黑龙江省高三上学期数学10月月考试卷(I)卷
黑龙江省龙东联盟2024-2025学年高三上学期10月月考试题 数学 PDF版含解析

高三年级10月考数学参考答案一、单项选择题 二、多项选择题 1 2 3 4 5 6 7 8 B C C D A A DA 三、填空题12.0 13.π 14. 4+四、解答题15.(本小题满分13分)解:(1)由223n S n n =+得当1n =时,115a S ==,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+所以41n a n =+由34log 141n n a b n =+=+,所以3nn b =(2)由(1)知(41)3n n n a b n =+125393(41)3nn T n =⨯+⨯+++ ①23135393(43)3(41)3n n n T n n +=⨯+⨯++-++ ② ①-②得212154343(41)3n n n T n +-=+⨯++⨯-+⨯ 119(132154(41)313n n n T n -+--=+-+⨯-),所以131(2322n n T n +=--⨯.16.(本小题满分15分)解:(1)由正弦定理得222sin C sin sin sinA B A B =+222a b c ⇒+-=, 由余弦定理得222cos 2a b c C ab +-==,因为(0)C π∈,,所以4C π=, 因为sin B C =所以sin B =,因为(02B π∈,,所以3B π=(2)512A B C ππ=--=,sin sin()A B C =+=由正弦定理sin sin sin a b c A B C ==得a==,b =由21sin 12ABC S ab C ===+△, 得2c =. 17. (本小题满分15分) 解:(1)因为()ln f x x x =-,所以()()ln a a g x f x x x x x =-=--,0x >,,2221()1a x x a g x x x x -++'=-+=,令2211()(24m x x x a x a =-++=--++ ①当14a -≤时,()0g x '≤恒成立,此时()g x 在(0)+∞,上单调递减; ②当104a -<<时,()0m x >x<<所以()g x 在(0上单调递减,在上单调递增,在)+∞上单调递减; ③当0a >时,()0m x >0x<<< 所以()g x 在(0上单调递增,在)+∞上单调递减; 9 10 11AD ABD BC综上所述: 当14a -≤时,()g x 的单调递减区间为(0)+∞,,无单调递增区间; 当104a -<<时, ()g x的单调递减区间为(0和)+∞单调递增区间为;当0a >时,()g x的单调递增区间为(0,单调递减区间为)+∞;(2)由()ln f x x x =-,1()xf x x -'=,由()0f x '>得01x <<,()0f x '<得1x >所以()f x 在(01),上单调递增,在(1)+∞,上单调递减,所以max ()(1)1f x f ==-,所以min |()|1f x =,设ln 1()2x g x x =+,则21ln ()xg x x -'=由()0g x '>得0e x <<,由()0g x '<得e x >,所以()g x 在(0e),上单调递增, 在(e )+∞,上单调递减,所以max ()g x =(e)g 111e 2=+<所以max min ()|()|g x f x <,所以ln 1|()|2x f x x >+对任意的(0)+∞,恒成立.18. (本小题满分17分)解:(1)(0)1()e (0)1x g g x g ''==-=,所以()g x 在(0(0))g ,处的切线方程为:(11y x =+(1)1h b c =+-,2()1(1)1bh x h b x ''=-=-,,所以()h x 在(1(1))h ,处切线方程为:(1)2y b x b c =-+-所以2111b c b -=-=-,即1(1)c a =-≥; 所以c 的最小值为1(2)()e x g x =,则()e x g x '= 所以ln (02a x ∈,时ln ()0()2a g x x '<∈+∞,,时()0g x '> 所以()g x 在ln (02a ,上单调递减,在ln ()2a +∞,上单调递增,故min ln ln ()(22a a g x g ==- ()b h x x c x =+-,则()h x在(0上单调递减,在)+∞上单调递增 令()0h x =,即20x cx b -+=,24c b ∆=- 1.0∆>即c >(0+∞,)上()h x 的两个零点为12x x ,,同时它们恰好为()g x 的零点. 12()0()0ln 102g x g x a ⎧⎪=⎪∴=⎨⎪⎪-<⎩即12122e e e x x a ⎧=⎪⎪=⎨⎪>⎪⎩又1212x x c x x b +==,,则2e 1e c ab a ⎧=>⎪⎨>⎪⎩,此时 1ln ln e e e a a a b a a a b a -++--=>,令1ln y a a a =-+,则21110y a a '=--<,y ∴递减且a →+∞时y →-∞,则2212e e e (0e )y -+∈,,故2212e e e e a b a -+->. 2.0∆≤即0c <≤在(0)+∞,上()0h x ≥,此时只需min ()0g x ≥即21e a ≤≤即可. 此时,e e e b a b a a a -⋅=,令()e a a k a =,则10e a a k -'=≤,即k 在2[1e ],递减,22e 1[e e k -∴∈,而e 1b >,故22e e e a b a -->. 综上所述,e a b a -的取值范围为22e (e )-+∞, 19.(本小题满分17分) (1)设{}n a 的公差为d ,32318S a ==所以26a =,323a a d -==,3n a n =; 由214b b q ==,313(1)141bq T q -==-,所以22520q q -+=,2q =或12q =(舍)所以2n n b =. 1132a b ==,所以1223c c ==,;2264a b ==,所以3446c c ==,3398a b ==,所以5689c c ==,;441216a b ==,所以7812c c =,16=.3574812c c c +=+==,所以1k =.(2)221233(363)(222)222nn n n n n n M S T n ++=+=+++++++=+- 231nn M b =-,即2133223212n n n n +++-=⋅-所以233222n n n +=⋅+,当1n =时符合,令233222n n r n n =+-⋅-1234081826r r r r ====,,,,524r =,64r =-16622n n n r r n +-=+-⋅当4n ≥时,10n n r r +-<所以123456r r r r r r <<<>>> 所以有且只有1n =符合.(3)由2122122(36)(1)n n n n n n n n a b d c c c c -+++=-得 1(96)2(1)(3)2(33)2n nn n n n d n n ++=-+111(1)(32(33)2n n n n n +=-++ 22221111()(32(313)2(313)2(323)2n n E +=-+++⨯⨯+⨯+⨯+) 22111()3(2)23(21)2n n n n +-+++ 21116(63)2n n +=-++16>-. .试题参考答案一.单选题1.【解析】选B.{|2}{|12}U A x x A B x x ==< ≤,≤ð,故选B.2. 【解析】选C.0a <且0b <⇒0a b +<且0ab >,反之也成立,故选C.3. 【解析】选C.12(43i)(i)=(4-3)+(4+3)i z z a a a ⋅=++为实数,所以430a +=所以43a =-,故选C. 4. 【解析】选D.因为|||2|-=+ab a b 平方得,21||2⋅=-a b b ,a 在b 方向上的投影向量为1||||2⋅⋅=-a b b b b b ,故选D. 5. 【解析】选A.53357S a a =⇒=,453623a a a a +=+=,所以616a =,所以63363a a d -==-,故选A.6. 【解析】选A.由2sin cos αα+=两边平方得2254sin 4sin cos cos 2αααα++=,所以4sin cos αα233cos 2α-=-所以2332sin 2(2cos 1)cos 222ααα=-=所以3tan 24α=.故选A. 7. 【解析】选D.因为ln()ln ln ln ln 3333xy x y x y +==⋅故选D.8. 【解析】选A.