2017_2018学年高中数学第三单元三角恒等变换3.2.1倍角公式学案新人教B版必修4

合集下载

高中数学_3.2.1倍角公式教学设计学情分析教材分析课后反思

高中数学_3.2.1倍角公式教学设计学情分析教材分析课后反思

《3.2.1倍角公式》教学设计22.5= 22.53.2.1倍角公式学情分析:学生在前面第一章已经学习过同角三角函数关系式、诱导公式、三角函数等相关内容,已经掌握了一些公式并能对公式进行简单的应用.虽然学生的观察具有一定的目的性,系统性,但是全面性欠精确,逻辑思维能力尚属经验型,在学习过程中存在着一定的随意性和盲目性,于是我通过导学案上的层层设问,引导学生用正确的方式发现问题解决问题,培养逻辑推理能力和独立思考的能力.结合教材的内容和学生的年龄特点及认识水平,在本堂课的教学中,我指导学生采取多质疑、自主学习、合作探究的方法进行学习.充分尊重学生自主选择学习内容、学习伙伴、学习方式的权利;充分发挥学生的积极性和主动性,让学生通过自主学习,理解倍角公式,并在自学实践中逐步提高解决问题的能力.3.2.1倍角公式效果分析:新课程提倡自主、合作、探究的学习方式,课堂教学是学生学习科学文化知识的主阵地,也是对学生进行思想品德教育的主渠道. 教师应着力构建自主的课堂,让学生在生动、活泼的状态中高效率地学习.我觉得这节课还是非常成功的,通过小组合作探究,使学生清晰的认识到倍角公式的发生、发展的过程.在问题的探究过程中,让学生进一步加深了对倍角公式的认识,并强化了学生分析问题的能力,同时也加强了学生合作交流的意识.总的来说,本节课达到了预期的目标.1、课前预习效果学生通过对导学案的充分学习,让学生能够在自己的认知基础上,通过对基础的把握,和自身思维的发挥,让学生发现问题,推广结论,让学生成为课堂学习的主题,老师只是作为引入的桥梁.2、课堂学习效果检测大部分学生掌握的不错,有个别同学计算能力差,做题速度要慢些,需要课下再加强练习.学生对学习始终表现出浓厚的兴趣,极大的热情,这正是新课标提倡的建立“自主、合作、探究的学习方式”的前提.在课堂教学中,我始终引导学生去感受,去发现.然后根据相关知识对学案中的练习题进行求解.总之,课堂教学是教师与学生的双边活动. 要提高中学数学课堂教学质量,必须以学生为本,凭借数学思维性强、 灵活性强、 运用性强的特点,精心设计,给学生一些机会,让他自己去体会; 给学生一点困难,让他自己去解决;给学生一个问题,让他自己找答案;给学生一种条件,让他 自己去锻炼; 给学生一片空间,让他自己去开拓. 注重学生优秀思维品质的培养,变被动为主动,变学会为会学,这样就一定能达到传授知识,培养能力的目的,收到事半功倍的效果.3.2.1倍角公式教材分析:教材的地位和作用:二倍角的正弦、余弦、正切是学生在已经学习了两角和、差的正、余弦和正切的公式的基础上的进一步延伸,推导出倍角公式,是三角函数的重要公式 ,应用这组公式也是本章的重点内容。

