人教版七年级数学上册教案1.4《有理数的乘除法》教案

合集下载

新人教版七年级上册第一章教案:1.4有理数的乘除法(第1课时)

新人教版七年级上册第一章教案:1.4有理数的乘除法(第1课时)

新人教版七年级上册第一章教案:1.4有理数的乘除法(第1课时)一、内容和内容解析1.内容有理数的乘法法则.2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数的乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数的学习是至关重要的.与有理数加法法则类似,有理数的乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.基于以上分析,可以确定本课的教学重点:两个有理数相乘的符号法则.二、教材解析教科书先类比有理数加法,提出如何进行有理数乘法运算的问题,然后以“引入有理数乘法法则,使得原有的运算律保持不变”为指导思想,设置了三个“思考”,引导学生通过合情推理来认识“如果原有的运算规律仍然成立,那么正数×负数、负数×正数、负数×负数该得到什么结果”.三个“思考”是循序渐进的.第一个“思考”乘法算式的左边都是3×□的形式,先让学生根据已有知识概括规律,然后在“要使这个规律在引入负数后仍然成立”的引导下,给出3乘一个负数应该是什么的结论.第二个“思考”解决之后,教科书安排了一个阶段总结,归纳出正数乘正数、正数乘负数、负数乘正数三种情况的结论.然后,通过第三个“思考”,先运用得到的结论解决(-30)×正数的问题,得出规律后,再解决(-30)×负数的问题,并进一步归纳出负数乘负数的运算结果.至于两个数相乘,一个数是0的情况,参照正数与0相乘的结果,可以规定负数与0相乘也得0.综合上述讨论的各种情况,教科书给出了有理数乘法法则.三、教学目标和目标解析1.教学目标(1)理解有理数的乘法法则,能利用有理数的乘法法则计算两个数的乘法;(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.2.目标解析(1)学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果;(2)学生能通过具体例子说明有理数乘法的符号法则的归纳过程.四、教学问题诊断分析有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题,什么叫“观察下面的乘法算式”,从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.本课的教学难点:如何观察给定的乘法算式;从哪些角度概括算式的规律.五、教学过程设计问题1我们知道,有理数分为正数、0、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数乘0、正数乘负数、负数乘正数、负数乘负数.【设计意图】有理数分为正数、0、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?如果学生存在困难,教师给予提示:(1)四个算式有什么共同点?——左边都有一个乘数3.(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.【设计意图】构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.总结:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.追问2:根据这个规律,下面的两个积应该是什么?3×(-2)=,3×(-3)=.练习请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.【设计意图】让学生自主构造算式,加深对运算规律的理解.追问3:从符号和绝对值两个角度观察这些算式(师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.【设计意图】先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.问题3观察下列算式,类比上述过程,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.鼓励学生模仿正数乘负数的过程,自己独立得出规律.【设计意图】为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?(-1)×3=,(-2)×3=,(-3)×3=.练习请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.追问2:类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含负数乘正数的算式),你能说说它们的共性吗?先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?先让学生观察、叙述、补充,教师再总结:异号两数相乘,积为负数,积的绝对值等于各乘数绝对值的积.【设计意图】让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳和概括能力.问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?(-3)×3=,(-3)×2=,(-3)×1=,(-3)×0=.追问:按照上述规律填空,并说说其中有什么规律?(-3)×(-1)=,(-3)×(-2)=,(-3)×(-3)=.【设计意图】由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.问题5 总结上面所有的情况,你能试着自己给出有理数的乘法法则吗?学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生阅读教科书.追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?学生独立思考、回答.如果有困难,可先让学生阅读课本第29页例题后的一段文字.【设计意图】让学生尝试归纳乘法法则,明确按法则计算的关键步骤.例题 计算:(1)(-3)×9;(2)8×(-1);(3)⎪⎭⎫ ⎝⎛-21×(-2). 学生独立完成后,全班交流.教师说明:在(3)中,我们得到了⎪⎭⎫ ⎝⎛-21×(-2)=1.与以前学习过的倒数概念一样,我们说21-与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数. 追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?【设计意图】本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).例题 用正数、负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰, 每登高1 km 气温的变化量为-6℃,攀登3 km 后,气温有什么变化?【设计意图】利用有理数的乘法解决实际问题,体现数学的应用价值.小结、布置作业请同学们带着下列问题回顾本节课的内容:(1)你能说出有理数的乘法法则吗?(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?(3)举例说明如何从正数和0的乘法运算出发,归纳出正数乘负数的法则.(4)你能举例说明运算法则“负负得正”的合理性吗?【设计意图】引导学生从知识内容和学习过程两个方面进行小结.作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.六、目标检测设计1.判断下列运算结果的符号:(1)5×(-3); (2)(-3)×3; (3)(-2)×(-7); (4)(+0.5)×(+0.7).【设计意图】检测学生对有理数乘法的符号法则的理解.2.计算:(1)6×(-9);(2)(-6)×0.25; (3)(-0.5)×(-8); (4)32×⎪⎭⎫ ⎝⎛-49; (5)0×(-6); (6)8×641. 【设计意图】检测学生对有理数乘法法则的理解情况.。

