石墨烯双曲超材料的宽带吸收特性研究

合集下载

基于超材料的宽带高吸收率吸波器研究

基于超材料的宽带高吸收率吸波器研究

波 器 在 x 波 段 雷 达 、电磁 隐 身 等 方 面 有 着 巨大 的 潜 在 应 用 。
ห้องสมุดไป่ตู้
关 键 词 :超 材 料 吸 波 器 ;宽 频 带 ;高 吸 收 率 ;集 总 电 阻
中 图 分 类 号 :TN972+.44
文 献 标 识 码 :A
DOI:10.16157/j.issn.0258—7998.171412
high absorption rate for incident wave wjtl1 wide incidence angle.Finally,the a b sorption mechanism is analyzed by using the sur-
face current and electric field distribution of the absorber.The broadband high absorption metamaterial absorber this paper designed has a huge potential application in the X band radar, electr o magnetic stealth and SO on. Key WOrds: metamaterial absorber;broadband;high ab sor ption;lumped resistance
中文 引 用 格 式 :于榭 彬 ,宋 耀 良 ,范 事成 .基 于超材 料 的宽 带 高吸 收率 吸 波器 研究 【J】.电子技 术 应用 ,2017,43(12):89—91,95. 英 文 引 用 格 式 : Yu Xiebin,Song Yaoliang,Fan Shicheng.Research on broadband and high absorption absorber based Oil metamate‘ rial[J].Application of Electronic Technique,2017,43(12):89—91,95.

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》篇一一、引言随着科技的发展,太赫兹波在通信、生物医学和安全检测等领域的应用越来越广泛。

超材料吸收器作为太赫兹波应用的关键技术之一,其性能的优化和调控成为研究的热点。

本文提出了一种基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器,旨在通过材料的独特性质实现吸收器的性能优化和可调谐性。