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公式 3.2.1 倍角公式学案 新人教B版必修4

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公式 3.2.1 倍角公式学案 新人教B版必修4

3.2.1 倍角公式点、易错点名师点拨(1)T 2α只有当α≠k π+2(k ∈Z )及α≠2+4(k ∈Z )时才成立.(2)对于二倍角公式的“倍”有广义的含义,2α是α的二倍角,同样地,4α是2α的二倍角,α是12α的二倍角,3α是32α的倍角.一般地,(2n m )α是(2n -1m )α的二倍角(n ∈Z ),于是二倍角公式可对应变形为:sin(2n m α)=2sin(2n -1m α)cos(2n -1m α);cos(2n m α)=cos 2(2n -1m α)-sin 2(2n -1m α);tan(2nm α)=n -1m α1-tan 2n -1m α. 【自主测试1】已知tan α=2,则tan 2α等于( )A .4B .45C .-43D .43答案:C【自主测试2】(2012·广东珠海质检)函数f (x )=sin x cos x 是( ) A .周期为2π的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数 答案:D【自主测试3】已知sin α=23,则cos(π-2α)=( )A .-53 B .-19 C .19 D .53解析:cos(π-2α)=-cos 2α=2sin 2α-1=2×⎝ ⎛⎭⎪⎫232-1=-19.答案:B关于升降幂公式的解读 剖析:口诀如下: (1)1加余弦想余弦; (2)1减余弦想正弦; (3)幂升一次角减半; (4)幂降一次角翻番. 图表如下:归纳总结(1)对于公式sin 2α=2sin αcos α,有①cos α=sin 2α2sin α,②sin α=sin 2α2cos α;(2)对于(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α,有(sin α+cos α)2=1+sin 2α,同理有(sin α-cos α)2=1-sin 2α;(3)对于公式tan 2α=2tan α1-tan 2α,有1tan α-tan α=1-tan 2αtan α=2tan 2α; (4)对于等腰三角形,已知底角的三角函数值求顶角的三角函数值正用倍角公式,已知顶角的三角函数值求底角的三角函数值逆用倍角公式.题型一 化简、求值问题【例题1】求值:sin 50°(1+3tan 10°).分析:应通过“切化弦”化为关于弦函数的分式,然后利用“分式通分”技巧求解.解:原式=sin 50°⎝ ⎛⎭⎪⎫1+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=sin 50°×+cos 10°=2sin 40°sin 50°cos 10°=2sin 40°cos 40°cos 10°=sin 80°cos 10°=cos 10°cos 10°=1. 反思问题中含有正弦、正切,采用“切化弦”,变为仅含有正弦、余弦的三角函数式,然后利用两角和公式、倍角公式等变形,将问题化简到底.题型二 给值求值问题【例题2】若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α等于( ) A .-79 B .-13 C .13 D .79解析:观察发现2π3+2α=2⎝ ⎛⎭⎪⎫π3+α,而⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2,则cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α, 所以cos ⎝ ⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=-79.答案:A反思通过角的形式的变化,生成所求的角或再变形即得所求角,是三角变换的重要方式.求解时应当对所给角有敏锐的感觉,这种感觉的养成要靠平时经验的积累.题型三 给值求角问题【例题3】已知tan α=13,tan β=-17且α,β∈(0,π),求2α-β的值.分析:tan α=13→tan 2α→α-β→确定2α-β的范围→在确定范围中找出角解:∵tan α=13>0,∴α∈⎝ ⎛⎭⎪⎫0,π2,2α∈(0,π),∴tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴2α∈⎝ ⎛⎭⎪⎫0,π2.又∵tan β=-17<0,β∈(0,π),∴β∈⎝ ⎛⎭⎪⎫π2,π,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝ ⎛⎭⎪⎫-171+34×⎝ ⎛⎭⎪⎫-17=1.又∵2α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-3π4.反思在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出角,确定角的范围是关键的一步.题型四 恒等式的证明【例题4】已知tan(α+β)=3tan α.求证:2sin 2β-sin 2α=sin(2α+2β).分析:解答本题可先将条件式切化弦,再设法推出待证式,最后进行解答. 证明:tan(α+β)=3tan α,可变为sin(α+β)cos α=3sin αcos(α+β)⇒sin(α+β)cos α-sin αcos(α+β)=2sin αcos(α+β) ⇒sin[(α+β)-α]=2sin α(cos αcos β-sin αsin β)⇒sin β=2sin αcos αcos β-2sin 2αsin β⇒(1+2sin 2α)sin β=sin 2αcos β.当cos β=0时,上式中因为1+2sin 2α≠0,所以sin β=0,矛盾.所以cos β≠0,上式两边同乘以2cos β,得(1+2sin 2α)sin 2β=sin 2α2cos 2β⇒sin 2β+(1-cos 2α)sin 2β=sin 2α(1+cos 2β) ⇒2sin 2β-sin 2α=sin 2αcos 2β+cos 2αsin 2β= sin(2α+2β),所以等式成立,即得证.反思证明三角恒等式常用的方法是:观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),决定从该等式的哪边证明(也可两边同时化简),当差异不易消除时,可采用转换命题法或分析法等方法作进一步的化简.题型五 三角函数的综合问题【例题5】已知函数f (x )=(1+cot x )sin 2x -2sin ⎝⎛⎭⎪⎫x +π4sin ⎝ ⎛⎭⎪⎫x -π4.(1)若tan α=2,求f (α);(2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值范围. 分析:(1)利用两角的和差公式、三角函数基本关系式、倍角公式,将f (x )化成同角的函数形式,然后变成切的形式代入求解;(2)将(1)中的结论用公式将其变形为正弦函数,再研究其性质.解:(1)f (x )=(1+cot x )sin 2x -2sin ⎝ ⎛⎭⎪⎫x +π4 sin ⎝⎛⎭⎪⎫x -π4=sin 2x +sin x cos x +cos 2x=1-cos 2x 2+12sin 2x +cos 2x=12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=45,cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35.所以f (α)=12⎝ ⎛⎭⎪⎫45-35+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎪⎫2x +π4+12.由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得2x +π4∈⎣⎢⎡⎦⎥⎤5π12,5π4, 所以sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1, 从而f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22. 即f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,1+22.题型六 易错辨析【例题6】已知sin α2=45,cos α2=-35,则角α所在的 象限为________.错解:由sin α2=45>0,cos α2=-35<0,可知α2为第二象限的角,即2k π+π2<α2<2k π+π(k ∈Z ),∴4k π+π<α<4k π+2π(k ∈Z ),∴α为第三或第四象限的角.错因分析:仅根据α2的正弦、余弦的正负来判断α2的范围是比较粗浅的,尤其由α2的范围通过不等式的性质得α的范围往往使范围扩大,具体的操作还要求出α的正弦值、余弦值来确定.正解:∵sin α=2sin α2cos α2=2×45×⎝ ⎛⎭⎪⎫-35=-2425<0,cos α=cos 2α2-sin 2α2=⎝ ⎛⎭⎪⎫-352-⎝ ⎛⎭⎪⎫452=-725<0,∴α是第三象限的角.1.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x =( )A .724B .-724C .247D .-247解析:∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45, ∴sin x =-35,∴tan x =-34,∴tan 2x =2tan x 1-tan 2x =-247. 答案:D2.(2012·山东曲阜期末)函数y =cos 2x cos π5-2sin x ·cos x sin 6π5的递增区间是( )A .⎝⎛⎭⎪⎫k π+π10,k π+3π5(k ∈Z ) B .⎝⎛⎭⎪⎫k π-3π20,k π+7π20(k ∈Z ) C .⎝⎛⎭⎪⎫2k π+π10,2k π+3π5(k ∈Z ) D .⎝⎛⎭⎪⎫k π-2π5,k π+π10(k ∈Z ) 答案:D3.已知一个等腰三角形的一个底角的正弦值为23,那么这个等腰三角形顶角的正弦值为( )A .259B .-259C .459D .-459答案:C4.cos π12sin π12=________,cos 2π12-sin 2π12=________,tan 15°1-tan 215°=________. 解析:cos π12sin π12=12·2sin π12cos π12=12sin π6=14;cos 2π12-sin 2π12=cos ⎝ ⎛⎭⎪⎫2×π12=cos π6=32;tan 15°1-tan 215°=12·2tan 15°1-tan 215°=12tan(2×15°)=12tan 30°=36. 答案:14 32 365.已知α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫π4-α=513,则cos 2α的值为__________.解析:∵α∈⎝⎛⎭⎪⎫0,π4,∴0<π4-α<π4,∴cos ⎝ ⎛⎭⎪⎫π4-α=1-sin 2⎝ ⎛⎭⎪⎫π4-α=1213,∴cos 2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2sin ⎝ ⎛⎭⎪⎫π4-α·cos ⎝ ⎛⎭⎪⎫π4-α=2×513×1213=120169. 答案:1201696.已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值. 解:(1)因为f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1=4cos x ⎝⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期为T =2π2=π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.。