设零点为(01]t ∈,,则ln 0at b t ++=,()a b ,在直线ln 0xt y t ++=上, 22a b +的几何意义为点()a b ,到原点距离的平方,其最小值为原点到直线ln 0xt y t ++=的距离d 的平方,222ln 1t d t =+, 设22ln ()1t g t t =+,22222ln (12ln )()0(1)t t t t g t t t +-'=<+所以()g t 在(01],单调递减,所以min ()(1)0g t g ==.故选A.二.多选题9.【解析】选AD.|||2i ||2|z z y y -==知A 对C 错,222222i z x xy y x y =+-≠+,故B 错,||||||z x y =+成立,故选AD.10. 【解析】选ABD.由21((0)22n d d S n a n d =+-≠及二次函数的性质知A B ,为真,对D 知100a d <<,从而{}n S 是递减数列,对C :1258--- ,,,,满足{}n S 是递减数列,但0n S <不恒成立,故选ABD .11. 【解析】选BC.对A :(0)1()1(0)2f f f π===,A 错,对B ,令sin x t =,21()sin sin 1f x x x =-++,210t t -++=则sin [02]t x x π==∈,,,有两个实根.B 对.对C :232()sin cos f x x x =+,22()2sin cos 3cos sin f x x x x x '=-,令2()0f x '=即2cos sin 203x x ==,,2cos 3x =的两个根为123(0)(2)22x x πππ∈∈,,,,sin 20x =的根为30222ππππ,,,,,所以2()f x 的极小值点为12x x π,,,C 对.对D :22(2)()f x f x π+=,所以2()f x 为周期函数,但232()sin cos f x x x =+,232()sin cos f x x x π+=-,22()()f x f x π≠+,D 错.三.填空题12.【解析】0.()()f x f x -=特值()()f a f a -=即cos cos |2|a a a =-所以0a =.13.【解析】π.21cos 2cos 2x x +=与cos(2)4x π-的最小正周期相同,14.【解析】4+解1:设|+a b |x =,||-a b y θ=<,,a b >=,254cos [13]x x θ=+∈,,,254cos [13]y y θ=-∈,,且2210x y +=,设x y ϕϕ==,,其中sin ϕ,则)4x y πϕ+=+,当4πϕ=,x y ==时x y +取得最大值当cos sin ϕϕ==即3x =,1y =时x y +取得最小值4,所以最大值与最小值之和为4+.解2:换元后,利用平行直线系和圆弧的位置关系四.解答题15.解:(1)由223n S n n =+得当1n =时,115a S ==,…………………………… …1分当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+……3分所以41n a n =+…………………………………………………………… ……4分由34log 141n n a b n =+=+,所以3n n b =………………………………6分(2)由(1)知(41)3n n n a b n =+ …………………………………………………7分125393(41)3n n T n =⨯+⨯+++ ①23135393(43)3(41)3n n n T n n +=⨯+⨯++-++ ② ……………9分 ①-②得212154343(41)3n n n T n +-=+⨯++⨯-+⨯ ……………………10分 119(132154(41)313n n n T n -+--=+-+⨯-), 所以131(2322n n T n +=--⨯. …………………………………………13分16.解:(1)因为222sin C sin sin sin A B A B =+222a b c ⇒+-=,…2分由余弦定理得222cos 2a b c C ab +-==, (0)C π∈,,所以4C π=, …4分因为sin B C =所以sin B =, ………………………………………6分 因为(0)2B π∈,,所以3B π= …………………………………………………7分(2)512A B C ππ=--= ……………………………………………………………8分sin sin()A B C =+=…………………………………………………10分sin sin sin a b c A B C ==得a ==,b = ………12分由21sin 12ABC S ab C ===+△, …………………………14分得2c =. ……………………………………………………………………15分 (17) 解:(1)因为()ln f x x x =-,所以()()ln a a g x f x x x x x=-=--,0x >,2221()1a x x a g x x x x -++'=-+=, ………………………………………………………2分 令2211()(24m x x x a x a =-++=--++①当14a -≤时,()0g x '≤恒成立,此时()g x 在(0)+∞,上单调递减;②当104a -<<时,()0m x >x <<所以()g x 在(0上单调递减,在上单调递增,在)+∞上单调递减;③当0a >时,()0m x >0x <<<所以()g x 在(0上单调递增,在)+∞上单调递减;……5分 综上所述: 当14a -≤时,()g x 的单调递减区间为(0)+∞,,无单调递增区间;当104a -<<时, ()g x 的单调递减区间为(0和)+∞单调递增区间为;当0a >时,()g x 的单调递增区间为(0,单调递减区间为)+∞;……………………………………………………………………7分 (2)由()ln f x x x =-,1()x f x x-'=,由()0f x '>得01x <<,()0f x '<得1x > 所以()f x 在(01),上单调递增,在(1)+∞,上单调递减, 所以max ()(1)1f x f ==-,所以min |()|1f x =,………………………………………10分 设ln 1()2x g x x =+,则21ln ()x g x x-'= 由()0g x '>得0e x <<,由()0g x '<得e x >,所以()g x 在(0e),上单调递增, 在(e )+∞,上单调递减,所以max ()g x =(e)g 111e 2=+< 所以max min ()|()|g x f x <,…………………………………………………………………14分 所以ln 1|()|2x f x x >+对任意的(0)+∞,恒成立. ……………………………………15分18. 解:(1)(0)1()e (0)1x g g x g ''==-=-,所以()g x 在(0(0))g ,处的切线方程为:(11y x =+………………………………………………………………2分(1)1h b c =+-,2()1(1)1b h x h b x ''=-=-,,所以()h x 在(1(1))h ,处切线方程为:(1)2y b x b c =-+-所以21b c -=,11b -=6分即1(1)c a =-≥所以c 的最小值为1. …………………………………………7分(2)()e x g x =-,则()e x g x '=- 当ln (0)2a x ∈,时ln ()0()2a g x x '<∈+∞,,时()0g x '> 所以()g x 在ln (0)2a ,上单调递减,在ln ()2a +∞,上单调递增,故min ln ln ()(22a a g x g ==- ………………………………………………………9分()b h x x c x =+-,则()h x 在(0上单调递减,在)+∞上单调递增 令()0h x =,即20x cx b -+=,24c b ∆=-1.0∆>即c >(0+∞,)上()h x 的两个零点为12x x ,,同时它们恰好为()g x 的零点.12()0()0ln 102g x g x a ⎧⎪=⎪∴=⎨⎪⎪-<⎩即12122e e e x x a ⎧=⎪⎪=⎨⎪>⎪⎩又1212x x c x x b +==,,则2e 1e c ab a ⎧=>⎪⎨>⎪⎩,此时 …11分 1ln ln e e e a a a b a a a b a-++--=>,令1ln y a a a =-+,则21110y a a'=--<,y ∴递减且a →+∞时y →-∞,则2212e e e (0e )y -+∈,,故2212e e e e a b a -+->.