新人教版七上1.4《有理数的乘除法》教案

新人教版七上1.4《有理数的乘除法》教案

1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。

人教版七年级上册数学教案 1.4 有理数的乘除法

人教版七年级上册数学教案  1.4 有理数的乘除法

1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则【出示目标】1.了解有理数乘法的实际意义.2.理解有理数的乘法法则.3.能熟练的进行有理数乘法运算.【预习导学】自学指导看书学习第28、29、30、31页的内容,亲历有理数的乘法法则的推导过程,掌握有理数的乘法法则,并进行两个有理数的乘法运算.有理数的乘法法则是:__两数相乘,同号得正,异号得负,并把绝对值相乘__.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算__积的绝对值__.乘积为1的两个数互为__倒数__.如-3的倒数是__-13__,0.5的倒数是__2__,-212的倒数是__-25__.看书第30、31页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由__负因数__的个数决定.当负因数的个数是__偶数__时,积为正;负因数的个数是__奇数__时,积为负.几个数相乘,如果其中有一个因数是0,积等于__0__.【自学反馈】1.计算:(-114)×(-45)=__1__,(+3)×(-2)=__-6__,0×(-4)=__0__,123×(-115)=__-2__,(-15)×(-13)=__5__,-│-3│×(-2)=__6__.2.计算:(-2)×(-3)×(-5)=__-30__,(-723)×3×(-123)=__1__,(-9.89)×(-6.2)×(-26)×(-30.7)×0=__0__.【教师点拨】(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.【合作探究】活动1:小组讨论1.计算:(+5)×(+3)=__15__,(+5)×(-3)=__-15__,(-5)×(+3)=__-15__,(-5)×(-3)=__15__,(+6)×0=__0__,6×(-4)=__-24__,(-6)×4=__-24__,(-6)×(-4)=__24__.2.计算:(-112)×815×(-23)×(-214)=__-115__,14×(-16)×(-45)×(-114)×8×(-0.25)=__8__.活动2:活学活用1.计算:(1)(-5)×0.2=__-1__;(2)(-8)×(-0.25)=__2__;(3)(-312)×(-27)=__1__;(4)0.1×(-0.01)=__-0.001__;(5)(-59)×0.01×0=__0__;(6)(-2)×(-5)×(+56)×(-30)=__-250__;(7)312×(-47)+(-25)×(-334)=__-12__.2.a×(-56)=1则a=__-65__.一个有理数的倒数的绝对值是7,则这个有理数是__±17__.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×)(2)两数相乘,若积为负数,则这两个数异号.(√)(3)两个数的积为0,则两个数都是0.(×)(4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√)【课堂小结】1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时有理数的乘法运算律【出示目标】1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.3.培养学生通过观察、思考找到合理解决问题的能力.【预习导学】自学指导看书学习第32、33页的内容,学习乘法交换律、结合律和分配律,通过探究,体验由特殊到一般研究问题的演绎思想;通过应用,感受利用运算律优化解题过程,养成观察思考的良好习惯.知识探究乘法的交换律文字表达:__两个数相乘,交换因数的位置,积相等__.乘法的交换律字母表达:__ab=ba__.乘法的结合律文字表达:__三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等__.乘法的结合律字母表达:__(ab)c=a(bc)__.乘法的分配律文字表达:__一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加__.乘法的分配律字母表达:__a(b+c)=ab+ac__.【自学反馈】1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1).解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15).解:(1)-4310;(2)-299419.【教师点拨】运用运算律进行简便运算.【合作探究】活动1:小组讨论计算:1.(-0.5)×(-316)×(-8)×113;解:-1.2.-10556×12;解: -1 270.3.(-34+156-78)×(-24).解: -5.4.317×(317-713)×722×2122;解: -4.5.(23-49+527)×27-1117×8+117×8.解:3活动2:活学活用1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是( D) A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是( C )A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是( C )A .2 007×(-8-18)B .-2 007×(-8-18)C.2 007×(-8+18)D.-2 007×(-8+18)4.计算1357×316最简便的方法是(D)A.(13+57)×316B.(14-27)×316C.(10+357)×316D.(16-227)×3165.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117;(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10;(2)1921;(3)250.【课堂小结】1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.【随堂训练】教学至此,敬请使用学案随堂训练部分.1.4.2 有理数的除法第1课时 有理数的除法法则【出示目标】1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.3.感受转化、归纳的数学思想.【预习导学】自学指导看书学习第34、35页的内容,掌握有理数除法法则,能够化简分数.知识探究1.有理数除法法则__除以一个不等于0的数,等于乘这个数的倒数__.2.两数相除,__同号__得正,__异号__得负,并把绝对值__相除__.0除以任何__不等于0__的数仍得0.【自学反馈】计算:(1)(-36)÷9=__-4__;(2)(-1225)÷(-35)=__45__;(3)2.25÷(-1.5)=__-32__.【教师点拨】在做除法运算时:先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.【合作探究】活动1:小组讨论1.化简下列分数:(1)-123=__-4__;(2)-45-12=__154__. 2.计算:(1)(-12557)÷(-5)=__2517__;(2)-2.5÷58×(-14)=__1__.【教师点拨】乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果. 活动2:活学活用1.计算:(1)-0.125÷(-38);________________________________________________________________________(2)(-215)÷1110;(3)-112÷34×(-0.2)×134÷1.4×(-35).解:(1)13;(2)-2;(3)-310.2.两个不为零的有理数的和等于0,那么它们的商是( B )A .正数B .-1C .0D .±13.两个不为0的数相除,如果交换它们的位置,商不变,那么( D )A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数【课堂小结】1.法则1:a ÷b =a ·1b .2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.【随堂训练】教学至此,敬请使用学案随堂训练部分.第2课时 有理数的四则混合运算【出示目标】1.能熟练地进行有理数的乘除混合运算,能用简便方法计算.2.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.3.能解决有理数加减乘除混合运算应用题.4.了解用计算器进行有理数的加减乘除运算.【预习导学】自学指导看书学习第36、37页的内容,掌握有理数乘除混合运算法则,能够解决具体问题.知识探究有理数加减乘除混合运算法则:__先乘除,后加减,有括号的先算括号内的__.【自学反馈】计算:(1)6-(-12)÷(-3);(2)3×(-4)+(-28)÷7;(3)(-48)÷8-(-25)×(-6);(4)42×(-23)+(-34)÷(-0.25).解:(1)2;(2)-16;(3)-156;(4)-25.【教师点拨】在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积(或商)的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.【合作探究】活动1:小组讨论1.计算:-54×(-214)÷(-412)×29=__-6__.2.(-7)×(-5)-90÷(-15)=__41__.3.一架直升机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米活动2:活学活用1.计算:(1)(-6)÷(-3 2);(2)(-2467)÷(-6);(3)-114÷0.25÷(-16);(4)(-45)÷(-43)×0;(5)(-3)×(-12)-(-5)÷(-2);(6)|-512|÷(13-12)×(-111).解:(1)4;(2)297;(3)516;(4)0;(5)-1;(6)3.2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米【课堂小结】有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的.【随堂训练】教学至此,敬请使用学案随堂训练部分.。