高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换教学设计数学教案

高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换教学设计数学教案

简单的三角恒等变换一、教材分析本节内容《简单的三角恒等变换》选自人教版.必修四.第三章第二节,是学习了两角和与差的正弦、余弦、正切公式后的内容,其的中心任务是通过以知的和(差)角公式知识以及诱导公式,探索简单的三角恒等变换,通过简单运用,使学生初步理解简单的三角恒等变换的基本原则.二、目标及重难点三维目标: 1.掌握运用和(差)角公式、倍角公式进行三角变换的方法和思路;2.提高对变换过程中体现的换元、方程、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高自己的推理能力;3.由特殊到一般,由具体到抽象,不断提升学生的探究能力和数学思维能力,培养学生学数学地思考问题、解决问题.教学重点:学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、学情分析我们在组织和引导探索恒等变换的过程中,不仅要考虑学生学习积极性的问题,还有探索过程必需的基础知识学生是否熟练掌握的问题,运用已学知识和方法的能力问题. 四、教学支持条件分析为了加强学生对.复习提问,创设情境的理解,帮助学生克服在学习过程中可能遇到的障碍,我将由和(差)角公式,倍角公式出发,推导出简单的三角恒等变换,让学生更好的理解简单的三角恒等变换。

五、教学过程教学基本流程1 问题2:α与2α有什么关系?2.通过例题及变题,熟练掌握三角恒等变换的思路,方法。

例题1:试以cos α表示2sin 2α、2cos 2α、2tan 2α.分析:考虑二倍角的相对性,α可以看成2α的二倍角(此时亦可称2α为α的半角),结合刚才我们复习的二倍角公式,问题得解。

点评:本题结果还可表示为sin2α=cos2α=tan2α=,并称之为“半角公式”,符号由2α所在象限决定.问题3:请大家观察三个结果,它们有什么共同特点?问题4:代数式变换与三角变换有什么不同? 变1:求证:sin 1cos tan21cos sin ααααα-==+ 变2:求证:21cos 22sin 2θθ++=设计意图:通过例题给出“半角公式”,并分析结构上的区别联系.变式训练为了巩固知识,提升能力。

2018版高中数学第三章三角恒等变换3.2简单的三角恒等变换导学案新人教A版

2018版高中数学第三章三角恒等变换3.2简单的三角恒等变换导学案新人教A版

3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考1 我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样? 答案 结果是cos α=2cos2α2-1=1-2sin2α2=cos2α2-sin2α2.思考2 根据上述结果,试用sin α,cos α表示sin α2,cos α2,tan α2.答案 ∵cos2α2=1+cos α2,∴cos α2=±1+cos α2, 同理sin α2=±1-cos α2,∴tan α2=sinα2cosα2=±1-cos α1+cos α.思考3 利用tan α=sin αcos α和倍角公式又能得到tan α2与sin α,cos α怎样的关系?答案 tan α2=sin α2cos α2=sin α2·2cos α2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sin α2cos α2·2sinα2=1-cos αsin α.梳理 sin α2=±1-cos α2, cos α2=±1+cos α2, tanα2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α .知识点二 辅助角公式思考1 a sin x +b cos x 化简的步骤有哪些? 答案 (1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2 在上述化简过程中,如何确定θ所在的象限? 答案 θ所在的象限由a 和b 的符号确定. 梳理 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=b a)类型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟 (1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手).跟踪训练1 已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2.解 ∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二 三角恒等式的证明例2 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2 证明:sin α+11+sin α+cos α=12tan α2+12.证明 ∵左边=2tanα21+tan2α2+11+2tanα21+tan 2 α2+1-tan2α21+tan 2α2=tan2α2+2tan α2+11+tan2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三 利用辅助角公式研究函数性质例3 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3 已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解 (1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四 三角函数在实际问题中的应用例4 如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解 如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟 此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解 连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B.-63 C.±63 D.±33答案 A解析 由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于( ) A.45 B.-45 C.415 D.-35 答案 B解析 cos θ=cos 2θ2-sin2θ2cos 2θ2+sin 2θ2=1-tan2θ21+tan 2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是( )A.1B.2C.32D.3答案 C解析 f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案 -1解析 f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解 原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cosα2⎝⎛⎭⎪⎫sin2α2-cos2α2⎪⎪⎪⎪⎪⎪cosα2=-cosα2cos α⎪⎪⎪⎪⎪⎪cosα2.因为180°<α<360°,所以90°<α2<180°,所以cosα2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tan φ=ba(或sin φ=ba2+b2,cos φ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握,例如sin x±cos x=2sin⎝⎛⎭⎪⎫x±π4;sin x±3cos x=2sin⎝⎛⎭⎪⎫x±π3等.课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A.-12B.12C.2D.-2答案 A解析∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cosα21-sinα2cosα2=cos α2+sinα2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于( )A.1B.2C.3D.4 答案 C解析 cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于( )A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案 C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形答案 B解析 用降幂公式进行求解. 5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为( )A.12B.-13C.-23D.2π3答案 A解析 f (x )=32cos 2ωx +12sin 2ωx +32+a=sin ⎝ ⎛⎭⎪⎫2ωx +π3+32+a ,依题意得 2ω·π6+π3=π2⇒ω=12.6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c = 1-cos 50°2,则有() A.c <b <a B.a <b <cC.a <c <bD.b <c <a答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的,∴a <c <b .7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.-13 B.5C.-5或13 D.-13或5答案 B解析 由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2mm +5)2=1,解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案 - 1-a2解析 sin 2θ4=1-cos θ22, ∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=- 1-cos θ22=- 1-a2.9.sin 220°+sin 80°·sin 40°的值为 .答案 34解析 原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34.10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案 π解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 三、解答题11.已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解 ∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎪⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6 =35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 证明 ∵左边=tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2 =sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin x cos x +cos 2x=右边. ∴原等式得证.13.已知cos 2θ=725,π2<θ<π, (1)求tan θ的值;(2)求2cos 2θ2+sin θ2sin (θ+π4)的值. 解 (1)因为cos 2θ=725, 所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34, 因为π2<θ<π,所以tan θ=-34. (2)因为π2<θ<π,tan θ=-34, 所以sin θ=35,cos θ=-45, 所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ =1-45+35-45+35=-4. 四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 . 答案 32 12解析 ∵A +B =2π3, ∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B ) =1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B ) =1-12cos(A -B ), ∴当cos(A -B )=-1时,原式取得最大值32; 当cos(A -B )=1时,原式取得最小值12. 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。

