汽车碰撞分析LS DYNA控制卡片设置
LS-Dyna碰撞分析调试指南

LS-DYNA 碰撞分析调试LS-DYNA碰撞计算模型的主要检查、调试项目有:a、质量增加百分比小于5%;b、总沙漏能小于5%;c、滑移界面能;d、检查各部件之间的连接、接触关系是否定义正确,检查模型的完整性;e、检查数值输出的稳定性。
一、质量缩放Mass scale的检查:质量缩放——对于时间步长小于控制卡片中设置的最小时间步长的单元,我们通常采取增加单元材料密度的方法来增大其时间步长,以减短模型的计算时间。
关于LS-DYNA中单元时间步长的计算方法请参见附录一。
1、初步检查。
让模型在dyna中运行2个时间步,在Hyper view中调出glstat 文件并检查mass scaling项(质量增加应该小于5%);调出matsum文件并检查各部件的质量增加情况,对于质量增加过大以及有快速增长趋势的部件应检查此部件的网格质量和材料参数设置(质量增加一般是由于单元的特征长度太小或者是材料参数E、ρ设置错误,导致该单元的时间步长低于控制卡片中设置的最小时间步长,从而引起质量缩放)。
2、全过程检查。
调整模型使其符合初步检查的标准,计算模型至其正常结束。
再按[初步检查]的要求检查调试整个模型直至达到要求。
一个计算收敛的模型在其整个计算过程中,最大质量缩放应小于总质量的5% 。
二、沙漏能Hourglass energy的检查:沙漏能的出现是因为模型中采用了缩减积分引起的,我们常用的B-T单元采用的是面内单点积分,这种算法会引起沙漏效应(零能模式)。
具体介绍参见附录二。
检查:在dyna中计算模型至其正常结束。
在Hyper view中调出glstat文件并检查energy的total energy 、Hourglass energy两项,整个计算过程中沙漏能应小三、滑移界面能sliding interface energy的检查:滑移界面能是由摩擦和阻尼所引起的。
剧烈的滑动摩擦会引起大的正值的滑移界面能;未能检测到的穿透(undetected penetrations)常常会引起大的负值的滑移截面能。
汽车碰撞分析LS_DYNA控制卡片设置

控制卡片参数说明
*CONTROL_TIMESTEP(时间步长控制卡片) $ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST 0.0 0.9 2 0.0 -0.001 0 1 1 $ DT2MSF DT2MSLC 计算所需时间步长时,要检查所有的单元。出于稳定性原因,用0.9(缺省)来 减小时间步:Δt = 0.9 l/c ,特征长度l,和波的传播速度c,都与单元的类型有关。 DTINIT:初始时间步长,如为0.0,由DYNA自行决定初始步长; TSSFAC:时间步长缩放系数,用于确定新的时间步长。默认为0.9,当计算不稳定时,可以减小该值,但同时 增加计算时间; ISDO:计算4节点壳单元时间步长的(不同的值对应特征长度的不同算法,推荐使用2,因为此选项可以获得 最大的时间步长,但有三角形单元存在时会导致计算不稳定); TSLIMT:壳单元最小时间步分配 ,使单元的时间步长控制在最小时间步长之上;只适用于使用 *mat_plastic_kinematic,*mat_power_law_plasticity*mat_strain_rate_dependent_plasticity,*mat_piecewise_linear_pla sticity等材料模型的壳单元,不建议使用该选项,因为使用DT2MS选项更好。 DT2MS:因质量缩放计算得到的时间步长。当设置为一个负值时,初始时间将不会小于TSSFAC*|DT2MS|。质 量只是增加到时间步小于TSSAFC*|DT2MS|的单元上。当质量缩放可接受时,推荐用这种方法。用这种方法时 质量增加是有限的,过多的增加质量会导致计算终止。当设置为正值时,初始时间步长不会小于DT2MS。单 元质量会增件或者减小以保证每一个单元的时间步都一样。这种方法尽管不会因为过多增加质量而导致计算终 止,但更难以作出合理的解释。默认为0.0,不进行质量缩放; LCTM:限制最大时间步长的Load-curve,该曲线定义最大允许时间步长和时间的关系(可选择) ; ERODE:当计算时间步长小于TSMIN(最小时间步长)时体单元和t-shell被自动删除。
hypermesh中碰撞模拟的控制卡片设置及意义

