.04.07.0}4,3{}7{=⨯=====Y X P Z P ,或写为3. 随机变量X 与Y 相互独立, 且均服从区间[0,3]上的均匀分布, 求{}max{,}1P X Y ≤.解 由题意知, X 与Y 的概率密度均为1,03,()30x f x =⎧⎪⎨⎪⎩≤≤,其它.又由独立性, 有P {max{X +Y }≤1}=P {X ≤1,Y ≤1}= P {X ≤1} P {Y ≤1}.而 P {X ≤1}= P {Y ≤1}11011()d d 33f x x x -∞===⎰⎰, 故 P {max{X +Y }≤1}=111339⨯=.4. 设X 和Y 是两个相互独立的随机变量, 且X 服从正态分布N (μ, σ2), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解 已知X 和Y 的概率密度分别为22()2()e2x X f x μσπσ--=, ),(+∞-∞∈x ; ⎪⎩⎪⎨⎧-∉-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独立, 所以22()21()()()d e d 22z y aZ X Y a f z f z y f y y y a μσπσ---+∞-∞-=-=⎰⎰=1[()()]2z μa z μa ΦΦa σσ-+---. 10. 设随机变量X 和Y 的联合分布是正方形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解 由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =⎧⎪⎨⎪⎩≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有 当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==⎰⎰≤≤21[42(2)]412u =-⨯- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=⎧⎪⎨⎪⎩其它..总习题三1. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解 首先2,01,()0,.(,)其它X x x f x f x y dy +∞-∞<<==⎧⎨⎩⎰1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-<⎧⎪⎨⎪⎩⎰图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=⎧⎪⎨⎪⎩取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=⎧⎪⎨⎪⎩取其它值.当10<<x 时, |1,||,(|)20,Y X y x f y x x y <=⎧⎪⎨⎪⎩取其它值.2. 设随机变量X 与Y 相互独立, 下表列出二维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填入表中空白处 .解 首先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有11121111{,}{}{,}6824P X x Y y P Y y P X x Y y ====-===-=.在此基础上利用X 和Y 的独立性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利用X 和Y 的独立性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======.于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利用X 和Y 的独立性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======⨯=; 2323311{,}{}{}434P X x Y y P X x P Y y ======⨯=;1313111{,}{}{}4312P X x Y y P X x P Y y ======⨯=.因此得到下表3. (34)e (,)0,.,0,0,x y k f x y x y -+=⎧>>⎨⎩其它 (1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独立? 解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===⎰⎰⎰⎰,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=⎰⎰.当x <0或y <0时,有 0),(=y x F ; 当0,0x y ≥≥时, 34340(,)12e d e d (1e )(1e )x yuv x y F x y u v ----==--⎰⎰.