第三章三角恒等变换3.1二倍角的正弦、余弦、正切公式(1)学案(无答案)新人教A版必修4

第三章三角恒等变换3.1二倍角的正弦、余弦、正切公式(1)学案(无答案)新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式(1)【学习目标】1.掌握公式α2S 、α2C 、α2T 及其推导过程;2.会应用二倍角公式进行简单的求值、化简.【重点难点】重点:二倍角公式的推导、理解与运用.难点:余弦的二倍角公式.【学法指导】建议同学们重视公式型的特点,特别是二倍角的余弦公式有三种形式,需要在运用的过程加深记忆.另外,仍然需要通过例题与练习,多多体会公式是如何使用的?找出规律性.【学习过程】一.课前预习1.复习公式:=+)sin(βα ;=+)cos(βα ;=+)tan(βα .2.自学教材,P132-P135(1)二倍角公式的推导:当βα=时,由上面的和角公式分别得到公式:=α2sin ;=α2cos ;=α2tan .(2)公式的变形:由公式1cos sin 22=+αα及上面三个公式完成下面填空:①用αsin 表示α2cos 得:α2cos = ;②用αcos 表示α2cos 得 :α2cos = ;以上(1)、(2)得到的五个公式都叫做什么公式? .3.快乐体验,求下列各式的值:(1)sin15cos15_________=(2)22cos sin ________88ππ-=(3)2tan 22.5__________1tan 22.5=-(4)22cos 22.51_________-=二.课堂学习与研讨例1. 已知),2(,135sin ππ∈α=α,求sin2α,cos2α,tan2α的值.练习1.(1)已知4cos ,81285απαπ=-<<,求sin ,cos 44αα的值.(2)已知3sin()5απ-=,求cos 2α的值.例2.(1)已知1tan 2,3α= α是第三象限角,求tan α的值.(2)α为第四象限的角,且cossin 22αα-=,求αα2cos 2sin +的值.练习2.(1)已知sin 2sin ,(,)2παααπ=-∈,求tan α的值.(2)已知1tan 23α=,求tan α的值.课堂小结:1.公式α2S 、α2C 、α2T 分别是公式)(βα+S 、)(βα+C 、)(βα+T 的特殊情况; 2.公式的相同特点:从左至右升幂;从右至左降幂;3.应用倍角公式要注意“倍”的关系,即2α是α的两倍,4α是2α的两倍,α是2α的两倍,等等.三.课堂检测1.化简)4(sin )4(cos 22απαπ---得到( )A.α2sinB.α2sin -C.α2cosD. α2cos -2.=+-)12sin 12)(cos 12sin 12(cos ππππ( ) A.21 B.21- C.23 D.23-3.已知31cos sin =+αα,则=α2sin ( ) A.98- B.98 C.98± D.322四.作业1.教材13815,P A2.函数sin()cos()44y x x ππ=--是( )A.周期为2π的奇函数 B .周期为2π的偶函数C .周期为π的奇函数D .周期为π的偶函数3.在△ABC 中,2tan ,54cos ==B A ,求)22tan(B A +的值.。