人教版数学七上1.4《有理数的乘除法》(有理数的乘法)word教案

人教版数学七上1.4《有理数的乘除法》(有理数的乘法)word教案

1.4有理数的乘除法——有理数的乘法一、教学目标1、 进一步熟悉有理数的乘法运算并能用乘法运算律简化运算。

2、 让学生通过观察、思考、探究、讨论,主动地学习3、 培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

二、重点与难点1、教学重点:用运算律简化运算2、教学难点:正确运用运算律,使运算简化。

三、教学流程1、 复习引入(1)、 在小学我们学过一些乘法的交换律、乘法的结合律以及分配律,谁能给大家介绍一下?(2)、小学学习过的有关乘法的运算律,对所有的有理数都还适用吗?2、探求验证计算下列各题,并比较它们的结果。

第一组(1)、(-7 )× 8 =8 ×(-7 )= ___________(2)、[(-4-)×(-6)]×5=____________(-4-)×[ (-6)×5]=____________(3)、(-2)×[(-3)+(23-)]=____________ (-2)×(-3)+(-2)(23-)=________________ 第二组(1)、(35-)×(109-)=_______________ (109-)×(35-)=_______________ (2)、[21×(37-)]×(-4)=_____________ 21×[(37-)]×(-4)]=_____________(3)、5×[(-7)+( 54-)]=__________________ 5×(-7)+5×( 54-)]=______________ 让学生自由选择其中的一组问题进行计算,然后在组内交流,验证答案的正确性。

3、交流合作,形成结论提问:以上各组题的运算结果有什么特点? 各组题的运算形式,与乘法的运算律的结构特征对比,你发现了什么?(通过讨论、交流,让学生用自己的语言来描述三个运算律并引导学生用字母来表示三个运算律)4、应用新知,体验成功例1、用两种方法计算(41+61-21)×12 通过本例让学生更深刻地体验到运用运算律可简化运算例2、计算下列各题1)、6×(-10)×0.1×31 2)、711615×(-8) 3)、(+371)×(371-731)×227×2221 通过本例让学生学会选用运算律来简化运算。