1.输出数据控制。
指定要输入到D3PLOT、D3PART、D3THDT文件中的二进制数据。
【NEIPH】——写入二进制数据的实体单元额外积分点时间变量的数目。
【NEIPS】——写入二进制数据的壳单元和厚壳单元每个积分点处额外积分点时间变量的数目。
【MAXINT】——写入二进制数据的壳单元积分点数。
如果不是默认值3,则得不到中面的结果。
【STRFLAG】——设为1会输出实体单元、壳单元、厚壳单元的应变张量,用于后处理绘图。
对于壳单元和厚壳单元,会输出最外和最内两个积分点处的张量,对于实体单元,只输出一个应变张量。
【SIGFLG】——壳单元数据是否包括应力张量。
EQ.1:包括(默认)EQ.2:不包括【EPSFLG】——壳单元数据是否包括有效塑性应变。
EQ.1:包括(默认)EQ.2:不包括【RLTFLG】——壳单元数据是否包括合成应力。
EQ.1:包括(默认)EQ.2:不包括【ENGFLG】——壳单元数据是否包括内能和厚度。
EQ.1:包括(默认)EQ.2:不包括【CMPFLG】——实体单元、壳单元和厚壳单元各项异性材料应力应变输出时的局部材料坐标系。
EQ.0:全局坐标EQ.1:局部坐标【IEVERP】——限制数据在1000state之内。
EQ.0:每个图形文件可以有不止1个stateEQ.1:每个图形文件只能有1个state【BEAMIP】——用于输出的梁单元的积分点数。
【DCOMP】——数据压缩以去除刚体数据。
EQ.1:关闭(默认)。
没有刚体数据压缩。
EQ.2:开启。
激活刚体数据压缩。
EQ.3:关闭。
没有刚体数据压缩,但节点的速度和加速度被去除。
EQ.4:开启。
激活刚体数据压缩,同时节点的速度和加速度被去除。
【SHGE】——输出壳单元沙漏能密度。
EQ.1:关闭(默认)。
不输出沙漏能。
EQ.2:开启。
输出沙漏能。
【STSSZ】——输出壳单元时间步、质量和增加的质量。
EQ.1:关闭。
(默认)EQ.2:只输出时间步长。
hypermesh中碰撞模拟的控制卡片设置及意义

【SSS)
SECFORC
SLEOUT
SPCFORC
SWFORC
x,y,z三方向力
Slave能量
x,y,z三方向力
轴向力
x,y,z三方向力矩
Master能量
【MOVIE】——
【MPGS】——
【NCFORC】——接触面节点力
【NODFOR】——节点力组
【NODOUT】——节点数据
NCFORC
NODOUT
NODFOR
x方向力
位移
x,y,z三方向力
y方向力
速度
z方向力
加速度
转动量
角速度
角加速度
【RBDOUT】——刚体数据
【RCFORC】——接触面合成力
【RWFORC】——刚性墙所受的力
【SHGE】——输出壳单元沙漏能密度。
:关闭(默认)。不输出沙漏能。
:开启。输出沙漏能。
【STSSZ】——输出壳单元时间步、质量和增加的质量。
:关闭。(默认)
:只输出时间步长。
:输出质量、增加的质量、或时间步长。
【N3THDT】——为D3THDT数据设置的能量输出选项。
:关闭。能量不写入到D3THDT数据中。
:开启(默认)。能量写入到D3THDT数据中。
【NINTSLD】——写入LS-DYNA数据的实体单元积分点数目,默认值为1。对于多个积分点的实体单元,该值可能设为8。如果该值设为1,对于多个积分点的实体单元,将输出一个平均值。
2.接触面二进制数据输出控制
【DT】——输出的时间间隔。
【LCDT】——指定输出时间间隔的曲线。
汽车碰撞精确分析LSDYNA控制卡片设置