[k12精品]高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式示范教案新人教B版必修4

[k12精品]高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式示范教案新人教B版必修4

3.2.1 倍角公式示范教案 整体设计教学分析倍角公式是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具,通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律,通过推导还让学生加深理解了高中数学由一般到特殊的化归思想.因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验.”在实际教学过程中不要过多地补充一些高技巧、高难度的练习,否则就违背了新课标在这一节的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 课时安排 1课时教学过程 导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sin α=35,α∈(π2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究 提出问题还记得和角的正弦、余弦、正切公式吗?请学生默写出来,并由一名学生到黑板默写你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式? 在得到的C 2α公式中,还有其他表示形式吗? 细心观察二倍角公式结构,有什么特征呢?能看出公式中角的含义吗?思考过公式成立的条件吗?让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:=,=cos 2 -sin2思考过公式的逆用吗?想一想C 2α还有哪些变形?请思考以下问题:sin2α=2sin α吗?cos2α=2cos α吗?tan2α=2tan α吗 活动:本节总的指导思想是教师引导学生自己推导倍角公式.学生默写完问题(1)后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题(2),然后找一名学生到黑板进行简化,其他学生在自己的座位上简化,教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(α+β)=sin αcos β+cos αsin β⇒sin2α=2sin αcos α(S 2α);cos(α+β)=cos αcos β-sin αsin β⇒cos2α=cos 2α-sin 2α(C 2α);tan(α+β)=tan α+tan β1-tan αtan β ⇒tan2α=2tan α1-tan 2α(T 2α). 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”.教师适时提出问题(3),点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.sin2α=2sin αcos α2αcos2α=cos 2α-sin 2α2αtan2α=2tan α1-tan 2α2αcos2α=2cos 2α-1cos2α=1-2sin 2α这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题(4),教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题(5),因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R ,但公式(T 2α)需在α≠12k π+π4和α≠k π+π2(k∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=k π+π2,k∈Z 时,虽然tan α不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题(6),填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,α2是α4的二倍,3α是3α2的二倍,α3是α6的二倍,π2-α是π4-α2的二倍等,所有这些都可以应用二倍角公式. 例如:sin α2=2sin α4cos α4,cos α3=cos 2α6-sin 2α6等等.问题(7),本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=12sin6α,4sin α4cos α4=2(2sin α4cos α4)=2sin α2,2tan40°1-tan 240°=tan80°,cos 22α-sin 22α=cos4α,tan2α=2tan α(1-tan 2α)等等. 问题(8),一般情况下:sin2α≠2sin α,cos2α≠2cos α,tan2α≠2tan α.若sin2α=2sin α,则2sin αcos α=2sin α,即sin α=0或cos α=1,此时α=k π(k∈Z ).若cos2α=2cos α,则2cos 2α-2cos α-1=0,即cos α=1-32(cos α=1+32舍去).若tan2α=2tan α,则2tan α1-tan 2α=2tan α,∴tan α=0,即α=k π(k∈Z ). 讨论结果:(1)~(8)略. 应用示例思路1例 1已知sin α=513,α∈(π2,π),求sin2α,cos2α,tan2α的值.活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了α的正弦值.由于2α是α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:因为sin α=513,α∈(π2,π),所以cos α=-1-sin 2α=-1-5132=-1213, sin2α=2sin αcos α=2×513×(-1213)=-120169, cos2α=cos 2α-sin 2α=(-1213)2-(513)2=119169,tan2α=sin2αcos2α=-120169÷119169=-120119.点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节变式训练1.y =(sinx -cosx)2-1是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 答案:D 2.若cos2αα-π4=-22,则cos α+sin α的值为( ) A .-72 B .-12 C.12 D.72 答案:C 3.下列各式中,值为32的是( ) A .2sin15°-cos15° B .cos 215°-sin 215°C .2sin 215°-1D .sin 215°+cos 215° 答案:B例 2证明1+sin2θ-cos2θ1+sin2θ+cos2θ=tan θ.活动:教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=sin2θ+-cos2θsin2θ++cos2θ=2sin θcos θ++1-2cos 2θ2sin θcos θ++2cos 2θ-=sin θcos θ+1-cos 2θsin θcos θ+cos 2θ=sin θcos θ+sin 2θsin θcos θ+cos 2θ =sin θθ+sin θcos θθ+cos θ=tan θ=右,所以,原式成立. 方法二:左=sin 2θ+cos 2θ+sin2θ+sin 2θ-cos 2θsin 2θ+cos 2θ+sin2θ+cos 2θ-sin 2θ=sin2θ+2sin 2θsin2θ+2cos 2θ=2sin θθ+cos θ2cos θθ+cos θ=tan θ=右.