…………………………………14分2.0∆≤即0c <≤时,在(0)+∞,上()0h x ≥,此时只需min ()0g x ≥即21e a ≤≤即可. 此时,e e e b a ba aa -⋅=,令()e a a k a =,则10e a a k -'=≤,即k 在2[1e ],递减,22e 1[e]e k -∴∈,而e 1b >,故22e e e a b a-->.……………………………………………………………………16分 综上所述,e a b a-的取值范围为22e (e )-+∞,………………………………………………17分(19)解:(1)设{}n a 的公差为d ,32318S a ==所以26a =,323a a d -==,3n a n =; ……………………………2分由214b b q ==,313(1)141b q T q-==-,所以22520q q -+=,2q =或12q =(舍)所以2nn b =. ……………………………………………………………………4分 1132a b ==,所以1223c c ==,;2264a b ==,所以3446c c ==, 3398a b ==,所以5689c c ==,;441216a b ==,所以7812c c =,16=. 3574812c c c +=+==,所以1k =. ………………………………………5分(2)221233(363)(222)222n n nn n n n M S T n ++=+=+++++++=+- …7分231n n M b =-,即2133223212n n n n +++-=⋅-所以233222n n n +=⋅+,当1n =时符合, …………………………………………………8分 令233222nn r n n =+-⋅- 1234081826r r r r ====,,,,524r =,64r =-16622n n n r r n +-=+-⋅当4n ≥,10n n r r +-<所以123456r r r r r r <<<>>>所以有且只有1n =符合. …………………………………………………………11分(3)由2122122(36)(1)n n n n n n n n a b d c c c c -+++=-得 1(96)2(1)(3)2(33)2n nn n n n d n n ++=-+111(1)(32(33)2n n n n n +=-++ ………………13分 22231111((32(313)2(313)2(323)2n E =-+++⨯⨯+⨯+⨯+) 22111()3(2)23(21)2n n n n +-+++ ……………………………………15分 21116(63)2n n +=-++16>-.………………………………………………17分。
黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案

哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
数学丨黑龙江省龙东联盟2025届高三10月月考数学试卷及答案

试题参考答案一.单选题1.【解析】选B.{|2}{|12}U A x x A B x x ==< ≤,≤ð,故选B.2.【解析】选C.0a <且0b <⇒0a b +<且0ab >,反之也成立,故选C.3.【解析】选C.12(43i)(i)=(4-3)+(4+3)i z z a a a ⋅=++为实数,所以430a +=所以43a =-,故选C.4.【解析】选D.因为|||2|-=+ab a b 平方得,21||2⋅=-a b b ,a 在b 方向上的投影向量为1||||2⋅⋅=-a b b b b b ,故选D.5.【解析】选A.53357S a a =⇒=,453623a a a a +=+=,所以616a =,所以63363a a d -==-,故选A. 6.【解析】选A.由102sin cos 2αα+=两边平方得2254sin 4sin cos cos 2αααα++=,所以4sin cos αα233cos 2α-=-所以2332sin 2(2cos 1)222ααα=-=所以3tan 24α=.故选A.7.【解析】选D.因为ln()ln ln ln ln 3333xy x y x y +==⋅故选D.8.【解析】选A.设零点为(01]t ∈,,则ln 0at b t ++=,()a b ,在直线ln 0xt y t ++=上,22a b +的几何意义为点()a b ,到原点距离的平方,其最小值为原点到直线ln 0xt y t ++=的距离d 的平方,222ln 1t d t =+,设22ln ()1t g t t =+,22222ln (12ln )()0(1)t t t t g t t t +-'=<+所以()g t 在(01],单调递减,所以min ()(1)0g t g ==.故选A.二.多选题9.【解析】选AD.|||2i ||2|z z y y -==知A 对C 错,222222i z x xy y x y =+-≠+,故B 错,||||||z x y =+成立,故选AD.10.【解析】选ABD.由21((0)22n d d S n a n d =+-≠及二次函数的性质知A B ,为真,对D 知100a d <<,从而{}n S 是递减数列,对C :1258--- ,,,,满足{}n S 是递减数列,但0n S <不恒成立,故选ABD .11.【解析】选BC.对A :(0)1()1(0)2f f f π===,A 错,对B ,令sin x t =,21()sin sin 1f x x x =-++,210t t -++=则1sin [02]2t x x π==∈,,,有两个实根.B 对.对C :232()sin cos f x x x =+,22()2sin cos 3cos sin f x x x x x '=-,令2()0f x '=即2cos sin 203x x ==,,2cos 3x =的两个根为123(0(2)22x x πππ∈∈,,,,sin 20x =的根为30222ππππ,,,,,所以2()f x 的极小值点为12x x π,,,C 对.对D :22(2)()f x f x π+=,所以2()f x 为周期函数,但232()sin cos f x x x =+,232()sin cos f x x x π+=-,22()()f x f x π≠+,D 错.三.填空题12.【解析】0.()()f x f x -=特值()()f a f a -=即cos cos |2|a a a =-所以0a =.13.【解析】π.21cos 2cos 2x x +=与cos(2)4x π-的最小正周期相同,14.【解析】4+解1:设|+a b |x =,||-a b y θ=<,,a b >=,254cos [13]x x θ=+∈,,,254cos [13]y y θ=-∈,,且2210x y +=,设x y ϕϕ==,,其中sinϕ,则)4x y πϕ+=+,当4πϕ=,x y ==x y +取得最大值cos sinϕϕ==即3x =,1y =时x y +取得最小值4,所以最大值与最小值之和为4+解2:换元后,利用平行直线系和圆弧的位置关系四.解答题15.解:(1)由223n S n n =+得当1n =时,115a S ==,………………………………1分当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+……3分所以41n a n =+…………………………………………………………………4分由34log 141n n a b n =+=+,所以3n n b =………………………………6分(2)由(1)知(41)3n n n a b n =+…………………………………………………7分125393(41)3n n T n =⨯+⨯+++ ①23135393(43)3(41)3n n n T n n +=⨯+⨯++-++ ②……………9分①-②得212154343(41)3n n n T n +-=+⨯++⨯-+⨯ ……………………10分119(132154(41)313n n n T n -+--=+-+⨯-),所以131(2322n n T n +=--⨯.…………………………………………13分16.解:(1)因为222sin C sin sin sin A B A B =+-222a b c ⇒+-=,…2分由余弦定理得2222cos 22a b c C ab +-==,(0)C π∈,,所以4C π=,…4分因为6sin 2B C =所以3sin 2B =,………………………………………6分因为(0)2B π∈,,所以3B π=…………………………………………………7分(2)512A B C ππ=--=……………………………………………………………8分sin sin()A B C =+624+=…………………………………………………10分sin sin sin a b c A B C ==得312a ==,62b c =………12分由213(31)sin 128ABC S ab C +===△,…………………………14分得2833c =.