二、石墨烯和二氧化钒的特性1. 石墨烯:石墨烯是一种由单层碳原子构成的二维材料,具有优异的电学、热学和力学性能。

在太赫兹波段,石墨烯具有较高的电导率和可调谐的电学性质,使得其成为超材料吸收器的理想材料。

2. 二氧化钒:二氧化钒是一种相变材料,在特定温度下会发生金属-半导体相变。

在太赫兹波段,二氧化钒的电学性质可调,且具有较高的光学透过率,使其成为超材料吸收器中可调谐元件的理想选择。

三、太赫兹可调谐超材料吸收器的设计本文设计的太赫兹可调谐超材料吸收器以石墨烯和二氧化钒为主要材料,通过将二者结合,实现吸收器的可调谐性。

设计过程中,我们采用了周期性排列的金属-介质-金属结构,其中介质层采用石墨烯和二氧化钒的复合材料。

通过调整石墨烯的电导率和二氧化钒的相变温度,实现吸收器的太赫兹波段的可调谐性。

四、吸收器性能的仿真与分析我们采用时域有限差分法对所设计的太赫兹可调谐超材料吸收器进行仿真分析。

仿真结果表明,该吸收器在太赫兹波段具有较高的吸收率和可调谐性。

通过调整石墨烯的电导率和二氧化钒的相变温度,可以实现吸收峰的频率移动和吸收强度的调节。

此外,该吸收器还具有较高的光学透过率和较低的反射率,有利于提高太赫兹波的应用效率。

五、实验验证与性能优化为了验证仿真结果的准确性,我们进行了实验验证。

通过制备基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器样品,并对其性能进行测试。

实验结果表明,该吸收器具有良好的可调谐性和较高的吸收率,与仿真结果基本一致。

为了进一步提高吸收器的性能,我们进一步优化了金属-介质-金属结构的尺寸和排列方式,以及石墨烯和二氧化钒的复合比例。

双控石墨烯超材料太赫兹调制器的双频反射特性

双控石墨烯超材料太赫兹调制器的双频反射特性

Qi n g d a o ,S h a n d o n g 2 6 6 5 9 0 。 Ch i n a )
Ab s t r a c l : A d L l { 【 卜c on l r o l t e r a h er t z me t a ma t e r i a l mo du l a t o r wa s pr op os e d. wh os e r e f l e l ' t i on pr o pe r t i e s, I t t wo f r e qu e n一 ( - i t 、 s i n t l 1 t t e r a h (  ̄ r l z f r o qu e n c y r a l 1 g c c a n be t un e d by vo l t a ge a nd i l h l mi na t i o n. F he me l a ma l e r i al mo dul a t or i s c o n l — po s e d of a s pl i t r i ng r e s o na t or . whi c h i s de p o s i t e d on a s a nd wi c b s t r u c l l i f e o f∈ l gr a p be ne l ay e r ,| p I ol yi mi de s p a c e r l a ye r a nd | j go hl l a y e r, e mh e d( 1 e d hy s e mi c o n du c t o r s i l i c on i n t h e s pl i t g ap . F he s t u dy Wa S a c hi e v e d by a ppl y i n g l ow hi a s v ol t a g/ OI 1 g“q) he n e ht y e r a nd we a k l i g ht i nt e ns i t y o n s e mi c o ndu c t or , r e s p e c t i v e l y .Tl 1 r e s t I hs d e m on s t r a t e t wo r t f l e c t i o n di p s i n t ht 、r ef h、 ( 、 l i v e s p e ( ’ t r t l n l ,mo r e ov e r, b ot h e x c i t at i o ns c a n c ha n ge t h e s t r en gt h of r e s e na n c e r e f l e c t i o n di p .T h c r e s ( ) ㈨ l 1 c 、 t 、r e f h ' l ’ l i on d i p I t 0. 80 6 T H z r i s e s wi t h t h e i nc r e a s i n g of t h e Fe r r ni l e v e l or l l 1 L ,l i g ht i nt e ns i t y . W h i l t a l 1 .8 69 l 。 ’ H z. “l e r 0 s ( ) l l a l l c e r c f l e c t i on d i P f i r s  ̄de c r e a s e s a n d t h e n i n c r e a s e s. r e a c he s i t s n l i t l i mu m a t Fe r mi l e v( 、 【of 1 3 ., i ㈣ ni l V a l l ( I l i gh t pu n1 p ef 97 0. 5 4 S/ m, r e s pe c t i v e l y .Num e r i c a l r e s ul t s wi t h t we ex t e r t l 【 l s t i mu l i c h ar gi n g s i n ml t a t l e ous l y f l r 【 _ al s o p r e s e nl e d .T h e b e s t a mp l i t ud e modu l a t i o n d e p t h t ha t c ou hl h e a c hi e w: d i s 9 9. 7 4

石墨烯与其复合材料的电磁波屏蔽性能研究

石墨烯与其复合材料的电磁波屏蔽性能研究

石墨烯与其复合材料的电磁波屏蔽性能研究石墨烯是一种具有特殊物理性质的薄片状材料,其单层由碳原子构成,有着高度的导电性和导热性。

与其他材料相比,石墨烯的电催化活性、热稳定性和机械强度都非常优异,因此被广泛用于电子、能源、传感器等领域的研究和应用。

在电磁波屏蔽性能方面,石墨烯及其复合材料也展现出了很好的潜力。

1. 石墨烯的电磁波屏蔽性能石墨烯是一种单层碳原子排列成的二维晶体,其结构具有很好的结构特性和物理性能,以及与传统材料相比具有更高的导电性和导热性。

由于石墨烯独特的电子能带结构和空间结构,具有优异的电磁波屏蔽性能。

一个最显著的优势是石墨烯的介电常数很低,使其对电磁波有很强的吸收能力。

石墨烯电磁波屏蔽性能可以归功于它的两个特性,一是单层厚度,二是非常好的导电性。

在超薄的石墨烯薄膜上,电磁波相互作用的作用距离较短,使得电荷的耗散非常强烈,并产生表面电阻。

在高电阻的污垢表面,能量被转化为热能,并有效地吸收电磁波。

石墨烯的晶格性质也影响着它的电磁波屏蔽性能,不规则的几何形状和碳原子排列可形成局部电荷堆积,从而加强了吸收电磁波的能力。

2. 石墨烯复合材料的电磁波屏蔽性能虽然石墨烯的单层厚度和优异的导电性使其成为一种很好的电磁波屏蔽材料,但由于其制备成本过高,生产中心性差等问题,导致其应用不太广泛。

为了克服这些问题,现在许多研究人员正在研究石墨烯的复合材料,以利用石墨烯的性能和其他材料的优点来制造出成本更低,效率更高的电磁波屏蔽材料。

石墨烯的复合材料有许多种类型,需要根据应用的需求和要求来选择适合的材料。

例如,石墨烯与聚合物混合后可以获得电磁波屏蔽材料,也可以使用金属纳米颗粒包覆的石墨烯来制造出具有优良抗干扰能力的材料。

3. 石墨烯复合材料电磁波屏蔽性能的优化石墨烯的复合材料有很好的电磁波屏蔽性能,但是这种性能还可以通过不断优化来提升。

例如可以通过石墨烯和其他材料的形状和组成来对其电磁波屏蔽性能进行调整。

在复合材料中增加石墨烯含量通常可以提高电磁波屏蔽性功能力,但这也会导致质量和成本增加。

基于石墨烯超材料的宽频带可调太赫兹吸波体

基于石墨烯超材料的宽频带可调太赫兹吸波体

第19卷 第6期太赫兹科学与电子信息学报Vo1.19,No.62021年12月 Journal of Terahertz Science and Electronic Information Technology Dec.,2021文章编号:2095-4980(2021)06-0973-06基于石墨烯超材料的宽频带可调太赫兹吸波体胡丹1,付麦霞2,朱巧芬3(1.安阳师范学院物理与电气工程学院,河南安阳 455000;2.河南工业大学信息科学与工程学院,河南郑州 450001;3.河北工程大学数理科学与工程学院,河北邯郸 056038)摘 要:基于二维材料石墨烯,设计了一款宽频带可调谐超材料太赫兹吸波体。