方法三: 左=+sin2θ-cos2θ+sin2θ+cos2θ=2θ+cos 2θ+2sin θ·cos θ-2θ-sin 2θ2θ+cos 2θ+2sin θ·cos θ+2θ-sin 2θ=θ+cos θ2-θ+sin θθ-sinθθ+cos θ2+θ+sin θθ-sinθ=θ+cos θθ+cos θ+sin θ-cos θθ+cos θθ+cos θ+cos θ-sin θ=θ+cos θθθ+cos θθ=tan θ=右.点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.变式训练1.若角α的终边经过点P(1,-2),则tan2α的值为__________. 答案:432.证明恒等式:sin2θ+sin θ2cos2θ+2sin 2θ+cos θ=tan θ. 证明:左边=2sin θcos θ+sin θ2θ-sin 2θ+2sin 2θ+cos θ =sin θθ+cos θθ+=tan θ=右边.思路2例 1求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20°=23·sin20°cos20°cos40°cos80°23·2sin20°=sin160°16sin20°=sin20°16sin20°=116.例 2在△ABC 中,cosA =45,tanB =2,求tan(2A +2B)的值.活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A +B +C =π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A +2B 与A ,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A +2B)的值改为求tan2C 的值.解法一:在△ABC 中,由cosA =45,0<A<π,得sinA =1-cos 2A =1-452=35. 所以tanA =sinA cosA =35×54=34,tan2A =2tanA1-tan 2A =2×341-342=247. 又tanB =2,所以tan2B =2tanB 1-tan 2B =2×21-22=-43.于是tan(2A +2B)=tan2A +tan2B1-tan2Atan2B =247-431-247-43=44117. 解法二:在△ABC 中,由cosA =45,0<A<π,得sinA =1-cos 2A =1-452=35. 所以tanA =sinA cosA =35×54=34.又tanB =2,所以tan(A +B)=tanA +tanB 1-tanAtanB =34+21-34×2=-112.于是tan(2A +2B)=tan[2(A +B)]=+1-tan2+=-1121--1122=44117. 变式训练化简:1+cos4α+sin4α1-cos4α+sin4α.解:原式=2cos 22α+2sin2αcos2α2sin 22α+2sin2αcos2α=2cos2αα+sin2α2sin2αα+cos2α=1tan2α. 课堂小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本本节练习B 组1~4.设计感想 1.新课改的核心理念是:以学生发展为本.本节课的设计流程从回顾→探索→应用,充分体现了“学生主体、主动探索、培养能力”的新课改理念,体现“活动、开放、综合”的创新教学模式.本节在学生探究和角公式的特殊情形中得到了二倍角公式,在这个活动过程中,由一般化归为特殊的基本数学思想方法就深深的留在了学生记忆中.本节课的教学设计流程还是比较流畅的.2.纵观本教案的设计,学生发现二倍角后就是应用,至于如何训练二倍角公式正用,逆用,变形用倒成了次要的了.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“回顾公式、探索特殊情形、发现规律、推导公式、学习应用”的探索创新式学习方法.这样做增加了学生温故知新的空间,增强了学生的参与意识,教给了学生发现规律、探索推导、获取新知的途径,让学生真正尝试到探索的喜悦,真正成为教学的主体.备课资料 一、三角变换中的“一致代换”法在三角变换中,“一致代换”法是一种重要的方法,所谓“一致代换”法,即在三角变换中,化“异角”“异名”“异次”为“同角”“同名”“同次”的方法.它主要包括:在三角函数式中,①如果只含同角三角函数,一般应从变化函数名称入手,尽量化为同名函数,常用“化弦法”;②如果含有异角,一般应从变化角入手,尽量化不同角为同角,变复角为单角;③如果含有异次幂,一般利用升幂或降幂公式化异次幂为同次幂.二、备用习题1.求值:1sin10°-3cos10°.2.化简:cos36°cos72°.3.化简:cos αcos α2cos α22cos α23·…·cos α2n -1.4.求值:sin6°sin42°sin66°sin78°.5.已知向量m =(sinA ,cosA),n =(1,-2),且m·n =0. (1)求tanA 的值;(2)求函数f(x)=cos2x +tanAsinx(x∈R )的值域.6.已知cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos(α+β)的值.7.已知cos(x -π4)=210,x∈(π2,3π4).(1)求sinx 的值; (2)求sin(2x +π3)的值.参考答案:1.解:原式=cos10°-3sin10°sin10°cos10°=12cos10°-32sin10°cos10° =-cos30°sin2sin10°cos10°=-sin20°=4.2.解:原式=2sin36°cos36°·cos72°2sin36°=2sin72°cos72°4sin36°=sin144°4sin36°=14.3.解:先将原式同乘除因式sin α2n -1,然后逐次使用倍角公式,则原式=sin2α2nsin α2n -1.4.解:原式=sin6°cos48°cos24°cos12°=sin6°cos12°cos24°cos48° =24cos6°sin6°cos12°cos24°cos48°24cos6°=sin96°24cos6°=cos6°16cos6°=116. 5.解:(1)由题意,得m·n =sinA -2cosA =0,因为cosA≠0,所以tanA =2.(2)由(1)知tanA =2,得f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+32,因为x∈R ,所以sinx∈[-1,1].当sinx =12时,f(x)有最大值32;当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32].6.∵cos(α-β2)=-19,π2<α<π,0<β<π2,∴π2<α-β2<π. ∴sin(α-β2)=459.∵sin(α2-β)=23,π2<α<π,0<β<π2,∴0<α2-β<π2.∴cos(α2-β)=53.∵cosα+β2=cos[(α-β2)-(α2-β)]=cos(α-β2)cos(α2-β)+sin(α-β2)sin(α2-β) =(-19)×53+459×23=7275,∴cos(α+β)=2cos2α+β2-1=-239729. 7.解:(1)因为x∈(π2,3π4),所以x -π4∈(π4,π2).于是sin(x -π4)=1-cos2-π4=7210, sinx =sin[(x -π4)+π4]=sin(x -π4)cos π4+cos(x -π4)sin π4=7210×22+210×22=45. (2)因为x∈(π2,3π4),故cosx =-1-sin 2x =-1-452=-35,sin2x =2sinxcosx =-2425,cos2x =2cos 2x -1=-725.所以sin(2x +π3)=sin2xcos π3+cos2xsin π3=-24+7350.。