……………………………………………………………………15分(17)解:(1)因为()ln f x x x =-,所以()()ln a a g x f x x x x x =-=--,0x >,2221()1a x x a g x x x x-++'=-+=,………………………………………………………2分令2211()()24m x x x a x a =-++=--++①当14a -≤时,()0g x '≤恒成立,此时()g x 在(0)+∞,上单调递减;②当104a -<<时,()0m x >可得11411422x -+<<所以()g x 在1(0)2-,上单调递减,在11()22+,上单调递增,在114()2++∞,上单调递减;③当0a >时,()0m x >,可得114114022x -+<<<所以()g x 在114(0)2,上单调递增,在114()2+∞,上单调递减;……5分综上所述:当14a -≤时,()g x 的单调递减区间为(0)+∞,,无单调递增区间;当104a -<<时,()g x 的单调递减区间为114(0)2,和114()2+∞,单调递增区间为11()22+,;当0a >时,()g x 的单调递增区间为1(0)2,,单调递减区间为114()2++∞,;……………………………………………………………………7分(2)由()ln f x x x =-,1()x f x x-'=,由()0f x '>得01x <<,()0f x '<得1x >所以()f x 在(01),上单调递增,在(1)+∞,上单调递减,所以max ()(1)1f x f ==-,所以min |()|1f x =,………………………………………10分设ln 1()2x g x x =+,则21ln ()x g x x -'=由()0g x '>得0e x <<,由()0g x '<得e x >,所以()g x 在(0e),上单调递增,在(e )+∞,上单调递减,所以max ()g x =(e)g 111e 2=+<所以max min ()|()|g x f x <,…………………………………………………………………14分所以ln 1|()|2x f x x >+对任意的(0)+∞,恒成立.……………………………………15分18.解:(1)(0)1()e (0)1x g g x g ''==-=-,所以()g x 在(0(0))g ,处的切线方程为:(11y x =-+………………………………………………………………2分(1)1h b c =+-,2()1(1)1b h x h b x''=-=-,,所以()h x 在(1(1))h ,处切线方程为:(1)2y b x b c =-+-所以21b c -=,11b -=-6分即1(1)c a =≥所以c 的最小值为1.…………………………………………7分(2)()e x g x =-,则()e x g x '=-当ln (0)2a x ∈,时ln ()0()2a g x x '<∈+∞,,时()0g x '>所以()g x 在ln (0)2a ,上单调递减,在ln ()2a +∞,上单调递增,故min ln ln ()())22a a g x g ==-………………………………………………………9分()b h x x cx =+-,则()h x 在(0上单调递减,在)+∞上单调递增令()0h x =,即20x cx b -+=,24c b∆=-1.0∆>即c >(0+∞,)上()h x 的两个零点为12x x ,,同时它们恰好为()g x 的零点.12()0()0ln 102g x g x a ⎧⎪=⎪∴=⎨⎪⎪-<⎩即12122e e e x x a ⎧=⎪⎪=⎨⎪>⎪⎩又1212x x c x x b +==,,则2e 1e c ab a ⎧=>⎪⎨>⎪⎩,此时…11分1ln ln e e e a a a b a a a b a-++--=>,令1ln y a a a =-+,则21110y a a'=--<,y ∴递减且a →+∞时y →-∞,则2212e e e (0e )y -+∈,,故2212e e e e a b a -+->.…………………………………14分2.0∆≤即0c <≤时,在(0)+∞,上()0h x ≥,此时只需min ()0g x ≥即21e a ≤≤即可.此时,e e eb a b a aa -⋅=,令()e a a k a =,则10e a a k -'=≤,即k 在2[1e ],递减,22e 1[e ]e k -∴∈,而e 1b >,故22e e e a b a -->.……………………………………………………………………16分综上所述,e a b a -的取值范围为22e (e )-+∞,………………………………………………17分(19)解:(1)设{}n a 的公差为d ,32318S a ==所以26a =,323a a d -==,3n a n =;……………………………2分由214b b q ==,313(1)141b q T q-==-,所以22520q q -+=,2q =或12q =(舍)所以2n n b =.……………………………………………………………………4分1132a b ==,所以1223c c ==,;2264a b ==,所以3446c c ==,3398a b ==,所以5689c c ==,;441216a b ==,所以7812c c =,16=.3574812c c c +=+==,所以1k =.………………………………………5分(2)221233(363)(222)222n n nn n n n M S T n ++=+=+++++++=+- …7分7231n n M b =-,即2133223212n n n n +++-=⋅-所以233222n n n +=⋅+,当1n =时符合,…………………………………………………8分令233222n n r n n =+-⋅-1234081826r r r r ====,,,,524r =,64r =-16622nn n r r n +-=+-⋅当4n ≥,10n n r r +-<所以123456r r r r r r <<<>>>所以有且只有1n =符合.…………………………………………………………11分(3)由2122122(36)(1)n n n n n n n n a b d c c c c -+++=-得1(96)2(1)(3)2(33)2n nn n n n d n n ++=-+111(1)()32(33)2n n n n n +=-++………………13分22231111()(32(313)2(313)2(323)2n E =-+++⨯⨯+⨯+⨯+)22111()3(2)23(21)2n n n n +-+++ ……………………………………15分21116(63)2n n +=-++16>-.………………………………………………17分。
黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}2,3,5,7,8,9A =,{}31,B x x k k ==-∈Z ,则A B =I ( ) A .{}5,8B .{}7C .{}2,5,8D .{}3,5,7,92.等差数列{}()*n a n ∈N 中,274110,2a a a a =-=,则7a =( )A .40B .30C .20D .103.已知函数()e e 2x xa f x x -+=为偶函数,则a =( )A .2B .1C .0D .1-4.已知α是第二象限的角,(,8)P x 为其终边上的一点,且4sin 5α=,则x =( ) A .6-B .6±C .323±D .323-5.已知()311sin ,25tan tan αβαβ+=-+=,则sin sin αβ=( ) A .310-B .15C .15-D .3106.已知数列{}n a 的前n 项和为n S .若125n n a a n ++=+,11a =,则8S =( ) A .48B .50C .52D .547.正整数1,2,3,,n L 的倒数的和111123n++++L 已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式,只是得到了它的近似公式,当n 很大时,1111ln 23n nγ++++≈+L .其中γ称为欧拉-马歇罗尼常数,0.577215664901γ≈L ,至今为止都不确定γ是有理数还是无理数.设[]x 表示不超过x 的最大整数,用上式计算1111232024⎡⎤++++⎢⎥⎣⎦L 的值为( ) (参考数据:ln 20.69≈,ln3 1.10≈,ln10 2.30≈) A .10B .9C .8D .78.