七年级数学上册 1.4 有理数的乘除法教学设计 (新版)新人教版

七年级数学上册 1.4 有理数的乘除法教学设计 (新版)新人教版

1.4 有理数的乘除法第1课时有理数的乘法(一)教学目标1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.教学重点两个有理数相乘的符号法则.教学难点从不同角度概括算式的规律.教学设计(设计者:)教学过程设计一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标探究点一有理数的乘法法则活动一:阅读教材第28至29页,思考: 1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论? 3.有理数乘法法则分几种情况进行归纳的? 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的? 【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.【针对训练】见“学生用书”. 探究点二 有理数乘法的运用 活动二:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每攀登1 km 气温的变化量为-6℃,攀登3 km 时气温有什么变化?【展示点评】根据实际问题列出乘法算式(-6)×3,计算解答. 【小组讨论】例2是如何体现正数、负数的实际意义的? 反思小结:“-18℃”即下降18℃的意思. 【针对训练】见“学生用书”.探究点三 多个有理数相乘的符号法则活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.【展示点评】先确定积的符号,再按小学所学的正数间的乘法计算. 【小组讨论】多个不是0的数相乘,先做哪一步,再做哪一步?【反思小结】多个不是0的有理数相乘应注意:首先要确定积的符号,然后再按法则运算.几个有理数相乘,如果其中有因数为0,那么积为0.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数乘法. 2.步骤:有理数乘法.有理数的乘法⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫法则―→倒数运算步骤―→实际运用 五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__;(-54)×32=__-158__. 4.写出下列各数的倒数: 1,-1,13,-123,-34,0.45.解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127).解:(1)-2 (2)-1 (3)92 (4)157六、布置作业 巩固目标 课后作业 见“学生用书”. 第2课时 有理数的乘法(二)错误!错误! (设计者: )教学过程设计一、创设情景 明确目标1.说一说有理数的乘法法则; 2.多个有理数相乘又该如何计算. 二、自主学习 指向目标自学教材第31至33页,完成下列问题: 1.计算:(1)5×(-6)=__-30__;(-6)×5=__-30__;(2)⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-109=__23__;⎝ ⎛⎭⎪⎫-109×⎝ ⎛⎭⎪⎫-35=__23__; (3)[3×(-4)]×(-5)=__60__;3×[(-4)×(-5)]=__60__;(4)2×[3+(-5)]=__-4__;2×3+2×(-5)=__-4__.2.观察上面每组中的两个式子及结果,看看它们存在什么联系与区别?你能发现有理数乘法有哪些运算律吗?解:乘法的交换律、结合律和分配律 3.(1)乘法交换律__ab =ba __; (2)乘法结合律__(ab )c =a (bc )__; (3)乘法分配律__a (b +c )=ab +ac __. 三、合作探究 达成目标探究点一 乘法的交换律和结合律的运用活动一:计算:(1)(-25)×39×(-4); (2)125×25×(-4)×(-8).【展示点评】第(1)题可以将(-25)与(-4)结合在一起;第(2)题可以将125与(-8),25与(-4)各自结合在一起.【小组讨论】在什么情况下使用乘法的交换律和结合律?三个或三个以上的数相乘,任意交换因数的位置,或者任意先把其中几个数相乘,积会怎样?【反思小结】乘法交换律和乘法结合律要注意灵活、综合地运用,不能分开.运用乘法交换律和结合律的目的是把容易计算(积为整百、整千、可以约分等等)的几个因数先进行计算,它只改变运算顺序,而不改变结果.【针对训练】见“学生用书”. 探究点二 乘法的分配律活动二:用两种方法计算(14+16-12)×12.【展示点评】可以先计算括号里面的加减法,再进行乘法运算,也可以运用乘法的分配律展开计算.【小组讨论】比较上面两种解法,它们在运算顺序上有什么区别?计算中用了什么运算律使计算更简便?【反思小结】乘法运算律是用来简化有理数乘法运算的依据,根据算式的特点应用乘法分配律可以打破“先算括号”的计算习惯,大大简化乘法与加法的运算;也可以应用转化数学思想,把一个数拆为几个数的和或差,然后运用乘法分配律进行巧妙计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:多个有理数相乘. 