高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式课堂导学案

高中数学第三章三角恒等变换3.2倍角公式和半角公式3.2.1倍角公式课堂导学案

3.2.1 倍角公式课堂导学三点剖析一、运用倍角公式求值对于给值求值问题,即由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”,使“目标角”变换成“已知角”.若角所在的象限没有确定,则应分情况讨论.【例1】 已知cos α=-1312,α∈(π,23π),求sin2α,cos2α和tan2α的值. 思路分析:本题旨在考查二倍角公式的应用,做题时应注意已知角与所求角间的倍数关系和角的取值范围.解:∵cos α=-1312,α∈(π,23π), ∴sin α=135cos 12-=--α. ∴sin2α=2sin α·cos α=2×(135-)×(-1312)=169120, cos2α=1-2sin 2α=1-2×(135-)2=169119, tan α=1191202cos 2sin =αα. 温馨提示在解题过程中,要注意根据问题的具体特点,适当地加以变形,同时要注意挖掘题中的隐含条件,特别是利用这些条件来确定某些三角函数值的符号,化简问题.各个击破类题演练 1已知sin α=54,求sin2α,cos2α,tan2α的值. 思路分析:∵sin α=54>0且α∈R ,∴α为第一、二象限角,解题时应分象限讨论. 解:∵α∈R 且sin α=54>0,∴α为第一象限或第二象限角. ①当α为第一象限角时,sin2α=2524,cos2α=257-,tan2α=724-. ②当α为第二象限角时,sin2α=2524-,cos2α=257-,tan2α=724-. 变式提升 1 求︒+︒50cos 350sin 1的值. 思路分析:仔细观察原式的结构,将原式通分后将有惊喜的发现.解:原式=︒︒=︒︒=︒∙︒∙︒+︒=︒︒︒+︒80sin 2180sin 2100sin 2180sin 250cos 50sin 221)50sin 2350cos 21(250cos 50sin 50sin 350cos =4. 二、给值求角问题给值求角问题,其方法步骤是:(1)先求该角的某一个三角函数值;(2)确定该角的范围;(3)依据角的范围写出所求的角.在求该角的某一个三角函数值时,往往有一定规律:一般已知正切函数值,选正切函数;已知正,余弦函数值,选正弦函数或余弦函数.若角的范围是(0,2π),选正弦,余弦函数均可以;若角的范围是(-2π,2π),选正弦函数比选余弦函数好;若角的范围是(0,π),选余弦函数比正弦函数好. 【例2】 已知α,β是锐角,且sin α=102,sin β=1010,求α+2β的值. 思路分析:因为β∈(0,2π),所以2β∈(0,π).所以先求cos2β的值,然后再选用适当的三角函数求α+2β的值.解:∵sin β=1010,∴cos2β=1-2sin 2β=54. 由β∈(0,2π)且cos2β=54>0,可推得2β∈(0,2π), ∴α+2β∈(0,π).∴cos(α+2β)=cos αcos2β-sin αsin2β.∵α∈(0,2π)且sin α=102, 得cos α=1027sin12=-α, 又2β∈(0,2π)且cos2β=54, ∴sin2β=532cos 12=-β. ∴cos(α+2β)=2253102541027=⨯-⨯. ∴α+2β=4π. 类题演练 2 已知tan(α-β)=21,tan β=71-,α,β∈(0,π),求2α-β的值.解:∵tan α=tan [(α-β)+β]=31)71(211)71(21=-⨯--+, ∴tan2α=43tan 1tan 22=-αα. ∵tan α=31>0且α∈(0,π),可推得α∈(0,2π). 又tan2α=43>0,可推得2α∈(0,2π), 同理,得β∈(2π,π). ∴2α-β∈(-π,0).又tan(2α-β)=)71()43(1)71(43-⨯+--=1,∴2α-β=43-π. 变式提升 2已知tan α=43,cos(α+β)=1411-,α,β均为锐角,求β的值. 解:∵α,β均为锐角,∴0<α+β<π.又cos(α+β)=1411-, ∴2π<α+β<π,则sin(α+β)=1435. ∵tan α=43,∴sin α=734,cos α=71. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=21. ∴β=3π. 三、三角函数式的化简与证明三角函数式的化简,一般从减少角的种类,减少函数的种类,改变函数式的运算结构入手,对于根式形式的化简常以化去根号为目标,为此常使被开方的式子配成完全平方,化简时要注意角的范围.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证等方法.常用定义法,化弦法,化切法,拆项拆角法,“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.【例3】 化简(1)cos72°cos36°;(2)cos20°cos40°cos60°cos80°.思路分析:利用二倍角正弦、余弦公式及诱导公式,将角度不同的三角函数转化为同一个角或互补、互余角的三角函数,再通过约分求出式子的值.解:(1)cos72°cos36°=4136sin 4144sin 36sin 472cos 72sin 236sin 272cos 36cos 36sin 2=︒︒=︒︒︒=︒︒︒︒. (2)原式=21cos20°cos40°cos80°=︒︒︒︒=︒︒︒︒︒20sin 480cos 40cos 40sin 20sin 280cos 40cos 20cos 20sin 16120sin 16160sin 20sin 880cos 80sin =︒︒=︒︒︒=. 温馨提示对于分式化简问题,通常要将分子、分母均化为积的形式,如果分子、分母有公因式,通过约分把分式化简,这是解这类问题的常规思路.类题演练 3 化简αααα4cos 4sin 14cos 4sin 1-+++. 解法一:原式=ααααααααααααα2tan 1)2cos 2(sin 2sin 2)2cos 2(sin 2cos 22sin 212cos 2sin 2112cos 22cos 2sin 2122=++=+-+-++. 解法二:原式=αααααααααα2cos 2sin 2sin 22cos 2sin 22cos 24sin )4cos 1(4sin )4cos 1(22++=+-++ ααααααα2tan 1)2sin 2(cos 2sin 2)2sin 2(cos 2cos 2=++=. 变式提升 3求证:[sin θ(1+sin θ)+cos θ(1+cos θ)][sin θ(1-sin θ)+cos θ(1-cos θ)]=sin2θ.证明:左=(sin θ+sin 2θ+cos θ+cos 2θ)·(sin θ-sin 2θ+cos θ-cos 2θ)=(sin θ+cos θ+1)(sin θ+cos θ-1)=(sin θ+cos θ)2-1=1+2sin θcos θ-1=2sin θcos θ=sin2θ=右.∴原式成立.温馨提示证明条件三角恒等式,首先应观察条件与结论之间的差异(三角函数名及结构),从解决某一差异入手,采用条件转化法或条件代入法,条件转化法就是从已知条件出发,经过恰当的变换,推出被证式;条件代入法就是从已知条件出发,求出被证式中的某一个式子,然后代入被证式,化简证明.。