数列 a n 的前n 项和为n S ,满足{}111,3,2n n n a a d a +-=∈=,则10S 可能的不同取值的个数为( ) A .45B .46C .90D .91二、多选题9.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则下列结论成立的是( )A .()f x 的最小正周期为πB .曲线()y f x =关于直线π2x =对称C .点π,012⎛⎫- ⎪⎝⎭是曲线()y f x =的对称中心 D .()f x 在(0,π)上单调递增10.下列命题正确的( )A .ABC V 中, 角,,ABC 的对边分别为,,a b c ,若cos =c b A ,则ABC V 一定是直角三角形B .在ABC V 中, 角,,A B C 的对边分别为,,a b c ,4,30a c A ===︒时,有两解 C .命题“()00,x ∞∃∈+,00ln 1x x =-”的否定是“()0,,ln 1x x x ∞∀∉+=-”D .设函数()()()24f x x a x =--定义域为R ,若关于x 的不等式()0f x ≥的解集为{|4x x ≥或1}x =,则点()2,2-是曲线y =f x 的对称中心11.如图,某旅游部门计划在湖中心Q 处建一游览亭,打造一条三角形DEQ 游览路线.已知,AB BC 是湖岸上的两条甬路,120,0.3km,0.5km,60ABC BD BE DQE ∠=︒==∠=︒(观光亭Q 视为一点,游览路线、甬路的宽度忽略不计),则( )A .0.7km DE =B .当45DEQ ∠=︒时,DQ =C .DEQ V 2D .游览路线DQ QE +最长为1.4km三、填空题12.已知函数()ln f x x x =,角θ为函数()f x 在点(e,(e))f 处的切线的倾斜角,则sin 2cos sin cos θθθθ+=-.13.等差数列{}n a 的前n 项和记为n S ,已知14733a a a ++=,25827a a a ++=,若存在正数k ,使得对任意N*n ∈,都有n k S S ≤恒成立,则k 的值为. 14.设a b c ,,是正实数, 且abc a c b ++=,则222111111a b c -++++的最大值为.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为cos π,,,2sin cos 6A a b c C B ⎛⎫=- ⎪⎝⎭. (1)求B ;(2)若ABC VAC 边上的高为1,求ABC V 的周长.16.已知数列{}n a ,{}n b 中,14a =,12b =-,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知函数()2cos 2cos 1f x x x x =-+. (1)若π2π,123x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若关于x 的方程()0f x a -=有三个连续的实数根1x ,2x ,3x ,且123x x x<<,31223x x x +=,求a 的值.18.已知函数()sin ln(1),R f x x x ax a =++-∈.(1)当0a =时, 求()f x 在区间()1,π-内极值点的个数; (2)若 ()0f x ≤恒成立,求a 的值; (3)求证:2*1121sin2ln ln 2,N 11ni n n n i n =+-<-∈--∑. 19.对于数列{}n a ,若存在常数T ,*00)(,N n T n ∈,使得对任意的正整数0n n ≥,恒有n T na a +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.当01n =时,称数列{}n a 为纯周期数列;当02n ≥时,称数列{}n a 为混周期数列.记[]x 为不超过x 的最大整数,设各项均为正整数的数列{}n a 满足:[]21log ,212,2n nnn a n n a a a a a +⎧⎪⎪=⎨-⎪+⎪⎩为偶数为奇数. (1)若对任意正整数n 都有1n a ≠,请写出三个满足条件的1a 的值; (2)若数列{}n a 是常数列,请写出满足条件的1a 的表达式,并说明理由; (3)证明:不论1a 为何值,总存在*,N ∈m n 使得21m n a =-.。
2023-2024学年黑龙江省哈尔滨市高一上学期10月月考数学质量检测模拟试题(含解析)

2023-2024学年黑龙江省哈尔滨市高一上册10月月考数学试题一、单选题1.若集合{}0,1,2A =,则下列选项不正确的是()A .A ∅⊆B .{}0,1A⊆C .{}0,1,2A⊆D .{}0,1,2A【正确答案】D【分析】根据集合与集合的包含关系逐项判断可得出合适的选项.【详解】因为{}0,1,2A =,则A ∅⊆,{}0,1A ⊆,{}0,1,2A ⊆,ABC 对,D 错.故选:D.2.正确表示图中阴影部分的是()A .U AB ⋃ðB .U UA B痧C .()U A B ðD .()U A B ⋂ð【正确答案】C根据Venn 图直接写出图中阴影部的正确表示即可.【详解】解:由题意图中阴影部分:()U A B ð故选:C本题考查集合运算的Venn 图表示,是基础题.3.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过130cm .设携带品外部尺寸长、宽、高分别为,,a b c (单位:cm ),这个规定用数学关系式表示为().A .130a b c ++<B .130a b c ++>C .130a b c ++≤D .130a b c ++≥【正确答案】C根据长、宽、高的和不超过130cm 可直接得到关系式.【详解】 长、宽、高之和不超过130cm ,130a b c ∴++≤.故选.C4.已知方程210x x +-=的两根分别为1x 、2x ,则1211x x +=()A .12B .1CD【正确答案】B【分析】利用韦达定理计算可得结果.【详解】由韦达定理可得12121x x x x +==-,因此,121212111x x x x x x ++==.故选:B.5.下列四组函数中,表示同一个函数的一组是()A.,y x u =B.2y s ==C .21,11x y m n x -==+-D.y y ==【正确答案】A【分析】函数的三要素:定义域,对应法则和值域;函数的三要素相同,则为同一个函数,判断函数的三要素即可求解.【详解】对于A ,y x =和u =R ,对应关系也相同,是同一个函数,故选项A 正确;对于B,函数y =R,函数2s =的定义域为[0,)+∞,定义域不同,不是同一个函数,故选项B 错误;对于C ,函数211x y x -=-的定义域为{|1}x x ≠,函数1m n =+的定义域为R ,定义域不同,不是同一个函数,故选项C 错误;对于D,函数y =的定义域为{|1}x x ≥,函数y =(,1][1,)∞∞--⋃+,定义域不同,不是同一个函数,故选项D 错误,故选.A6.已知集合1,Z 44k M x x k ⎧⎫==+∈⎨⎬⎩⎭,集合1,Z 84k N x x k ⎧⎫==-∈⎨⎬⎩⎭,则()A .M N ⋂=∅B .M N⊆C .N M⊆D .M N M⋃=【正确答案】B【分析】先分析集合M 、N ,得到M N ⊆,再对选项逐个分析判断.【详解】()()111,Z 1,Z 22,Z 4448k M x x k x x k k x x k k ⎧⎫⎧⎫⎧⎫==+∈==+∈==+∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,()11,Z 2,Z 848k N x x k x x k k ⎧⎫⎧⎫==-∈==-∈⎨⎬⎨⎬⎩⎭⎩⎭,因为22k +可以表示偶数,列举出为{2,0,2,4,6}- ,而2k -可以表示全部整数,所以M N ⊆.对于A :M N M ⋂=,故A 错误;对于B ,C :M N ⊆,故B 正确、C 错误;对于D :M N N ⋃=,故D 错误.故选:B .7.已知0x >,0y >,且211x y+=,若2x y m +>恒成立,则实数m 的取值范围是()A .(),9-∞B .[)7,+∞C .[)9,+∞D .(),7-∞【正确答案】A【分析】将2x y +与21x y+相乘,展开后利用基本不等式可求得2x y +的最小值,即可求得m 的取值范围.【详解】因为0x >,0y >,且211x y +=,则()21222559x y x y x y y x ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当3x y ==时,等号成立,即2x y +的最小值为9,因为2x y m +>恒成立,则9m <.