该吸波体由三层结构组成,顶层为石墨烯超材料,中间层为二氧化硅,底层为金属薄膜。

仿真结果表明,当石墨烯的费米能级为0.7eV时,该吸波体在1.11~2.61THz频率范围内吸收率超过90%,相对吸收带宽为80.6%。

当石墨烯的费米能级从0eV增大到0.7eV时,该吸波体器件的峰值吸收率可以从20.32%增大到98.56%。

此外,该吸波体器件还具有极化不敏感和广角吸收的特性。

因此,它在太赫兹波段的热成像、热探测、隐身技术等领域具有潜在的应用价值。

关键词:超材料;太赫兹;吸波体;石墨烯中图分类号:TN29文献标志码:A doi:10.11805/TKYDA2021248Tunable broadband terahertz absorber based on graphene metamaterialHU Dan1,FU Maixia2,ZHU Qiaofen3(1.School of Physics and Electrical Engineering,Anyang Normal University,Anyang Henan 455000,China;. All Rights Reserved.2.College of Information Science and Engineering,Henan University of Technology,Zhengzhou Henan 450001,China)3.School of Mathematics and Physics Science and Engineering,Hebei University of Engineering,Handan Hebei 056038,China)Abstract:A tunable broadband terahertz absorber based on graphene metamaterial is proposed and numerically demonstrated. The absorber consists of three layers: the upper is the graphene metamateriallayer, the middle is the SiO2layer, and the bottom is the metallic layer. Simulation results demonstratethat the proposed absorber achieves over 90% absorption in 1.11- 2.61THz with a relative bandwidth of80.6%when Fermi level c=0.7eV. The peak absorption rate of the proposed absorber can be tuned from20.32%to 98.56%by changing the Fermi energy of graphene from 0eV to 0.7eV. Additionally, theproposed absorber is insensitive to polarization and has high absorbance to wide incidence angles. Suchdesign may have some potential applications in thermal imaging, thermal detecting, and stealth technique.Keywords:metamaterial;terahertz;absorber;graphene超材料吸波体具有厚度薄、质量轻、吸收能力强、高度集成等优点,并且可以“量需定制”。