2017-2018学年高中数学 第三章 三角恒等变换 3.1 和角公式 3.1.2 两角和与差的正弦课件 新人教B版必修4

2017-2018学年高中数学 第三章 三角恒等变换 3.1 和角公式 3.1.2 两角和与差的正弦课件 新人教B版必修4

=
1 2
+
1-
3 2
sin x+
3 2
-
3+
3 2
cos x=0.
(2)原式=sin[(������+������)+������s]i-n2���c���os(������+������)sin������ =sin(������+������)coss���i���n-c���o��� s(������+������)sin������ =sin[(s������in+������������)-������] = ssiinn������������.
������
+
π 3
=
.
答案:4-130 3
4.sin(������+30°co)s-s������in(������-30°)=
.
解析:sin(������+30°co)s-s������in(������-30°) =sin������cos30°+cos������sin30°co-s(s������in������cos30°-cos������sin30°) =2cos���c���ossin������30°=2sin 30°=1.
3.1.2 两角和与差的正弦
课标阐释
思维脉络
1.掌握两角和与差的正弦公式. 2.能运用两角和与差的正弦公式化简、求值、 证明.
两角和与差的正弦公式
【问题思考】
1.(1)计算sin 15°的值.
(2)试用sin α,cos α,sin β,cos β表示sin(α+β)和sin(α-β).
提示:(1)sin 15°=cos 75°=cos(45°+30°)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1 倍角公式学习目标 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一二倍角公式的推导思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?思考2 根据同角三角函数的基本关系式sin2α+cos2α=1,你能否只用sin α或cos α表示cos 2α?梳理二倍角的正弦、余弦、正切公式sin2α=2sin αcos α,(S2α)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,(C2α)tan 2α=2tan α1-tan2α.(T2α)知识点二二倍角公式的变形(1)公式的逆用2sin αcos α=sin 2α,sin αcos α=________,cos 2α-sin 2α=________,2tan α1-tan 2α=tan 2α. (2)二倍角公式的重要变形——升幂公式和降幂公式升幂公式1+cos 2α=________,1-cos 2α=________,1+cos α=______________,1-cos α=____________ .降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.类型一 给角求值例1 求下列各式的值.(1)cos 72°cos 36°;(2)13-23cos 215°; (3)1-tan 275°tan 75°;(4)1sin 10°-3cos 10°.反思与感悟 对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 求下列各式的值:(1)cos 2π7cos 4π7cos 6π7;(2)1sin 50°+3cos 50°.类型二 给值求值例2 (1)若sin α-cos α=13,则sin 2α=________. (2)若tan α=34,则cos 2α+2sin 2α等于( ) A.6425 B.4825 C.1 D.1625引申探究 在本例(1)中,若改为sin α+cos α=13,求sin 2α.反思与感悟 (1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢.②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.类型三 利用倍角公式化简例3 化简2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α.反思与感悟 (1)对于三角函数式的化简有下面的要求:①能求出值的应求出值.②使三角函数种数尽量少.③使三角函数式中的项数尽量少.④尽量使分母不含有三角函数.⑤尽量使被开方数不含三角函数.(2)化简的方法:①弦切互化,异名化同名,异角化同角.②降幂或升幂.跟踪训练3 化简下列各式:(1)π4<α<π2,则1-sin 2α=________; (2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.1.12sin π12cos π12的值等于( ) A.14 B.18 C.116 D.122.sin 4π12-cos 4π12等于( ) A.-12 B.-32 C.12 D.323.tan 7.5°1-tan 27.5°=________. 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.5.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2xcos ⎝ ⎛⎭⎪⎫π4+x 的值.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N +).2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α;②cos 2α=1+cos 2α2;③1-cos 2α=2sin 2α;④sin 2α=1-cos 2α2.答案精析问题导学知识点一思考1 sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=2tan α1-tan 2α.思考2 cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二(1)12sin 2α cos 2α(2)2cos 2α 2sin 2α 2cos 2α2 2sin 2α2题型探究例1 解 (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4s in 36°=14.(2)13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36. (3)1-tan 275°tan 75°=2·1-tan 275°2tan 75° =2·1tan 150°=-2 3. (4)1sin 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10° cos 10° =4sin 20°sin 20°=4.跟踪训练1 (1)18 (2)4例2 (1)89 (2)A引申探究 解 由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.跟踪训练2 解 (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin α+sin αcos α-2cos α=2tan αtan 2α+tan α-2=2×24+2-2=1.例3 解 原式=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=2cos 2α-12·sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2α-1sin ⎝ ⎛⎭⎪⎫π2-2α=cos 2αcos 2α=1.跟踪训练3 (1)sin α-cos α (2)0 当堂训练1.B 2.B 3.1-32 4. 35.解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝ ⎛⎭⎪⎫π4+x .∵sin ⎝ ⎛⎭⎪⎫π4-x =cos ⎝ ⎛⎭⎪⎫π4+x =513,且0<x <π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin ⎝ ⎛⎭⎪⎫π4+x = 1-cos 2⎝ ⎛⎭⎪⎫π4+x =1213,∴原式=2×1213=2413.。

相关文档
最新文档