故选:A.8.已知不等式220ax bx +-<的解集为{}12x x -<<,则不等式()2130ax b x +-->的解集为()A .RB .∅C .{}13x x -<<D .{1x x <-或}3x >【正确答案】D【分析】根据二次不等式的解集与系数的关系可得,a b ,再求解不等式()2130ax b x +-->即可.【详解】因为不等式220ax bx +-<的解集为{}12x x -<<,故0a >,且=1x -与2x =为方程220ax bx +-=的两根.故12212ba a⎧-=-+⎪⎪⎨⎪-=-⨯⎪⎩,解得11b a =-⎧⎨=⎩,故不等式()2130ax b x +-->,即2230x x -->,故()()310x x -+>,解得1x <-或3x >.故选:D 9.已知110a b<<,则下列不等式正确的是()A .22ac bc >B .11a b a b->-C .a a b b<D .33a b <【正确答案】B【分析】利用不等式的基本性质可得出0b a <<,利用特殊值法可判断A 选项;利用作差法可判断D 选项.【详解】因为110a b<<,则a<0,0b <,由不等式的基本性质可得0b a <<.对于A 选项,当0c =时,则22ac bc =,A 错;对于B 选项,()()()111110a b ab a b a b a b b a ab -+⎛⎫⎛⎫⎛⎫---=-+-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故11a b a b->-,B 对;对于C 选项,()()220a a b b b a b a b a -=-=-+>,则a a b b >,C 错;对于D 选项,()()()2233223024b b a b a b a ab b a b a ⎡⎤⎛⎫-=-++=-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,故33a b >,D 错.故选:B.10.已知函数()f x =的定义域为R ,则m 的取值范围是()A .12m -<<B .12m -<≤C .12m -≤≤D .12m -≤<【正确答案】C【分析】由()()231104m x m x +-++≥在R 上恒成立,分10m +=和10m +≠结合二次函数性质求解即可..【详解】由题意得:()()231104m x m x +-++≥在R 上恒成立.10m +=即1m =-时,()f x =10m +≠时,只需()()2101310m m m +>⎧⎪⎨∆=+-+≤⎪⎩,解得:12m -<≤,综上:[]1,2m Î-,故选:C .二、多选题11.下列命题中,错误的是()A .“2x =”是“2320x x -+=”的必要不充分条件B .x ∀∈R ,21x x+>2C .命题“x ∃∈R ,21x x +=”的否定为假命题D .“三角形为等腰三角形”是“三角形为正三角形”的必要不充分条件【正确答案】ABC【分析】利用充分条件、必要条件的定义可判断AD 选项;利用特殊值法可判断B 选项;利用一元二次方程的判别式、存在量词命题的否定可判断C 选项.【详解】对于A 选项,解方程2320x x -+=可得1x =或2x =,所以,“2x =”是“2320x x -+=”的充分不必要条件,A 错;对于B 选项,当1x =时,212x x +=,B 错;对于C 选项,对于方程210x x -+=,140∆=-<,即方程210x x -+=无实解,故命题“x ∃∈R ,21x x +=”为假命题,其否定为真命题,C 错;对于D 选项,“三角形为等腰三角形”⇒“三角形为正三角形”,但“三角形为等腰三角形”⇐“三角形为正三角形”,所以,“三角形为等腰三角形”是“三角形为正三角形”的必要不充分条件,D 对.故选:ABC.12.设0a >,0b >,1a b +=,则下列不等式中一定成立的是()A .104ab <≤B C .1ab ab+的最小值为2D .48b a b+≥【正确答案】ABD【分析】利用基本不等式可判断ABD 选项;利用对勾函数的单调性可判断C 选项.【详解】因为0a >,0b >,1a b +=,对于A 选项,21024a b ab +⎛⎫<≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,A 对;对于B 选项,因为()2022a b a b <=++≤+=,,当且仅当12a b ==时,等号成立,B 对;对于C 选项,令10,4t ab ⎛⎤=∈ ⎝⎦,因为函数1y t t =+在10,4⎛⎤ ⎝⎦上单调递减,故min 1117444ab ab ⎛⎫+=+= ⎪⎝⎭,C 错;对于D选项,4444448b b a b b a a b a b a b ++=+=++≥=,当且仅当223b a ==时,等号成立,D 对.故选:ABD.三、双空题13.用符号语言表示命题:对于所有的正实数x ,满足210x x -+=:___________;该命题的否定为:___________.【正确答案】0x ∀>,210x x -+=0x ∃>,210x x -+≠【分析】利用存在量词命题的可改写原命题,利用存在量词命题的否定可写出其否定.【详解】用符号语言表示原命题为:0x ∀>,210x x -+=,该命题的否定为:0x ∃>,210x x -+≠.故0x ∀>,210x x -+=;0x ∃>,210x x -+≠.四、填空题14.函数y 的定义域是_________________.【正确答案】[)1,1-【分析】根据函数解析式有意义可得出关于x 的不等式组,即可解得原函数的定义域.【详解】对于函数y ,有21020x x x +≥⎧⎨--+>⎩,即21020x x x +≥⎧⎨+-<⎩,解得1<1x ≤-.因此,函数y =的定义域为[)1,1-.故答案为.[)1,1-五、双空题15.某校学生积极参加社团活动,高一年级共有100名学生,其中参加合唱社团的学生有63名,参加科技社团的学生有75名(并非每个学生必须参加某个社团).在高一年级的学生中,同时参加合唱社团和科技社团的最多有_______名学生,最少有__________名学生.【正确答案】6338【分析】设同时参加合唱社团和科技社团的学生人数为x 根据题中可得出关于x 的不等式,求出x 的取值范围,即可得解.【详解】设同时参加合唱社团和科技社团的学生人数为x ,则{}min 63,7563x ≤=,由题意可得6375138100x x +-=-≤,解得38x ≥,故3863x ≤≤,故同时参加合唱社团和科技社团的最多有63个学生,最少有38个学生,故63;38.六、填空题16.如图所示,某学校要在长为8米,宽为6米的一块矩形地面上进行绿化,计划四周种花卉,花卉带的宽度相同,均为x 米,中间植草坪.为了美观,要求草坪的面积大于矩形土地面积的一半,则x 的取值范围为________.【正确答案】01x <<【分析】设花卉带宽度为x 米()03x <<,则中间草坪的长为82x -米,宽为62x -米,由面积关系列不等式,化简后解一元二次不等式得答案.【详解】设花卉带宽度为x 米()03x <<,则中间草坪的长为82x -米,宽为62x -米,根据题意可得()()18262862x x -⋅->⨯⨯,整理得:2760x x -+>,即()()610x x -->,解得01x <<或6x >,6x >不合题意,舍去,故所求花卉带宽度的范围为01x <<,故答案为.01x <<七、解答题17.比较下列各组中M 与N 的大小,并给出证明.(1)()22M a a =+与()()13N a a =-+,其中0a >;(2)()2M ac bd =+与()()()2222,,,N a b c d a b c d =++∈R ;(3)()23M x =-与()()()24,N x x m x m =--+∈R .【正确答案】(1)M N >,证明见解析(2)M N ≤,证明见解析(3)答案见解析,证明见解析【分析】(1)(2)(3)利用作差法可得出M 、N 的大小关系.【详解】(1)解:()()()2222242323120M N a a a a a a a -=+-+-=++=++>,故M N >.(2)解:()()()222222222222220M N a c abcd b d a c a d b c b d ad bc -=++-+++=--≤,当且仅当ad bc =时,等号成立,故M N ≤.(3)解.()()2269681M N x x x x m m-=-+--++=-当1m <时,M N >;当1m =时,M N =;当1m >时,M N <.18.已知集合{}14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ð、()R A B ⋃ð;(2)若集合{}21C x m x m =<<+,且0x C ∃∈,0x A ∈为假命题,求m 的取值范围.