石墨烯纳米材料的光吸收与光学性质研究

石墨烯纳米材料的光吸收与光学性质研究

石墨烯纳米材料的光吸收与光学性质研究石墨烯是一种在近年来备受瞩目的纳米材料,它具有极高的导电性和热导性,在电子学、能源存储和光学应用等领域展现出了巨大的潜力。

其中,石墨烯在光学方面的研究尤为重要。

石墨烯具有单原子厚度和大的比表面积,这使得它在光学上具有一些独特的性质。

首先,石墨烯对光的吸收非常高效。

由于其单原子厚度,光可以直接进入石墨烯中,并被其高度导电性的碳原子吸收。

此外,石墨烯的大比表面积也使得它能够捕获更多的光子能量。

因此,石墨烯具有极高的光吸收率,是一种非常有效的光吸收材料。

其次,石墨烯还表现出了一些其他的光学性质。

例如,石墨烯具有非常强的光散射能力。

当光通过石墨烯时,它会与石墨烯中的电子相互作用,并发生散射。

这种散射效应可以用来制备透明导电薄膜。

石墨烯的高光学透射率和导电性使得它非常适合用于光电子器件的制备。

此外,石墨烯还具有可调节的光学性质。

通过控制石墨烯的厚度和物理结构,可以调控其吸收和散射光的波长范围。

这为石墨烯在光学器件中的应用提供了更大的灵活性。

例如,石墨烯可以被用作可调谐滤光器,通过调节外界电场来改变其吸收和透射光的波长。

这种可调节性使得石墨烯在光通信和光传感器等领域有着广阔的应用前景。

对于石墨烯纳米材料的光吸收和光学性质研究,科学家们已经取得了一系列的重要突破。

例如,研究人员发现,在石墨烯和其他二维材料的异质结构中,可以产生新的光学效应。

此外,通过利用局域表面等离子体共振效应,可以进一步增强石墨烯的光吸收能力。

这些研究不仅深化了对石墨烯的理解,还为其在光学器件领域的应用开辟了新的可能性。

尽管石墨烯在光学方面展现出了巨大的潜力,但在其应用过程中也存在一些挑战。

例如,石墨烯的制备和操控依然面临一定的难题。

目前,大规模制备高质量的单层石墨烯仍然是一个挑战。

此外,石墨烯的光学性质也需要更深入的研究和理解,以实现其在实际应用中的最大化利用。

总之,石墨烯纳米材料的光吸收与光学性质的研究是一个重要的课题。

石墨烯二维材料的新奇物性与应用

石墨烯二维材料的新奇物性与应用

石墨烯二维材料的新奇物性与应用石墨烯是一种由碳原子形成的单层结构,被誉为二十一世纪最有潜力的材料之一。

它具有独特的物理和化学性质,使其在各个领域都具备广泛的应用前景。

本文将就石墨烯的新奇物性及其在不同领域的应用做一综述。

一、石墨烯的新奇物性1. 直接带隙性质:相较于传统的石墨材料,石墨烯具有非零的能带间隙,这使其具备了在电子学领域中更加广泛的应用空间。

2. 高载流子迁移率:石墨烯的载流子迁移率极高,远远超过常见半导体材料如硅。

这使其在高速电子器件方面具备了巨大的潜力。

3. 热稳定性:石墨烯的热稳定性极高,可以承受高温环境下的工作。

这项特性使得石墨烯在电子产品的高温工作环境下有着广泛的应用前景。

4. 巨大的比表面积:由于石墨烯非常薄且具有二维结构,使其具有巨大的比表面积。

这使得石墨烯在催化剂、能源存储等领域具有广泛的应用前景。

5. 灵活性和透明性:石墨烯极其薄且具有良好的柔韧性,同时具备极高的透明性。

这使得石墨烯在柔性电子学领域具有巨大的应用潜力。

二、石墨烯在电子学领域的应用1. 石墨烯晶体管:由于石墨烯带有直接带隙和高迁移率的特性,使其成为可能对传统硅晶体管进行替代。

石墨烯晶体管具有更低的功耗和更高的工作频率。

2. 石墨烯透明导电膜:石墨烯具有良好的透明性,同时具有优越的导电性能。

因此,石墨烯透明导电膜在触摸屏、太阳能电池等领域有着广泛的应用。

3. 石墨烯传感器:石墨烯对周围环境中微小事件的敏感性使其成为一种理想的传感器材料。

石墨烯传感器在气体传感、生物传感等领域具有巨大的应用潜力。

三、石墨烯在能源领域的应用1. 石墨烯催化剂:石墨烯由于巨大的比表面积和良好的导电性能,可以作为高效催化剂用于固体氧化物燃料电池、电解水等能源转换领域。

2. 石墨烯电池:利用石墨烯作为电极材料,可以提高电池的能量密度和循环寿命。

石墨烯电池在锂离子电池、超级电容器等领域具有广泛的应用前景。

四、石墨烯在其他领域的应用1. 石墨烯复合材料:将石墨烯与其他材料复合,可以有效改善材料的力学性能、导电性能等。

石墨烯在电磁屏蔽与吸波材料方面的应用及研究进展

石墨烯在电磁屏蔽与吸波材料方面的应用及研究进展

石墨烯在电磁屏蔽与吸波材料方面的应用及研究进展石墨烯是由碳原子以六边形晶格形式排列而成的一种二维材料,其具有独特的结构和性质,因此在电磁屏蔽与吸波材料领域具有广泛的应用前景。