即 34(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧--≥≥=⎨⎩其它(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--. (4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞⎧>⎪==⎨⎪⎩⎰⎰所以 33e ,0,()0,其它.x X x f x -⎧>=⎨⎩类似地, 有44e ,0,()0,其它.y Y y f y -⎧>=⎨⎩显然2),(),()(),(R y x y f x f y x f Y X ∈∀⋅=, 故X 与Y 相互独立. 4.解 已知的分布律为注意到41260}1{}1{=++====Y P X P , 而0}1,1{===Y X P ,可见P {X =1, Y =1}≠P {X =1}P {Y =1}. 因此X 与Y 不相互独立.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P3112161121=++=, 316161}2,3{}3,2{}5{=+===+====Y X P Y X P Z P . 即Z X Y =+(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 21}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P . 即min{,}U X Y =的分布律为(5) W U V =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,}2,2{}3,1{}4{==+====V U P V U P W P31}2,2{}1,3{}3,1{===+==+===y X P Y X P Y X P ,31}2,3{}3,2{}3,2{}5{===+=======Y X P Y X P V U P W P .5. 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它. (1) 求P {X >2Y }; (2) 求Z = X +Y 的概率密度f Z (z ).解 (1) 1120227{2}(,)d d d (2)d 24yx yP X Y f x y x y y x y x >>==--=⎰⎰⎰⎰. (2) 方法一: 先求Z 的分布函数:()()(,)d d Z x y zF z P X Y Z f x y x y +=+=⎰⎰≤≤.当z <0时, F Z (z )<0; 当0≤z <1时, 1()(,)d d d (2)d zz yZ D F z f x y x y y x y x -==--⎰⎰⎰⎰= z 2-13z 3; 当1≤z <2时, 2111()1(,)d d 1d (2)d Z z z yD F z f x y x y y x y x --=-=---⎰⎰⎰⎰= 1-13(2-z )3; 当z ≥2时, F Z (z ) = 1.故Z = X +Y 的概率密度为222,01,()()(2),12,0,Z Z z z z f z F z z z ⎧-<<⎪'==-<⎨⎪⎩≤其它.方法二: 利用公式()(,)d :Z f z f x z x x +∞-∞=-⎰2(),01,01,(,)0,x z x x z x f x z x ---<<<-<⎧-=⎨⎩其它 2,01,1,0,.z x x z x -<<<<+⎧=⎨⎩其它当z ≤0或z ≥2时, f Z (z ) = 0; 当0<z <1时, 0()(2)d (2);zZ f z z x z z =-=-⎰当1≤z <2时, 121()(2)d (2).Zz f z z x z -=-=-⎰故Z = X +Y 的概率密度为222,01,()(2),12,0,.Z z z z f z z z ⎧-<<⎪=-<⎨⎪⎩≤其它.6. 设随机变量(X , Y )得密度为21,01,02,(,)30,.其它x xy x y x y ϕ⎧+⎪=⎨⎪⎩≤≤≤≤试求: (1) (X , Y )的分布函数; (2) (X , Y )的两个边缘分布密度; (3) (X , Y )的两个条件密度; (4) 概率P {X +Y >1}, P {Y >X }及P {Y <12|X <12}.解 (1) 当x<0或y <0时, φ(x , y ) = 0, 所以 F (x , y ) = 0.当0≤x <1, 0≤y <2时, φ(x , y ) = x 2+13xy ,所以 201(,)(,)d d [()d ]d 3x yx yF x y u v u v u uv v u -∞-∞==+⎰⎰⎰⎰ϕ32211312x y x y =+. 当0≤x <1, 2≤y 时,2(,)(,)d d [(,)d ]d [(,)d ]d xyx y x F x y u v u v u v v u u v v u -∞-∞===⎰⎰⎰⎰⎰⎰ϕϕϕ22001[()d ]d 3xu uv v u =+⎰⎰21(21)3x x =+. 