2.步骤:多个有理数相乘.多个有理数相乘⎩⎪⎨⎪⎧符号规律运算步骤五、达标检测 反思目标1.五个数相乘,积为负,那么其中负因数的个数是( D ) A .1 B .3 C .5 D .1或3或5 2.下列运算结果错误的是( B ) A .(-2)×(-3)×(-1)=-6 B .(-12)×(-6)×0.25=-34C .(-5)×(-2)×(-1)=-10D .(-3)×(-8)×(+4)=96 3.填空:6×(-9)×(-23)=__36__;(-114)×(-45)×(-78)×47=__-12__;(-9)×3×(-32)=__812__;(-1)×(-54)×815×0×32=__0__.4.计算:(1)(-35)×(-56)×(-2);(2)(-312)×27×(-65)×(+173);(3)13×(-6)×(-123)×(-35); (4)(-23)×623×(-12)×(-115).解:(1)-1 (2)345 (3)-2 (4)-83六、布置作业 巩固目标 课后作业 见“学生用书”.第3课时 有理数的除法(一)教学目标1.经历有理数除法法则的推导过程,了解有理数除法的意义. 2.掌握有理数除法法则,会进行有理数的除法运算.3.能够运用有理数的除法法则化简分数,能进行有理数的乘除混合运算,体会转化的数学思想.教学重点运用有理数的乘除混合运算. 教学难点有理数除法法则的推导过程. 教学设计 (设计者: )教学过程设计一、创设情景 明确目标(1)小红从家里到学校,每分钟走50 m ,共走了20 min ,问小红家离学校有________ m ,列出的算式为______________.(2)放学时,小红仍然以每分钟50 m 的速度回家,应该走________min ,列出的算式为______________.从上面这个例子你可以发现,有理数除法与乘法之间的关系是____________.(3)你能计算(-10)÷2吗?请根据有理数乘法法则解释你的结果的合理性. 二、自主学习 指向目标自学教材第34至35页,完成下列问题:1.(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a×1b__(b 不等于0);(2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__.2.a (a≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab __>__0.三、合作探究 达成目标 探究点一 有理数的除法法则活动一:阅读教材第34页,相互交流下面的问题: 1.可以得出什么结论?2.换其他的数进行类似讨论,是否仍有除以a (a≠0)可以转化为乘1a ?3.用字母如何表示有理数除法法则?4.你能类比有理数的乘法法则,说出有理数的除法法则的另一种表述方法吗? 例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______; (3)(-14)÷(-12)=(-14)×______=______;(4)0÷(-1212)=______;0÷2012=______.【展示点评】观察、分析、并与小学里学习的乘除法进行类比与对比,得出有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数,用字母表示为a ÷b =a·1b(b≠0).另外,有两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【小组讨论】①法则(1)中为什么要强调除以一个不等于“0”的数?运用法则(1)要注意什么?②从法则(2)中,可以看出有理数的除法运算的步骤有哪些?【反思小结】根据以上问题的解决,可体会到在进行有理数除法运算时可以转化为有理数的乘法运算,再一次体会转化思想,另外通过对比有理数的乘法法则,感受类比的数学思想.【针对训练】见“学生用书”. 探究点二 有理数的除法运算活动二:例2 计算:(1)(-36)÷9; (2)(-1225)÷(-35).【展示点评】(1)(-36)÷9=-(36÷9)=-4;(2)(-1225)÷(-35)=1225÷35=1225×53=45.【小组讨论】有理数除法的一般步骤是什么?用到了什么数学思想方法?【反思小结】进行有理数的除法运算时,先确定结果的符号,并把除法运算转化成乘法运算,再计算出结果.用到了数学的转化思想.活动三:例3 化简下列分数:(1)-123;(2)-45-12.【展示点评】将它们转化成除法运算即可. 【小组讨论】:分数与除法之间有什么关系?如何转化?【反思小结】化简分数时,可以把分数线理解为除法运算,然后再根据除法法则进行除法运算.【针对训练】见“学生用书”. 探究点三 有理数的乘除法运算活动四:例4 计算: (1)-12557÷(-5);(2)(-2.5)÷58×(-14).【展示点评】(1)中带分数要转化成假分数;(2)中小数需转化成分数.【小组讨论】在有理数乘、除法同级运算中,运算的顺序是怎样的?