石墨烯具有出色的电导率,高可伸缩性和优异的力学性能,使其成为一种理想的电磁屏蔽和吸波材料。

石墨烯作为电磁屏蔽材料,能够有效地阻挡和反射电磁波的传播,具有良好的电磁屏蔽性能。

石墨烯的单层结构使其具有很高的电导率,使其在电磁屏蔽中能够快速地消除电磁波的能量,从而有效地降低电磁辐射对周围环境和人体的伤害。

此外,石墨烯还具有极高的力学强度和韧性,可以制成具有强度和韧性的电磁屏蔽材料,能够承受较大的外力而不易破裂。

石墨烯在吸波材料方面的研究也取得了一系列进展。

通过控制石墨烯的结构和化学成分,可以实现对其在特定频率范围内的电磁波的吸收。

石墨烯材料可以在广泛的频率范围内实现高吸波性能,包括可见光、红外光和微波等。

此外,石墨烯还可以结合其他吸波材料来增强吸波性能。

例如,通过将石墨烯与金属或聚合物复合,可以实现更高效的电磁波吸收。

近年来,研究人员还将石墨烯与其他材料相结合,以进一步提高电磁屏蔽和吸波性能。

例如,将石墨烯与氧化物、金属或聚合物复合,形成具有多层结构的复合材料,能够在各个频率范围内实现优越的电磁屏蔽性能。

这些复合材料能够同时具备石墨烯的优点和其他材料的特性,从而提高电磁屏蔽和吸波效果。

此外,石墨烯与纳米材料的复合也是电磁屏蔽和吸波材料研究的一个热点。

通过控制纳米材料的形貌、尺寸和含量,可以实现更好的电磁波阻抗匹配,从而提高吸波性能。

例如,将石墨烯与二维过渡金属碳化物MXene复合,可以显著提高电磁波吸收能力。

这种复合材料具有大量的界面,能够增加电磁波与材料之间的相互作用,从而提高吸波性能。

总的来说,石墨烯在电磁屏蔽和吸波材料方面具有巨大的应用潜力。

通过不断地探索石墨烯的性质和与其他材料的复合,可以开发出更高效、更可靠的电磁屏蔽和吸波材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Home Search Collections Journals About Contact us My IOPscienceWideband absorption in fibonacci quasi-periodic graphene-based hyperbolic metamaterialsThis content has been downloaded from IOPscience. Please scroll down to see the full text.2014 J. Opt. 16 125108(/2040-8986/16/12/125108)View the table of contents for this issue, or go to the journal homepage for moreDownload details:IP Address: 202.119.79.14This content was downloaded on 14/12/2014 at 11:28Please note that terms and conditions apply.Wideband absorption infibonacci quasi-periodic graphene-based hyperbolic metamaterialsRenxia Ning1,2,Shaobin Liu2,Haifeng Zhang2,Xiangkun Kong2,Borui Bian2and Jie Bao11College of Information Engineering,Huangshan University,Huangshan,245041,People’s Republic ofChina2Key Laboratory of Radar Imaging and Microwave Photonics(Nanjing Univ.Aeronaut.Astronaut.),Mini-stry of Education,College of Electronic and Information Engineering,Nanjing University ofAeronautics and Astronautics,Nanjing,210016,People’s Republic of ChinaE-mail:plrg@Received10August2014,revised14October2014Accepted for publication17October2014Published27November2014AbstractA heterostructure containing a Fibonacci quasi-periodic layer and a resonant metal back reflectoris proposed,which can realize wideband absorption.The Fibonacci layer is composed ofgraphene-based hyperbolic metamaterials and isotropic media to obtain wideband absorption.Toenhance absorption,an impedance-matching layer is put on top of the Fibonacci layer.It isshown to absorb roughly90%of all available electromagnetic waves in an11terahertzabsorption bandwidth for a transverse magnetic mode at normal angle incidence.The absorptionbandwidth is affected by the reflection band pared with some previous designs,ourproposed structure has a larger absorption bandwidth and higher absorption in the mid-infraredrange.The results should be valuable in the design of infrared stealth and broadbandoptoelectronic devices.Keywords:wideband absorption,fibonacci quasi-periodic,graphene-based hyperbolicmetamaterials(Somefigures may appear in colour only in the online journal)1.IntroductionGraphene has emerged as an outstanding material for optoe-lectronic applications due to its high electronic mobility and unique doping capabilities[1].However,because of its short interaction length,a monolayer of graphene absorbs onlyπα(2.3%)of the incident light,whereα=e2/(ħc)is the quantum electrodynamicsfine structure constant[2,3].The low absorptivity,which indicates important applications for gra-phene as a transparent conductivefilm,can be derived from the frequency-independent sheet conductivity under condi-tions of negligible impurity and substrate scattering[4].Many papers on the linear and nonlinear effects of graphene[5,6], have focused on its absorption properties[7–10].Recently, more and more interest has centered on enhancing the absorption of graphene in the terahertz(THz)and mid-infrared frequency ranges[11–13].Sukosin et al[13]found that a single sheet of doped graphene,patterned into a peri-odic array of nanodisks,exhibits perfect light absorption. Woo et al[14]demonstrated a graphene-based Salisbury screen absorber operating in the THz regime,and showed that excellent absorbance values of0.95and0.97at0.5and 1.5THz,respectively,can be attained.However,these results demonstrate that the absorption band is very narrow. Experiments on graphene as a saturable absorber in micro-wave and visible frequency ranges have been reported[15]. Microwave absorbance of graphene always decreases with increasing power,though it is independent of the incident frequency.A hyperbolic metamaterial(HMM)[16]is a kind of anisotropic medium with a hyperbolic dispersion relation,and is of interest for its potential applications innegative J.Opt.16(2014)125108(7pp)doi:10.1088/2040-8978/16/12/125108refraction,optical waveguides