当1≤x , 0≤y <2时,1(,)(,)d d [(,)d ]d xyyF x y u v u v u v v u -∞-∞==⎰⎰⎰⎰ϕϕ12001[()d ]d 3yu uv v u =+⎰⎰1(4)12y y =+. 当1≤x , 2≤y 时,122001(,)[()d ]d 13F x y u uv v u =+=⎰⎰.综上所述, 分布函数为220,00,1(),01,02,341(,)(21),01,2,31(4),1,02,121,1, 2.x y y x y x x y F x y x x x y y y x y x y <<⎧⎪⎪+<<⎪⎪⎪=+≥⎨⎪⎪+≥⎪⎪≥≥⎪⎩或≤≤≤≤≤< (2) 当0≤x ≤1时,22202()(,)d ()d 2,33X xy x x y y x y x x ϕϕ+∞-∞==+=+⎰⎰故 222,01,()30,.其它≤≤X x x x x ϕ⎧+⎪=⎨⎪⎩当0≤y ≤2时,12011()(,)d ()d ,336Y xy y x y x x x y ϕϕ+∞-∞==+=+⎰⎰ 故 11,02,()360,.其它≤≤Y y y y ϕ⎧+⎪=⎨⎪⎩(3) 当0≤y ≤2时, X 关于Y = y 的条件概率密度为2(,)62(|).()2Y x y x xy x y y yϕϕϕ+==+当0≤x ≤1时, Y 关于X = x 的条件概率密度为(,)3(|).()62X x y x yy x y x ϕϕϕ+==+(4) 参见图3-10.图3-10 第9题积分区域 图3-11 第9题积分区域1{1}(,)d d x y P X Y x y x y ϕ+>+>=⎰⎰12201165d ()d .372xx x xy y -=+=⎰⎰ 同理, 参见图3-11.{}(,)d d y xP Y X x y x y ϕ>>=⎰⎰122117d ()d .324xx x xy y =+=⎰⎰ 1111{,}(,)112222{|}1122{}()22X P X Y F P Y X P X F <<<<==<211(,)221201()534.32()d |X y x y x x xϕ+==⎰。
概率论第一章习题解答

(1)若至少有一次及格,他就能够获得某种资格,求他获得资格 的概率。
(2)若知道他第二次已经及格,求他第一次及格的概率。 解 设=“第次及格”,( )。
B=“获得资格” (1) 已知,,
, 显然, , 故
。 (2)(贝叶斯公式) 。 23 将两信息分别编码为A和B传送出去,接收站收到时,A误作B的 概率为0.02, B误作为A的概率为0.01。信息A与B传送的频繁程度为 2:1。若接收站收到的信息为A, 原发信息为A的概率是多少? 解 设=“发出的信息为A”, =“发出的信息为B”,
而 ;; 。 (注意到从第二个盒子中取球时,它里面装有11只球。)
(此时第三个盒子中有7只白球。) (此时第二个盒子中有6只白球,5只红球。) (此时第二个盒子中有5只白球,6只红球。) 于是 。 20 某种产品的商标为“MAXAM”,其中有2个字母脱落,有人捡起随 意放回,求放回后仍为“MAXAM”的概率。 解 设B=“放回的结果正确”,字母脱落的五种情况记为: =“M,X”, =“A,X”, =“M,A”, =“ A,A”, =“M,M”, 则,样本空间所包含的基本事件数即脱落的总数: 事件所包含的基本事件数:,(2个M,1个X) 事件所包含的基本事件数:,(2个A,1个X) 事件所包含的基本事件数:,(2个M,2个A) 事件所包含的基本事件数: 事件所包含的基本事件数: 于是 ; ; 。 ,(), ,() 根据全概率公式,有 。 21 已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从 男女人数相等的人群中随机地选1人,恰好是色盲,此人是男性的概率 是多少? 解 设A=“色盲患者”,B=“男性” 则 事件“随机地选1人,恰好是色盲,此人是男性”= 于是所求概率为: 由贝叶斯公式 已知 (从男女人数相等的人群中随机选取1人。) , 于是 。 22 一学生接连参加同一课程的两次考试,每一次及格的概率为p,若第 一次及格第二次也及格的概率为p。若第一次不及格第二次及格的概 率为p/2。
大学概率论习题三详解

大学概率论习题三详解(A )1、某推销人与工厂约定,用船把一箱货物按期无损的运到目的地可得佣金10元,若不按期但无损则扣2元,若货物按期有损则扣5元,若既不按期又有损坏不仅得不到佣金还需要赔偿对方6元。
推销人按他的经验认为,一箱货物按期无损的运到目的地有60%把握,不按期但无损到达占20%,货物按期有损占10%,不按期又有损的占10%。
问推销人在用船运货物时,每箱期望得到多少?解 设X 表示该推销人用船运货物时每箱可得钱数,则按题意,X 的分布为:)(X E =()5.71.061.052.086.010=⨯-+⨯+⨯+⨯元2、某工厂每天用水量保持正常的概率为7/5,求7天内用水量保持正常的平均天数。