【反思小结】乘除是同级运算,应该从左到右进行运算,先确定结果的符号,再将它们的绝对值相乘除,若化为乘法运算可以利用乘法交换律进行简便计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数的除法.2.关系:有理数的除法与乘法之间. 3.数学思想:转化. 有理数的除法―→有理数的乘法 五、达标检测 反思目标1.下列等式中,成立的是( D ) A .100÷13×(-3)=100×3×3B .100÷13×(-3)=100÷(13×3)C .100÷13×(-3)=100×13×(-3)D .100÷13×(-3)=100×3×(-3)2.化简:(1)54-8; (2)-18-72; (3)-63-7. 解:(1)-274 (2)14(3)93.在学习了有理数的除法之后,王老师想考查同学们综合运用有理数乘除法法则进行计算的能力,出了一道计算题:-2.5÷58×(-4)小明的解题过程是:-2.5÷58×(-4)=-52÷(-52)=1小华的解题过程是:-2.5÷58×(-4)=-52×85×4=-16小军的解题过程是:-2.5÷58×(-4)=52×85×4=16这三位同学的解题过程对吗?如果不对,请说明他们各错在哪里?解:小明和小华的解题过程错误,小军的解题过程正确,小明错在运算顺序没有按照从左到右的顺序进行,小华错在积的符号确定错误.4.计算:(1)-56÷78÷(-113);(2)(-214)÷(-45)×(-23);(3)1÷(-227)×513;(4)312÷(-1415)×(-323).解:(1)48 (2)-158 (3)-73 (4)554六、布置作业 巩固目标 课后作业 见“学生用书”.第4课时 有理数的除法(二)教学目标1.熟练掌握有理数的混合运算,并会用运算律简化运算. 2.能运用有理数的混合运算解决实际问题. 教学重点有理数的加减乘除的混合运算. 教学难点有理数的乘除的混合运算顺序. 教学设计 (设计者: )教学过程设计一、创设情境 明确目标1.说一说以前学习的四则混合运算的运算顺序.2.已知高度每上升1000 m ,气温大约下降6℃,光明中学地理兴趣小组的同学们想估计某座山的高度,他们测得山顶的温度是1℃,山下地面的温度是13℃,你能帮助他们估算一下这座山的高度吗?二、自主学习 指向目标自学教材第36页,完成下列问题:1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算. 4.计算:(1)-3÷4×14=__-316__;(2)-313÷213÷(-2)=__57__.三、合作探究 达成目标探究点一 有理数的混合运算的顺序及运用运算律和简便运算 活动一:例1 计算:42×(-23)+(-134)÷(-0.25).【展示点评】在这个式子中包含加、乘、除法几种运算.本题的运算顺序是先乘除后加减.式子中的带分数和小数需要先转化成分数.【小组讨论】进行有理数的混合运算需要注意哪些问题?【反思小结】有理数加减乘除混合运算时:1.注意运算顺序;2.先将除法转化为乘法;3.要注意符号的变化;4.若出现带分数可以化为假分数,小数可化为分数计算.活动二:例2 计算:(79+56-1112)×36.【展示点评】可以先计算括号里面的,也可以运用乘法的分配律展开运算. 【小组讨论】例2与例1有什么不同?此题有哪些解法?【反思小结】有理数加减乘除混合运算时:1.有括号,要先算括号里面的;2.能用运算律的尽量运用运算律简化运算.【针对训练】见“学生用书”. 探究点二 有理数混合运算的应用 活动三:例3 某个体商店经营季节性较强的商品,去年由于受到市场的影响,1到3月份平均每月亏损1.5万元,4到6月份平均每月盈利2万元,7到10月份平均每月盈利1.7万元,11到12月份平均每月亏损2.05万元.这个商店去年一年总的盈亏情况如何?【展示点评】从数学的角度思考,亏损用负数表示,盈利用正数表示. 【小组讨论】:说说你对运用有理数混合运算解决实际问题的看法. 【反思小结】在生活中经常用正负数来表示意义相反的两个量,要习惯从数学的角度看生活中的实际问题,建立相应的数学模型去解决问题.【针对训练】见“学生用书”. 四、总结梳理 内化目标1.顺序:有理数加减乘除混合运算. 2.注意的问题.实际问题―→数学问题―→构建模型―→计算求解⎩⎪⎨⎪⎧运算顺序运算法则运算律五、达标检测 反思目标1.下列运算正确的是( B )A.⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-12=4 B .0-2=-2 C.34×⎝ ⎛⎭⎪⎫-43=1 D .(-2)÷(-4)=2 2.计算:(1)18-6÷(-2)×(-13);(2)214×(-76)÷(12-2).解:(1)17 (2)743.运用运算律计算: (1)5÷(-34)+43×8;(2)-25+(58-16+712)×(-2.4). 解:(1)4 (2)-2.94.已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy-3)-2(m +n). 解:∵m ,n 互为相反数,x ,y 互为倒数,∴m +n =0,xy =1.∴原式=[4(m +n )-24]÷5-2(m +n )=(0-24)÷5-0=-245六、布置作业 巩固目标课后作业 见“学生用书”.。