and imaging hyperlens.A novel implementation of HMMs in the far-infrared frequency range is composed of stacked graphene sheets separated by thin dielectric layers [17],which can be used as a super absorber in the near-field.An HMM can also be designed as an ef ficient and innovative absorber to enhance the decay rate of emitters near its surface [18].These characteristics can be applied to obtain a very broad range of relative wavenumber [12].However,to the author ’s knowledge,there has been very little research on wideband absorption of graphene-based hyperbolic metamaterials (GHMMs).In this paper,we theo-retically investigated the wideband absorption properties of a Fibonacci quasi-periodic GHMM in the mid-infrared range,but ignore the nonlinear effect of graphene.The paper is organized as follows.In section 2,we analyze the group and phase indices of GHMMs.A Fibonacci quasi-periodic structure composed of the GHMM and dielectric has been studied by the transfer matrix method (TMM).In section 3,we discuss absorption bandwidth.Finally,we conclude in section 4.2.Theoretical model and numerical method2.1.The electrical properties of grapheneFor a graphene sheet,the electromagnetic properties are described in terms of the surface conductivity σ.Inter-band and intra-band transitions can be described by Kubo model [19,20].The conductivity σis given by ⎜⎟⎛⎝⎜⎛⎝⎞⎠σπωτμπμωτμωτ=ℏ++++ℏ−ℏ++ℏ+μ−e k T i k Te e i i i ()2ln 1i 4ln 2()2(),(1)B B k T 222B where,ωis radian frequency,ħis the reduced Planck con-stant,κB is the Boltzman constant,e is the charge of the electron,T is the temperature,μdenotes the chemical potential,and τis electron –phonon relaxation time,respec-tively.We assume that the electronic band structure of a graphene sheet is unaffected by the neighboring sheets,so the effective permittivity εG of graphene can be written as [21]εσωε=+id 1,(2)G G 0where d G is the thickness of graphene sheet,and ε0is the permittivity in the vacuum.2.2.Effective permittivity of GHMMFor our multilayer design,we may use the effective medium theory to study electromagnetic wave propagation in the GHMM,which is an anisotropic medium with the followingapproximate uniaxial dielectric tensor components [22]:⎛⎝⎜⎜⎞⎠⎟⎟εεεε=,(3)xx yy zz where εxx =εyy =ε‖,εzz =ε⊥,ε‖and ε⊥are the parallel andvertical components of the relative permittivity,respectively.We also haveεεε=++∥d d d d ,(4)G G C CG C εεεεε=++⊥()d d d d ,(5)G C G C G C C Gwhere,εC and d C are dielectric permittivity and dielectricthickness,respectively.ε⊥≈εC ,ε‖=εC +i σ/ε0ωd C ,while d C ≫d G .For transverse magnetic (TM)wave propagation in our structure,the spatial dispersive curve can be derived as k z 2/εxx +k 02k x 2/εzz =,if εxx εzz <0,the dispersive curve is hyperbolic and εxx εzz >0,is elliptical [23,24].2.3.Absorption of fibonacci quasi-periodic GHMMA schematic view of an obliquely incident electromagnetic wave on a one-dimensional (1D)Fibonacci quasi-periodic structure composed of two-type dielectric and GHMM is plotted in figure 1.Cell structures based on the Fibonacci sequence in the periodic structure have been studied [25,26].In this paper,we assume that the first two layers of the Fibonacci sequence are S(1)={AB}and S(2)={Q},where A,B and Q,represent a loss dielectric,conventional material layer and GHMM,with thicknesses of d A ,d B ,d Q (d Q =dC +d G ),respectively,as marked in figure 1(a).Figure 1(b)depicts a GHMM unit cell consisting of dielectric C (cesium lead chloride:CsPbCl 3)and graphene.We then calculate absorption as a function of frequency and incident angle for TM wave in a half-in finite slab of material.The TMM has been given in previous papers [27–29].The absorption can be calculated from A =1-|r |2-|t |2,where r and t are re flection and transmission coef ficients,respectively.Figure 1.(a)Schematic diagram of 4th order 1D Fibonacci quasi-periodic GHMM composed of dielectric A,B and Q at incident angle (θ).(b)Front view of GHMM.3.Numerical results and discussionIn this section,we investigate the properties of the relative permittivity of GHMM and absorption of1D Fibonacci quasi-periodic GHMM in the mid-infrared regime,and subse-quently study the effect of the graphene,structure parameters and incident angle on the absorption bandwidth.We choose the structure parameters as follows:εA=2.8+0.09i[30,31],μA=1,d A=5.5μm,εB=1.21,μB=1,d B=1μm,εC=14.3 [32],μC=1,d G=0.335nm,[33]μG=1.3.1.The group index of refraction for GHMMThe relative permittivity of monolayer GHMM isfirst cal-culated and plotted infigures2–3.Infigure2,we show Re (ε‖)(the real part ofε‖)for monolayer GHMM withFigure2.Real part ofε‖versus frequency for different(a)μ,(b)T,(c)d C