解 7天内用水量保持正常的天数为X ,则)75,7(~B X5==np EX3、设一机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元,发生1次故障仍可获利润5万元,发生2次故障获利0万元,发生3次以上故障亏损2万元,求一周5个工作日内期望利润。
解 令X 表示一周发生的故障数,依题意)2.0,5(~B X 令Y 表示一周内利润:328.08.0)0()10(5=====X P Y P 410.08.08.02.0)1()5(4415==⨯====C X P Y P205.08.04.08.02.0)2()0(33225=⨯=⨯====C X P Y P057.08.04.08.08.01)3()2(345=⨯---=≥=-=X P Y P Y756.5057.02410.05382.010=⨯-⨯+⨯=EY4、把四个球随机地放入4个盒子中,设X 表示空盒子的个数,求EX 。
解 首先求X 的概率分布 323444)0(4444====!P X P 1694)1(422241314=⋅⋅⋅==P C C C X P64214)()2(414122424=⋅+⋅==C C C C X P 6414)3(434===C X P648164136421216913230)(=⨯+⨯+⨯+⨯=X E5、某射手每次击中目标的概率是p ,现携带10发子弹对目标连续射击(每次一发)一旦击中或子弹打完立即转移地方,求他转移前平均射击次数。
《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题及答案习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以丫表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以丫表示取到红球的只数.求X和丫的联合分布律.3.设二维随机变量(X, Y)的联合分布函数为F(x, y)Jsinxsiny,。
沁兰才gy 写L0, 其他.求二维随机变量(X, Y)在长方形域{o<x< -,n y<内的概率.I 4 6 3., n n n【解】如图P{0 cx < - —c Y<—}公式(3.2)4 6 3F(n,n)-F(n n-F(o, n+F(o, n4 3 4 6 3 6n n n — n厂n厂n=sin — 0n — —sin — sin — -sin0sin — + sin 比sin — 4 3 4" 6 3 6出(屁1). 4[k(6 - X - y),0 c X c 2, 2 c y c 4, (x ,y )=( 0,其他.确定常数 求 P{X <1 , Y v 3}; 求 P{X<1.5}; 求 P{X+Y W 4}. 【解】(1)由性质有说明:也可先求出密度函数, 4.设随机变量 求:(1)(2) (3) 【解】(1)(X , 丫)的分布密度f (X , y )=0,,XA0,yA0,其他.常数A ;随机变量(X , 丫)的分布函数; P{0 <X<1 , 0<丫<2}.-be -be -be -be由 L LcfXyMxdy^ .0 Ae严d y)dxdy=4=112 得(2) A=12由定义,有y XF (x, y) = LcL f (u,v)dudv」「[任4和dudv 10,"(1-e 」X )(1-e"4y )y A 0,XA 0,0,其他⑶ P{0 <X <1,0 < 丫 <2}= P{0 cX <1,0cY <2}1「0[12e 5.设随机变量(仲枷)dxdy =(1-e 冷(1-e*“ 0.9499.Y ) 的概率密度为(1)(2) (3) (4) k ;-be -be2 4f f f(x,y)dxdy = r r k(6-x-y)dydx=8k=1,・0・21 R = -81 3-UU f (x ,y)d y d x1 313=0 L8k (6_x-y )dydx=8⑶ P{X v 1.5} = JJ f (x, y)dxdy 如图 a JJ f (x, y)dxdyx £5D 11.541 27=f dx f -(6 — x- y)dy =——. 0 28、 ” y 32⑷ P{X + Y <4} = ff f (x,y)dxdy 如图b JJ f (x, y)dxdyX -Y <D224_x12 =[dx f -(6 - X - y)dy =-. 0」2 8 3y,1.5 2 fa)求:(1) X 与丫的联合分布密度;(2) P{Y^X}.题6图【解】(1)因X 在(0, 0.2 )上服从均匀分布,所以X 的密度函数为I 1I ——,0ex <0.2, fx (X )= \ 0.2 0,其他.(2) P{X <1,Yc3} 6.设X 和丫是两个相互独立的随机变量,0.2)上服从均匀分布,丫的密度函数为 yf Y ( y )=y>o,其他.题5图X 在(0,y=yf(x,y X Y 独立f x xCf Y y()(2) P(Y <X) = ff f (x,y)dxdy 如图仃25e'y dxdyy < D0.2 x50.2 5=f 0 dx 0 25e ydy = J o (-5e +5)dx-1=e 止 0.3679.7.设二维随机变量(X ,Y )的联合分布函数为「(1—e"x )(1 —e 'y ), XA 0, y 》。