人教版七年级数学上册教案 1.4 有理数的乘除法(3课时)

人教版七年级数学上册教案 1.4 有理数的乘除法(3课时)

1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则一、基本目标【知识与技能】理解有理数乘法的意义和乘法法则.【过程与方法】经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力.【情感态度与价值观】培养学生主动探索,积极思考的学习兴趣.二、重难点目标【教学重点】有理数的乘法法则及互为倒数的概念.【教学难点】有理数乘法中积的符号的确定.环节1自学提纲,生成问题【5 min阅读】阅读教材P28~P31的内容,完成下面练习.【3 min反馈】1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.2.乘积为1的两个数互为倒数.3.几个不是0的数相乘,当负因数的个数为偶数时,积是正数;当负因数的个数为奇数时,积是负数.4.几个数相乘,如果其中有一个因数是0,积等于0.5.计算下列各式.(1)6×(-9);(2)(-4)×6;(3)(-6)×(-1); (4)(-6)×0;(5)23×⎝⎛⎭⎫-94; (6)⎝⎛⎭⎫-13×14. 解:(1)原式=-54. (2)原式=-24. (3)原式=6. (4)原式=0. (5)原式=-32. (6)原式=-112. 6.-3的倒数是-13,0.5的倒数是2,-212的倒数是-25. 环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(+5)×(+3)=________;(+5)×(-3)=________;(-5)×(+3)=________;(-5)×(-3)=________;(+7)×0=________;7×(-4)=________;(-7)×4=________;(-7)×(-4)=________.【互动探索】(引发学生思考)根据有理数的计算法则进行计算。

人教版七年级数学上册第一章有理数1.4有理数的乘除法教案

人教版七年级数学上册第一章有理数1.4有理数的乘除法教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调同号异号相乘得正负和绝对值相乘的规则,以及除法的运算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘除法相关的实际问题,如购物时如何计算总价和找零。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过使用计数器等工具,演示有理数乘除法的基本原理。
其次,在讲授乘除混合运算时,我注意到部分学生对于运算顺序不够明确,容易出错。针对这个问题,我应该在课堂上加强练习,让学生多次进行类似的题目,形成条件反射。同时,强调使用括号来明确运算顺序,避免混淆。
此外,关于乘方概念的引入,我觉得可以更加贴近生活实际。比如,可以以故事形式讲述一个关于面积和体积的问题,让学生感受到乘方在生活中的应用,从而提高他们的学习兴趣。
三、教学难点与重点1.教学重点(1)有理数乘法法则:理解同号得正、异号得负的规律,掌握绝对值相乘的方法。
举例:2×3=6,-2×3=-6,-2×(-3)=6。
(2)有理数除法法则:理解同号得正、异号得负的规律,掌握绝对值相除的方法。
举例:6÷3=2,-6÷3=-2,-6÷(-3)=2。
(3)乘除混合运算:掌握先乘除后加减的运算顺序,能够正确进行混合运算。

人教版七年级数学上册 1.4有理数的乘除法教案

人教版七年级数学上册 1.4有理数的乘除法教案

1.4 有理数的乘除法一、教学目标1.了解有理数乘法,有理数除法的意义.2.掌握有理数乘法法则,有理数除法的法则,能熟练地进行有理数乘除,运算以及混合运算.二、教学重点和难点重点:应用法则正确地进行有理数乘除法运算.难点:两负数相乘,积的符号与两负数相加和的符号相混淆.三、知识结构四、导入引入新课:我们已经学习了有理数的加法运算和减法运算,今天我们开始有理数的乘除法运算。