and(d)τ. Figure3.Imaginary part ofε‖versus frequency for different(a)μ,(b)T,(c)d C and(d)τ.different graphene and dielectric parameters.When the chemical potential or the electron-phonon relaxation time is increased,or the thickness of dielectric in the GHMM is decreased,then Re(ε‖)decreases.When Re(ε‖)is smaller than zero,a hyperbolic type is observed.Figure3shows Im (ε‖)(the imaginary part ofε‖)for different parameters.In contrast to Re(ε‖),Im(ε‖)is positive,which indicates that GHMM is a dissipative medium.The smaller chemical potential,the shorter electron–phonon relaxation time is; likewise,the larger d C is,the larger Im(ε‖)is.The results show thatε‖can be changed slightly when the temperature varies from250–350K,as shown infigures2(b)and3(b). Thus,the influence of temperature can be insignificant in general[19].3.2.The absorption band for fibonacci quasi-periodic GHMM We now discuss the absorption band of Fibonacci quasi-periodic GHMM.In order to realize wideband absorption,we design a periodic structure(ABQ)N,where N is the periodic number and the following parameters are chosen:d C=15nm,τ=20fs,μ=0.3eV,T=300K,N=12.The reflection,trans-mission and absorption are presented infigure4(a).The absorption is less than0.75due to the larger transmission. Depending on the relationship between the absorption, reflection and transmission,we should reduce the transmis-sion and reflection to attain a larger absorption.By employing an(ABQ)N Ag structure,we may obtain larger absorption with decreasing transmission.Silverfilm is used as a resonant metal back reflector[28,34],with its parameter selected according to Ref.[35–36].We can also choose other metals such as gold or aluminum,without affecting the results[35].The absorption,transmission and reflection of(ABQ)N Ag are plotted infigure4(b),where we can see that the transmission is zero because of the Ag reflector.The absorption of(ABQ)N Ag is larger than that of (ABQ)N,and approaches1at27THz and0.6at16THz. However,reflectionfluctuations due to an impedance mis-match,cause the absorptionfluctuations.We now consider improving the impedance matching to reduce the reflection.In a previous design,we showed that a Fibonacci quasi-periodic structure can enhance photonic band gaps[25],with energy localized within the band gap.After multiple resonances,energy is nearly completely absorbed; thus,wideband absorption can be attained.For the M(FS)s Ag structure illustrated infigure5(inset),M,FS(with a Fibo-nacci sequence order numbers of s=7)and Ag denote the impedance-matching layer,Fibonacci quasi-periodic GHMM and reflector,respectively.We choose the parameters of the dielectric M to beεM=1.4and d M=3μm.The calculated wideband absorption from15.5to26.5THz is shown in figure5.3.3.Effects of the GHMMNext,we examine how absorption is affected by the graphene parameters of a GHMM,with the results shown infigure6. As we can see,the absorption bandwidth is hardly affected by the parametersτ,μ,T and s,but the absorption value can be tuned by these parameters.Infigure6,whenτis20fs,the absorption is larger than whenτis200or2fs because Im(ε‖) is a maximum asτ=20fs,as revealed before infigure3(d).InFigure4.The reflection,transmission and absorption of(a)(ABQ)N and(b)(ABQ)N Ag withτ=20fs,μ=0.3eV,d C=15nm,T=300K.Figure5.The reflection and absorption of M(FS)s Ag atτ=20fs,μ=0.3eV,εC=14.3,d C=15nm,T=300K,(inset)M,FS(s=7)and Ag denote the impedance matching layer,Fibonacci quasi-periodic GHMM and sliver as resonant metal back reflector,respectively.figures 6(b)and (d),it is observed that the absorption can be increased by increasing μand s .In figure 6(c),we can see that the absorption is unaffected by different temperatures because ε‖only changes slightly with temperatures over the range 250–350K.To study the GHMM in fluence on absorption,we plot the relation between the absorption of M(FS)s Ag and thickness of dielectric C of GHMM in figure 7.As shown in figure 7(a),absorption is nearly 1when the value of εC is 15or so;however,when d C is 10nm,the absorption fluctuates in the low frequency range,and as d C increase,fluctuations appear in the high frequency regime.The above discussions are only valid for the M(FS)s Ag structure.In general,the absorption bandwidth depends on τ,μ,εC ,and s ,but is independent of T .3.4.Wideband absorptionThe incident angle of the electromagnetic wave also affects absorption.We find that the absorption bandwidth is 11THz (from 15.5to 26.5THz)at normal incidence.In figure 8(a),the absorption as a function of incident angle is plotted for frequencies of 17,19,21,23and 25THz,respectively.The results show that for M(FS)s Ag,the absorption is almost 1when the incident