【正确答案】(1){}25B x x =-≤≤R ð,(){1A B x x ⋃=<-R ð或}4x >(2)2m ≤-或m 1≥【分析】(1)利用补集、交集的定义计算可得集合B R ð、()A B R ð;(2)分析可知A C ⋂=∅,分C =∅、C ≠∅两种情况讨论,结合A C ⋂=∅可得出关于实数m 的不等式(组),综合可得出实数m 的取值范围.【详解】(1)解:已知集合{}14A x x =-≤≤,{2B x x =<-或}5x >,则{1A x x =<-R ð或}4x >,{}25B x x =-≤≤R ð,(){1A B x x ⋃=<-R ð或}4x >.(2)解:因为0x C ∃∈,0x A ∈为假命题,则x C ∀∈,x A ∉为真命题,所以,A C ⋂=∅.①当21m m ≥+时,即当m 1≥时,C =∅,则A C ⋂=∅成立;②当21m m <+时,即当1m <时,C ≠∅,由题意可得11m +≤-或24m ≥,解得2m ≤-或2m ≥,此时2m ≤-.综上所述,2m ≤-或m 1≥.19.已知集合143A x x ⎧⎫=∈<<⎨⎬⎩⎭N ,{}10B x ax =-≥.请从①A B B ⋃=,②A B ⋂=∅,③()R A B ⋂≠∅ð这三个条件中选一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)(1)当12a =时,求A B ⋂;(2)若______,求实数a 的取值范围.【正确答案】(1){}2,3(2)选择①,[)1,+∞;选择②,1,3⎛⎫-∞ ⎪⎝⎭;选择③,(),1-∞【分析】(1)取12a =化简B ,化简A ,再根据交集的定义求A B ⋂;(2)若选①,由A B B ⋃=可得A B ⊆,讨论a 的正负,由条件列不等式求a 的取值范围;若选②,讨论a 的正负,化简集合B ,结合条件A B ⋂=∅列不等式求a 的取值范围;若选③,讨论a 的正负,化简集合B ,结合条件()R A B ⋂≠∅ð列不等式求a 的取值范围.【详解】(1)由题意得,{}141,2,33A x x ⎧⎫=∈<<=⎨⎬⎩⎭N .当12a =时,{}11022B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭,∴{}2,3A B ⋂=;(2)选择①.∵A B B ⋃=,∴A B ⊆,当0a =时,B =∅,不满足A B ⊆,舍去;当0a >时,1B x x a ⎧⎫=≥⎨⎬⎩⎭,要使A B ⊆,则11a≤,解得1a ≥;当a<0时,1B x x a ⎧⎫=≤⎨⎬⎩⎭,此时10a<,不满足A B ⊆,舍去.综上,实数a 的取值范围为[)1,+∞.选择②.当0a =时,B =∅,满足A B ⋂=∅;当0a >时,1B x x a ⎧⎫=≥⎨⎬⎩⎭,要使A B ⋂=∅,则13a>,解得103a <<;当a<0时,1B x x a ⎧⎫=≤⎨⎬⎩⎭,此时10a<,A B ⋂=∅.综上,实数a 的取值范围为1,3⎛⎫-∞ ⎪⎝⎭.选择③.当0a =时,B =∅,R R B =ð,∴()R B A A ⋂=≠∅ð,满足题意;当0a >时,1B x x a ⎧⎫=≥⎨⎬⎩⎭,R1B x x a ⎧⎫=<⎨⎩⎭ð,要使()R A B ⋂≠∅ð,则11a>,解得01a <<;当a<0时,1B x x a ⎧⎫=≤⎨⎬⎩⎭,R 1B x x a ⎧⎫=>⎨⎬⎩⎭ð,此时10a<,()R B A A ⋂=≠∅ð,满足题意.综上,实数a 的取值范围为(),1-∞.20.通过市场调查,得到某种纪念章每1枚的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:上市时间/x 天41036市场价/y 元905190(1)根据表中数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y 与上市时间x 的变化关系:①y ax b =+;②2y ax bx c =++;③k y x=;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)设你选取的函数为()f x ,若对任意实数k ,方程()2120f x kx m =++恒有两个相异的实根,求m的取值范围.【正确答案】(1)选②,理由见解析(2)该纪念章上市第20天时,该纪念章的市场价格最低,且最低价为26元一枚(3)3m >【分析】(1)根据函数的单调性可得出合适的函数模型;(2)将表格中的数据代入函数2y ax bx c =++的解析式,求出a 、b 、c 的值,再利用二次函数的基本性质可求得该纪念章市场价最低时的上市天数及最低的价格;(3)由()2120f x kx m =++结合0∆>可得出()22610m k >-+,结合参变量分离法可求得实数m 的取值范围.【详解】(1)解:由表格中的数据可知,y 关于x 的函数在*N 上不单调,故选②较好.(2)解:由题意可得2164901001051363690a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得1410126a b c ⎧=⎪⎪=-⎨⎪=⎪⎩,则()2120264y x =-+,故当20x =时,y 取最小值26,因此,该纪念章上市第20天时,该纪念章的市场价格最低,且最低价为26元一枚.(3)解:由()2120f x kx m =++可得()21106204x k x m -++-=,因为对任意实数k ,方程()2120f x kx m =++恒有两个相异的实根,则()()210620k m ∆=+-->,可得()22610m k >-+对任意的k ∈R 恒成立,所以,26m >,解得3m >,因此,实数m 的取值范围是()3,+∞.。
黑龙江省哈尔滨市第六中学2015届高三10月月考数学(理)试题 Word版含解析

考试时间:120分钟 满分:150分【试卷综析】试卷注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力的综合考查, 试卷以考查考生对“双基”的掌握情况为原则,重视基础,紧扣教材,回归课本,整套试卷中有不少题目可以在教材上找到原型.对中学数学教学和复习回归课本,重视对基础知识的掌握起到好的导向作用.一、选择题:(每题5分共60分)【题文】1.已知全集U R =.集合{}3|<=x x A ,{}0log |2<=x x B ,则U AC B =( )A. {}13x x << B. {}310|<≤≤x x x 或 C. {}3x x < D.{}13x x ≤<【知识点】对数函数的单调性与特殊点;交、并、补集的混合运算.B7 A1 【答案解析】B 解析:由log 2x <0得0<x <1,∴B={x|0<x <1}, ∴U C B ={x|x ≤0或x ≥1},结合A={x|x <3}, ∴U AC B =={x|}={}310|<≤≤x x x 或.故选:B .【思路点拨】先将集合B 进行化简,然后求出其在R 上的补集,再利用交集的定义结合数轴求解.【题文】2. 已知映射B A f →:,其中R B A ==,对应法则21||:x y x f =→,若对实数B k ∈,在集合A 中不存在元素x 使得k x f →:,则k 的取值范围是( )A .0≤kB .0>kC .0≥kD . 0<k 【知识点】映射A1【答案解析】D 解析:由题意可得 k=≥0,∵对于实数k ∈B ,在集合A 中不存在原象,∴k <0,故选D .【思路点拨】先求出k 的值域,则k 的值域的补集即为k 的取值范围. 【题文】3.要得到函数21sin 2+-=x y 的图像,只需将x x y cos sin =的图像( ) A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移2π个单位 D. 向右平移2π个单位【知识点】函数y=Asin (ωx+φ)的图象变换.C4 【答案解析】B 解析:∵函数21sin 2+-=x y =cos2x 又∵y=sinxcosx=sin2x=cos (2x+)∴只需将y=sinxcosx=sin2x=cos (2x+)的图象向右平移个单位即可得到函数y=﹣sin 2x+=cos2x 的图象.故选:B .【思路点拨】将函数用二倍角公式化简,根据函数y=Asin (ωx+φ)的图象变换规律即可解决.【题文】4.下列有关命题的说法正确的是( )A.命题“若21,x =则1x =”的否命题为“若21x =则1x ≠” B .“1x =-”是 “2560x x --=”的必要不充分条件 C. 命题若“x y =”则“sin sin x y =”的逆否命题为真D .命题“2000,10x R x x ∃∈++<”的否定是“对01,2>++∈∀x x R x 。