THKCHG:在单面接触时考虑壳厚度的改变(默认时不考虑)。
ORIEN:在初始化时可选择性的对接触面部分自动再定位。
控制卡片参数说明
ENMASS:接触单元被腐蚀的质量处理。0-节点被移除,1-体单元节点被保留,2-体单元壳单元节点被保留。 USRSTR:每个接触面分配的存储空间,针对用户提供的接触控制子程序。 USRFRC:每个接触面分配的存储空间,针对用户提供的接触摩擦子程序。 NSBCS:接触搜寻的循环数(使用三维Bucket分类搜索),推荐使用默认项。 INTERM:间歇搜寻主面和从面接触次数。 XPENE:接触面穿透检查最大乘数,默认4.0。 SSTHK:在单面接触中是否使用真实壳单元厚度,默认0,不使用真实厚度。 ECDT:时间步长内忽略腐蚀接触。
16. DATABASE_BINARY_RUNRSF 设置如下:
控制卡片参数设置
17. DATABASE_BINARY_RUNRSF 设置如下:
控制卡片参数说明
*CONTROL_TERMINATION
$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS
150
0
0.0
0.0
0.0
SLSFAC:滑动接触惩罚系数 ,默认为0.1。当发现穿透量过大时,可以调整该参数;
RWPNAL: 刚体作用于固定刚性墙时,刚性墙罚函数因子系数,为0.0时,不考虑刚体与刚性墙的作用,>0时, 刚体作用于固定的刚性墙,建议选择1.0;
ISLCHK:接触面初始穿透检查,为0或1(默认)时,不检查。为2时,检查。
后面将逐一介绍碰撞分析中经常用到的控制卡片,并对每个卡片的作 用进行说明。
控制卡片使用规则
卡片相应的使用规则如下:
LS-Dyna碰撞分析资料要点

LS-DYNA 碰撞分析调试LS-DYNA碰撞计算模型的主要检查、调试项目有:a、质量增加百分比小于5%;b、总沙漏能小于5%;c、滑移界面能;d、检查各部件之间的连接、接触关系是否定义正确,检查模型的完整性;e、检查数值输出的稳定性。
一、质量缩放Mass scale的检查:质量缩放——对于时间步长小于控制卡片中设置的最小时间步长的单元,我们通常采取增加单元材料密度的方法来增大其时间步长,以减短模型的计算时间。
关于LS-DYNA中单元时间步长的计算方法请参见附录一。
1、初步检查。
让模型在dyna中运行2个时间步,在Hyper view中调出glstat 文件并检查mass scaling项(质量增加应该小于5%);调出matsum文件并检查各部件的质量增加情况,对于质量增加过大以及有快速增长趋势的部件应检查此部件的网格质量和材料参数设置(质量增加一般是由于单元的特征长度太小或者是材料参数E、ρ设置错误,导致该单元的时间步长低于控制卡片中设置的最小时间步长,从而引起质量缩放)。
2、全过程检查。
调整模型使其符合初步检查的标准,计算模型至其正常结束。
再按[初步检查]的要求检查调试整个模型直至达到要求。
一个计算收敛的模型在其整个计算过程中,最大质量缩放应小于总质量的5% 。
二、沙漏能Hourglass energy的检查:沙漏能的出现是因为模型中采用了缩减积分引起的,我们常用的B-T单元采用的是面内单点积分,这种算法会引起沙漏效应(零能模式)。
具体介绍参见附录二。
检查:在dyna中计算模型至其正常结束。
在Hyper view中调出glstat文件并检查energy的total energy 、Hourglass energy两项,整个计算过程中沙漏能应小三、滑移界面能sliding interface energy的检查:滑移界面能是由摩擦和阻尼所引起的。
剧烈的滑动摩擦会引起大的正值的滑移界面能;未能检测到的穿透(undetected penetrations)常常会引起大的负值的滑移截面能。
hypermesh中碰撞模拟的控制卡片设置及意义