angle is between −75°and 75°for fre-quencies between 19and 25THz.Figure 8(b)shows the results as the incidence angle chan-ges from 0°to 89°.We see that for a TM mode,the absorption band gradually has a blue shift and a larger bandwidth with a smaller absorption.The wideband absorption region changes from 15.5to 26.5THz,and the frequency range is 11THz.Figure 6.The absorption of M (FS)s Ag for different (a)τ,(b)μ,(c)T and (d)s at normal incidence with TMmode.Figure 7.The absorption of M(FS)sAg for different (a)dielectric and (b)thickness with τ=20fs,μ=0.3eV,T =300.4.ConclusionIn summary,the wideband absorption of1D quasi-periodic structures composed of lossy dielectric,isotropic dielectric and GHMM,arranged according to a recursive Fibonacci sequence,has been investigated.The relative permittivity of GHMM and the absorption band of M(FS)s Ag,which can be tuned by the GHMM and incident angle.The results show that,when impedance matching and total reflection are employed,this new kind of ternary quasi-periodic structure has a wideband absorption,which is insensitive to the inci-dent angle of the electromagnetic wave.We conclude that wideband absorption can be attained by using a recursive Fibonacci sequence,and the absorption can be increased by pared with some previous conventional reso-nant absorbers[11,36],the structure that we propose has a larger bandwidth and absorption in the mid-infrared fre-quency range.Wideband absorption may have potential applications in infrared stealth and broadband photodetectors. It is noteworthy that the nonlinearity of GHMM is also very interesting,as we shall discuss in a future paper. AcknowledgementsThis work was supported by the Specialized Research Fund of China for the Doctoral Program of Higher Education(grant No.20123218110017),Jiangsu Province Science Foundation (Grant No.BK2011727),the Natural Science Foundation of China(Grant No.61307052),the Foundation of Aeronautical Science(No.20121852030),the Fundamental Research Funds for the Central Universities(2013302),Youth Funding for Science&Technology Innovation in NUAA (NS2014039),Open Research Program in Jiangsu Key Laboratory of Meteorological Observation and Information Processing(Grant No.KDXS1207),the Jiangsu Innovation Program for Graduate Education(CXZZ13_0166),Huang-shan University Program for Scientific Research (2010xkj006),the Anhui for Scientific Research (KJ2013B267).References[1]Fang Z et al2013ACS Nano72388–95[2]Furchi M et al2012Nano Lett.122773–7[3]Nair R R et al2008Science3201308[4]Bonaccorso F,Sun Z,Hasan T and Ferrari A C2010Nat.Photonics4611–22[5]Zhang H,Virally S,Bao Q,Kion Ping L,Massar S,Godbout N and Kockaert P2012Opt.Lett.371856–8 [6]Fang Z,Zhen Y,Fan L,Zhu X and Nordlaner P2012Phys.Rev.B85245401[7]Vincenti M A,de Ceglia D,Grande M,D’Orazio A andScalora M2013Opt.Lett.383550–3[8]Nikitin A Y et al2012Phys.Rev.B85081405[9]Alaee R,Farhat M,Rockstuhl C and Lederer F2012Opt.Exp.2028017–24[10]Andryieuski A and Lavrinenko A V2013Opt Exp.219144–55[11]Liu J T et al2013EPL(Europhys.Lett.)10457002[12]Nefedov I S,Valaginnopoulos C A and Melnikov L A2013J.Opt.15114003[13]Thongrattanasiri S,Koppens F H L and de Abajo F J G2012Phys.Rev.Lett.108047401[14]Min Woo J et al2014Appl.Phys.Lett.104081106[15]Zheng Z,Zhao C,Lu S,Chen Y,Li Y,Zhang H and Wen S2012Opt.Exp.2023201–14[16]Smith D R and Schurig D2003Phys.Rev.Lett.90077405[17]Othman M A K,Guclu C and Capolino F2013Opt.Exp.217614–32[18]Guclu C,Campione S and Capolino F2012Phys.Rev.B86205130[19]Falkovsky L A2008J.Phys.:Conf.Ser.129012004[20]Mikhailov S A and Ziegler K2007Phys.Rev.Lett.99016803[21]Vakil A and Engheta N2011Science3321291–4[22]DaSilva A M et al2013Phys.Rev.B88195411[23]Madani A,Zhong S,Tajalli H,Roshan Entezar S,Namdar A and Ma Y2013Prog.Electromagn.Res.143545–58[24]Xiang Y et al2014Sci.Rep.45483[25]Zhang H F,Zhen J P and He W P2013Optik—InternationalJournal for Light and Electron Optics1244182–7[26]Zhao P L and Chen X2011Appl.Phys.Lett.99182108[27]Ning R et al2014Eur.Phys.J.Appl.Phys.6820401[28]Sreekanth K V,De Luca A and Strangi G2013Appl.Phys.Lett.103023107[29]Zhang H F,Liu S B and Kong X K2013Phys.B:CondensedMatter410244–50[30]Tao H et al2008Phys.Rev.B78241103[31]Zhu W et al2014Appl.Phys.Lett.104051902Figure8.(a)Absorption versus incident angle for different frequencies from17to25THz.(b)Absorption versus incident angle and frequency.[32]Palik E D1985Handbook of Optical Constants of Solids(NewYork:Academic Press)pp350–7[33]Novoselov K S et al2004Science306666–9[34]Pu M et al2013Opt.Exp.2111618–27[35]Laman N and Grischkowsky D2008Appl.Phys.Lett.93051105[36]Zheng H,Vallée R,Almeida R M,Rivera T and Ravaine S2014Opt.Mater.Exp.41236–42。

相关文档
最新文档