在小学,我们学习了正数及零的乘法运算,引入负数后怎样进行有理数的乘法运算?五、名师解析知识点一:有理数乘法1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘都得0.2.有理数中仍有:乘积是1的两个数互为倒数.3.有理数乘法的交换律:两个数相乘,交换因数的位置,积相等.4.有理数乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.5.有理数乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.例1.(1)()39-⨯ (2)()122⎛⎫-⨯- ⎪⎝⎭例2. 用两种方法计算111+-12462⎛⎫⨯⎪⎝⎭ 解法一: 111326+-12=+-12=-1462121212⎛⎫⎛⎫⨯⨯⎪ ⎪⎝⎭⎝⎭解法二: 111111+-12=121212=-1462462⎛⎫⎛⎫⎛⎫⨯⨯+⨯-⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭巩固练习:1.某校学生数学竞赛共25道题目,每答对一题得4分,答错或不答一题扣1分,得75分要答对( )题.A .18B .19C .20D .21 2.计算(1)316163⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(2) 241255⨯⨯⨯(3)212347272⎛⎫-+-+⨯ ⎪⎝⎭ (4)11111112023456⎛⎫-+-+-⨯ ⎪⎝⎭知识点二:有理数乘法拓展1.如果两个有理数相乘的乘积为1,则称这两个有理数互为倒数.2.几个数相乘,有一个因数为0,积为0.3.几个不为0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负,当负因数有偶数个时,积为正. 例3.化简下列分数:(1)12134⨯ (2)4512--1245⎛⎫⨯ ⎪⎝⎭例4. 32021⨯⨯⨯⨯例5. 计算:(1)()5916--654⎛⎫⎛⎫⎛⎫-⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()41-56-54⎛⎫⨯⨯⨯ ⎪⎝⎭巩固练习: 1. 计算:(1)()()2780-⨯--=(2)()25⨯-=(3)()2.90.45⨯-=(4)1847⎛⎫⨯-= ⎪⎝⎭2. 计算:(1)()02010-3021-⨯⨯⨯ (2) ()()()⎪⎭⎫⎝⎛⨯+⨯⨯21-25.2-6-(3)()()()310.5181163-⨯-⨯⨯-⨯ (4) ()()54310.2565⎛⎫-⨯⨯-⨯- ⎪⎝⎭知识点三:有理数除法法则 有理数除法法则:1.两数相除,同号得正,异号得负,并把绝对值相除,零除以任何有个不等于零的数,都得零.2.零除以一个不为零的数仍为零,零不能做除数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 有理数的乘除法教案
1.4.1有理数的乘法
教学目标
1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.
2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力.
3.情感态度:经历探索有理数乘法法则及运算律的过程.
重点:有理数的乘法法则.
难点:有理数的乘法法则的理解及应用.
教学准备
本节课采用多媒体教学,能引起学生的兴趣,产生“要学的强烈愿望.教学设计的思路清晰、符合教学规律,学生在乐趣中学会了有理数的乘法.
本节课采用这种教学设计对学生理解和消化当堂课的知识点,起到了良好的教学效果.通过观察、实验、比较、概括,对提高学生分析问题和解决问题的能力有很大的突破.促进了学生自主学习的良好习惯和不断探究的思维空间.
运用现代化的教学手段,把图形的“静”变“动”,增强了直观性,初步培养想象能力,同时提高课堂教学的效率.这里,数形结合这一重要数学思想方法的应用起到变抽象为直观和化难为易的作用,对今后的数学学习有深远的影响.
教学过程:
一.情景导入、提出问题.
问题1:
森林里住着一只小甲虫豆豆,每天它都要离开家去寻找食物.这一天早晨豆豆以每分钟3米的速度向东爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢?相距多少米?(动画演示)
问题2:
第二天,豆豆又以每分钟3米的速度向西爬行2分钟到达觅食处,那么它现在位于家的位置的哪个方向呢 ?相距多少米?(动画演示)
2×3是小学学过的乘法,(-2)×3如何计算呢?这就是将要学习的有理数的乘法.
二.分析探索、问题解决
比较3×2=6,(-3)×2=-6这两个算式,有什么发现?
把一个因数换成它的相反数,所得的积是原来的积的相反数.
观察算式找规律
3×2 = 6 ; 3×(-2)= -6 ;
(-3)×(-2)=6 ;(-3)×2= -6 ;
同学们觉得两个有理数相乘的结果有没有规律呢?你能通过思考发它们的规律吗?
学生活动:同桌之间,前后桌之间互相讨论.(学生不可能很圆满的把法则总结全面,此时应尽可能的让学生互相补充,相互修正让学生自己来完成.
教师引导学生思考 5×0,-5×0, 0×(-2)的结果是多少?
三.知识理顺、得出结论.
教师出示有理数乘法法则(板书):
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.
师:在进行有理数乘法运算时,要注意两个方面的问题:一.确定积的符号,二.积的绝对值是两个因数绝对值的积.
教法说明:教师提出尝试性问题,引导学生思考----有理数乘法的运算规律,学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结能力和口头表达能力,又使学生法则记得牢,领会的深刻.
四.应用反思、拓展创新
练习:
1.确定下列两数的积的符号:
(1)5×(-3);(2)(-4)×6 ;
(3)(-7)×(-9);(4)0.5×0.7 .
2.计算:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9 ;(4) 6×(-9);
(5)(-6)×0 ;(6) 0×(-6).
教法说明:有理数的乘法,关键是确定积的符号.为此,先编排1题进行练习,2题的目的是巩固有理数的乘法法则.
例1 计算:
(1)(-1/2)×1/4;
(2)(-0.3)×10/7;
(3)3/2×(-2/3).
教法说明师生共同完成例题,教师板书再做示范,从总培养学生良好的学习习惯和严谨的作风.
同学们自己编两道有理数乘法的题目,同桌交换解答.
教法说明自编题活跃了课堂气氛,以便掌握学生获取知识的反馈信息,对存在问题及时补救.此外,通过自编题,来培养学生的发展思维能力,以及独立思考勇于创新的良好习惯.
五、回顾交流、纳入体系学生交流总结以后,教师提出以下问题:
想一想:
(1)三个或三个以上不等于零的有理数相乘时,积的符号如何决定?
(2)在有理数运算中,乘法的交换律、结合率以及分配率还成立吗?
做一做:课本47页(做一做)、课本48页(随堂练习).
六、布置作业:课本48页习题2.11.
1.4.2 有理数的除法。

相关文档
最新文档