h y p e r m e s h中碰撞模拟的控制卡片设置及意义Prepared on 24 November 20201.输出数据控制。
指定要输入到D3PLOT、D3PART、D3THDT文件中的二进制数据。
【NEIPH】——写入二进制数据的实体单元额外积分点时间变量的数目。
【NEIPS】——写入二进制数据的壳单元和厚壳单元每个积分点处额外积分点时间变量的数目。
【MAXINT】——写入二进制数据的壳单元积分点数。
如果不是默认值3,则得不到中面的结果。
【STRFLAG】——设为1会输出实体单元、壳单元、厚壳单元的应变张量,用于后处理绘图。
对于壳单元和厚壳单元,会输出最外和最内两个积分点处的张量,对于实体单元,只输出一个应变张量。
【SIGFLG】——壳单元数据是否包括应力张量。
:包括(默认):不包括【EPSFLG】——壳单元数据是否包括有效塑性应变。
:包括(默认):不包括【RLTFLG】——壳单元数据是否包括合成应力。
:包括(默认):不包括【ENGFLG】——壳单元数据是否包括内能和厚度。
:包括(默认):不包括【CMPFLG】——实体单元、壳单元和厚壳单元各项异性材料应力应变输出时的局部材料坐标系。
:全局坐标:局部坐标【IEVERP】——限制数据在1000state之内。
:每个图形文件可以有不止1个state:每个图形文件只能有1个state【BEAMIP】——用于输出的梁单元的积分点数。
【DCOMP】——数据压缩以去除刚体数据。
:关闭(默认)。
没有刚体数据压缩。
:开启。
激活刚体数据压缩。
:关闭。
没有刚体数据压缩,但节点的速度和加速度被去除。
:开启。
激活刚体数据压缩,同时节点的速度和加速度被去除。
【SHGE】——输出壳单元沙漏能密度。
:关闭(默认)。
不输出沙漏能。
:开启。
输出沙漏能。
【STSSZ】——输出壳单元时间步、质量和增加的质量。
:关闭。
(默认):只输出时间步长。
:输出质量、增加的质量、或时间步长。
汽车碰撞分析LS_DYNA控制卡片设置

控制卡片参数说明
*CONTROL_TIMESTEP(时间步长控制卡片) $ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST 0.0 0.9 2 0.0 -0.001 0 1 1 $ DT2MSF DT2MSLC 计算所需时间步长时,要检查所有的单元。出于稳定性原因,用0.9(缺省)来 减小时间步:Δt = 0.9 l/c ,特征长度l,和波的传播速度c,都与单元的类型有关。 DTINIT:初始时间步长,如为0.0,由DYNA自行决定初始步长; TSSFAC:时间步长缩放系数,用于确定新的时间步长。默认为0.9,当计算不稳定时,可以减小该值,但同时 增加计算时间; ISDO:计算4节点壳单元时间步长的(不同的值对应特征长度的不同算法,推荐使用2,因为此选项可以获得 最大的时间步长,但有三角形单元存在时会导致计算不稳定); TSLIMT:壳单元最小时间步分配 ,使单元的时间步长控制在最小时间步长之上;只适用于使用 *mat_plastic_kinematic,*mat_power_law_plasticity*mat_strain_rate_dependent_plasticity,*mat_piecewise_linear_pla sticity等材料模型的壳单元,不建议使用该选项,因为使用DT2MS选项更好。 DT2MS:因质量缩放计算得到的时间步长。当设置为一个负值时,初始时间将不会小于TSSFAC*|DT2MS|。质 量只是增加到时间步小于TSSAFC*|DT2MS|的单元上。当质量缩放可接受时,推荐用这种方法。用这种方法时 质量增加是有限的,过多的增加质量会导致计算终止。当设置为正值时,初始时间步长不会小于DT2MS。单 元质量会增件或者减小以保证每一个单元的时间步都一样。这种方法尽管不会因为过多增加质量而导致计算终 止,但更难以作出合理的解释。默认为0.0,不进行质量缩放; LCTM:限制最大时间步长的Load-curve,该曲线定义最大允许时间步长和时间的关系(可选择) ; ERODE:当计算时间步长小于TSMIN(最小时间步长)时体单元和t-shell被自动删除。