概率论第三章习题解答

第三章习题解1 在一箱子中装有12只开关,其中2 只是次品,在其中任取两次,每次任取一只,考虑两种实验:(1)放回抽样;(2)不放回抽样。
概念随机变量X ,Y 如下:0,1X ⎧=⎨⎩若第一次取出的是正品,,若第一次取出的是次品。
0,Y 1⎧=⎨⎩若第二次取出的是正品,,若第二次取出的是次品。
试别离就(1),(2)两种情形写出X ,Y 的联合散布律。
解 (1)放回抽样由于每次抽取时都是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126P X ===, 第一次掏出的是次品的概率为 21{1}126P X === 同理,第二次取到正品的概率105{0}126P Y === 第二次取到次品的概率为21{1}126P Y === 由乘法公式得X ,Y 的联合散布率为{,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。
具体地有5525{0,0}6636P X Y ===⨯=,515{0,1}6636P X Y ===⨯=,155{1,0}6636P X Y ===⨯=,111{1,1}6636P X Y ===⨯=用表格的形式表示为(2)不放回抽样5{0}6P X ==,1{1}6P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的是正品,那么箱子中有9只正品)。
因此9{0|0}11P Y X ===, 2{1|0}11P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===则5945{0,0}61166P X Y ===⨯= 5210{0,1}61166P X Y ===⨯=, 11010{1,0}61166P X Y ===⨯=,111{1,1}61166P X Y ===⨯= 用表格表示为2 (1)盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合散布律。
概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
考虑两种试验:(1)放回抽样,(2)不放回抽样。
我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样情况由于每次取物是独立的。
由独立性定义知。
P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。
解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1
F
1
a
(n1
2
1, n2
1)
Fa (n2
1, n1
1)
F0.05 (14,24)
2
1 2.12
置 信 区 间 为 : (0.5271,2.6263)
注: F0.05 (14,24)在 表 中 查 不 到 ,
用F0.05 (15,24) 2.11 F0.05 (15,23) 2.13
参数估计 假设检验
1
参数估计
一、是非题
1. 从50 只灯泡中任意抽取5只做破坏性试验,测得
寿命分别是X1, X2 , X3 , X4 , X5 ,则 X1, X2 , X3 , X4 , X5 是一个
简单随机样本.
()
2. 样本的函数一定是统计量.
()
分析: 什么是统计量??
由样本构成(不含有其他未知参数)的函数统称为统计量。
n n
n
分布。
(n 1)S 2
2
~
2 (n 1) 且 (n 1)S 2 2
和(
X
)2 独 立 n
( X )2 1
F
n
(n 1)S 2
2
(n 1)
nX 2 S2
~ F (1, n 1)
5
三、解答题
1、设总体X和Y相互独立,且都服从正态分布 N(20,3),分 别取容量为10和15的样本,求两样本均值差的绝对值大于 0.3 的概率。
分析:P{| X Y | 0.3} ? μ1 μ2 20, σ12 σ22 3
X
~
N
(
1
,
2 1
/
n1 )
Yห้องสมุดไป่ตู้
~
N
(2
,
2 2
/
n2
)
X
Y
~
N
(1
2
,
2 1
n1
2 2
)
n2
即 X Y ~ N (0, 1 ) 2
所以( X Y ) ~ N (0,1) 12
P{| X Y | 0.3} 1 P{| X Y | 0.3} 1 P{0.3 X Y 0.3}
6
三:解答题 5、设总体 X ~ ( ), 未知,X1,X 2,, Xn为总体 X 的
样本,求 P{X 0}的极大似然估计量。 分析: P{ X 0} 0e e
2 2
解: n1 25, n2 15, S12 6.38, S22 5.15, a 0.1
S12
统计量
F
S22
2 1
~
F(n1 1, n2
1)
2 2
对给定的
a,查表可得
Fa
(n1
1,
n2
1)}
与F
1
a
(n1
1,
n2
1)
使
2
2
S12
P{F
1
a
(n1
1, n2
的极大似然估计是—2—ˆ— 1——.
性质:若 ˆ 是参数 的极大似然估计量,而函数 u u( )
具有单值反函数,则 u(ˆ是) u(的) 极大似然估计量。
3 X1,X2,X3,X4,X5是来自正态总体N(0,1)的一个简单随机样本,
则
2X5
~
X12
X
2 2
X
2 3
X
2 4
X5
3.用矩估计法估计总体分布中的未知参数,同一个参数可 以有几个不同的估计量。即矩估计不唯一 . ( )
令E(
X
k
)
M
,均
k
可求得的矩
估计
2
4.设总体N(,σ 2),未知,则的无偏估计量是唯一的。
X , X2 , Xn, 2X Xn
都 是的无偏估计量
3
二、填空题
2. 设ˆ是总体 X 的未知参数的极大似然估计,则a 2 1
统计量 T
X Y 1 1 ~ t(n1 n2 2)
Sw
n1 n2
11
4、假设检验中所可能犯的第一类错误 a 与第二类错
误 之间的关系为
( D)
A a
B a
C a与不 可 能 同 时 减少
D 样 本 容 量 一 定时 , a减 少 则 越 大
12
X
2 1
X
2 2
X
2 3
X
2 4
4
2X5
~ t(4)
X
2 1
X
2 2
X
2 3
X
2 4
4
6 设X 和S2是来自正态总体N(0,σ2)的样本的样本均值和
样本方差,样本容量为n,则统计量 nX 2 S 2 服从
分析: X ~ N(0, 2 ), X ~ N(0,1), ( X )2 ~ 2(1),
1)
S22
2 1
Fa (n1
1, n2
1)} 1 a
2
2 2
2
由此可得
2 1
2 2
的
(1 a)置信区间为
(
S12 S22
Fa (n1
1 1, n2
, 1)
S12 S22
1
F
1
a
(n1
1,
n2
) 1)
2
2
8
查表得 Fa (n1 1, n2 1)} F0.05 (24,14) 2.35
0!
的极大似然估计量为ˆ X(课本P114例3)
Pˆ { X 0} eˆ e X
7
6. 设有两个工厂独立地生产同种零件,其质量指标均服从正
态分布.分别从它们某天的产品中抽25件和15件,求得样本方
差分别为6.38和5.15,求两正态总体方差比
2 1
置信度为
0.90的置信区间.
作物,其产量都服从正态分布,且方差相同;计算知样本
均值各为30.97,26.79,样本方差各为26.7,12.1。现欲
通过假设检验推断这两个品种的产量是否存在显著差异,
则该检验应为
( C)
A 单边检验 C T 检验
B U 检验 D 非参数检验
分析: 假设 H0 : 1 2 H1 : 1 2
9
假设检验
一、是非题
2、检验水平 a 恰好是犯“弃真”错误的概率;实际
应用中,a 取得越小越好。
()
三、选择题
1、假设检验中,显著性水平 a表示
A
H
为
0
假
,
但
接
受H
的
0
概
率
B
H
为
0
真
,
但
拒
绝H
的
0
概
率
C
H
为
0
假
,
且
拒
绝H
的
0
概
率
D
假
设H
的
0
可
信
度
( B)
10
3、各在十块相同条件的土地上试种甲、乙两个品种的农