2024-2025学年黑龙江省哈尔滨市哈尔滨三中高三(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合A ={y|y =24−x 2},B ={x|y =ln(x 2+2x +3)},则A ∩B =( )A. (0,4]B. [1,4]C. [1,+∞)D. (0,+∞)2.已知3+i 是关于x 的方程2x 2−mx +n =0(m,n ∈R)的一个根,则m +n =( )A. 20B. 22C. 30D. 323.已知x >0,y >0,lg 2x +lg 4y =lg2,则1x +12y 的最小值为( )A. 2B. 22C. 23D. 44.数列{a n }中,若a 1=2,a 2=4,a n +a n +1+a n +2=2,则数列{a n }的前2024项和S 2024=( )A. 1348B. 1350C. 1354D. 26985.在△ABC 中,D 为BC 中点,CP =λCB ,AQ =23AB +13AC ,若AD =25AP +35AQ ,则λ=( )A. 12B. 13C. 14D. 156.在三棱柱ABC−A 1B 1C 1中,点D 在棱BB 1上,且BB 1=4BD ,点M 为A 1C 1的中点,点N 在棱BB 1上,若MN//平面ADC 1,则NBNB 1=( )A. 2B. 3C. 4D. 57.已知偶函数f(x)定义域为R ,且f(3x)=f(2−3x),当x ∈[0,1]时,f(x)=x 2,则函数g(x)=|cos (πx)|−f(x)在区间[−52,12]上所有零点的和为( )A. −7B. −6C. −3D. −28.已知平面向量a ,b ,c ,满足|a |=|b |=1,且cos 〈a ,b〉=−12,|c−a +b |=1,则b ⋅(a−c )的最小值为( )A. −1B. 0C. 1D. 2二、多选题:本题共3小题,共18分。
黑龙江省哈尔滨市第六中学校2022-2023学年高三上学期10月月考数学试题

黑龙江省哈尔滨市第六中学校2022-2023学年高三上学期10月月考数学试题一、单选题1.已知集合(){}2=log 1<0A x x -,4=0+1x B xx -≥⎧⎫⎨⎬⎩⎭,则()A B ⋂=R ð( ) A .()1,1-B .()2,4C .(][]1,12,4-⋃D .[][]1,12,4-⋃ 2.在等比数列{}n a 中,1a ,13a 是方程213160x x -+=的两根,则2127a a a 的值为( ) AB.C .4D .4±3.某学习小组的学习实践活动是测量图示塔AB 的高度.他们选取与塔底在同一水平面内的两个测量基点C ,D ,测得3BCD π∠=,4BDC π∠=,且基点C ,D间的距离为(30m CD =+,同时在点C 处测得塔顶A 的仰角为6π,则塔高AB 为( )A .20mB.C .40mD.4.下列说法正确的是( )A .命题“2x ∀>,ln 1x x ≤-”的否定是“02x ∃≤,00ln 1x x >-”B .命题p :0x ∃∈R ,02010ax ax ++≤,若命题p 是假命题,则04a <<C .“0a b ⋅<”是“a ,b 的夹角为钝角”的充分不必要条件D .ABC 中,A B >是sin sin A B >的充要条件5.向量OA ,OB 满足0OA OB ⋅=,点C 在以点O 为圆心的劣弧AB 上,OC xOA yOB =+uu u r uu r uu u r,则2x y +的最大值为( )6.已知函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当[]1,3x ∈时,()f x kx m =+,若()()031f f -=-,则()2022f =( )A .1-B .1C .2-D .27.已知函数()()π=sin 2+>0,0<<2f x x ωϕωϕ⎛⎫ ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()f x 的图象关于点,03π⎛⎫- ⎪⎝⎭对称B .()f x 在区间π0,2⎡⎤⎢⎥⎣⎦的最小值为C .()f x 在[]0,π上的单调递增区间为π0,6⎡⎤⎢⎥⎣⎦D .将()f x 图象的横坐标变为原来的()1>0t t 倍,纵坐标不变得到函数()g x ,若()12g x =在[]0,π上有且只有三个不等实根,则41<3t ≤8.若关于x 的不等式ln x a e x a -≥+对一切正实数x 恒成立,则实数a 的取值范围是( )A .1,e ⎛⎫-∞ ⎪⎝⎭B .(],e -∞C .(],1-∞D .(],2∞-二、多选题9.下列关于复数的四个命题正确的是( ) A .若2z =,则4z z ⋅= B .若()72i3i z +=+,则z 的共轭复数的虚部为1C .若1i 1z +-=,则1i z --的最大值为3D .若复数1z ,2z 满足12z =,22z =,121z z +=,则12z z -=10.已知等差数列{}n a 的前n 项和为n S ,若23a =,77S =,则( ) A .5n a n =- B .若210m n a a a a +=+,则116m n+的最小值为2512C .n S 取到最大值时,5n =D .设2nn n a b =,则数列{}n b 的最小项为164- 11.设锐角三角形ABC 的对边分别为a ,b ,c ,若cos cos a a B b A +=,则( ) A .22b a ac -= B .2B A = C .04A π<<D.)2b ca+∈12.平面向量a ,b ,c ,满足1a =,2b =且()a ab ⊥-,2,30c a c b <-->=︒r r r r,则下列说法正确的是( )A.2a b +=r r B .a 在b 方向上的投影向量为12bC .c的最大值是2 D .若向量m 满足2m a ⋅=u r r,则()m m b⋅-u r u r r 的最小值为54三、填空题13.记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.14.通过研究正五边形和正十边形的作图,古希腊数学家毕达哥拉斯发现了黄金分割率,黄金分割率的值也可以用2sin18︒2sin18=︒.记2sin18m =︒,则=______.15.已知O 是ABC 的外心,若22AC AB AB AO AC AO mAO AB AC⋅+⋅=uuu r uu u r uu u r uuu r uuu r uuu r uuu r uu u r uuu r,且sin sin B C +=m 的最大值为______.16.已知函数()()()222e 1e x x f x a a x x =+-++有三个不同的零点1x ,2x ,3x ,且123x x x <<,则3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为______.四、解答题17.已知函数()2sin cos 3f x x x π⎛⎫=- ⎪⎝⎭.(1)求函数()f x 的最小正周期及单调递增区间; (2)在锐角ABC 中,若()f AACBC =ABC 的面积. 18.设n S 是正项等比数列{}n a 的前n 项和,且26S =,430S =. (1)求数列{}n a 的通项公式; (2)设()121n n n b n n a ++=+,求数列{}n b 的前n 项和n T .19.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,ABC 的面积214S a =. (1)cos B b =-,求sin sin CB的值; (2)求c bb c+的最大值.20.已知等差数列{}n b 满足32b =,251681b b b b =++,数列{}n a 的前n 项和2124n n S b +=⋅-,*n ∈N(1)求数列{}n a ,{}n b 的通项公式;(2)记数列{}n n a b 的前n 项和为n T ,若226825n n kT n a n n >-+对一切*n ∈N 恒成立,求正整数k 的最小值.21.已知函数()2x x f x e ae -=+-,()2g x x =(1)讨论()f x 的单调性;(2)设()()()h x f x g x =-.若函数()h x 有相同零点和极值点0x ,求()h x 的最小值.22.已知函数()21e xf x x =+-.(1)求曲线()=y f x 在点()()0,0P f 处的切线方程;(2)设函数()()()ln 1g x f x a x =-+有三个零点,求实数a 的取值范围.参考答案:1.C【分析】根据对数函数的单调性化简集合A ,根据分式不等式的解法化简集合B ,结合集合的补集和交集的定义进行求解即可.【详解】不等式()2log 1<0x -可化为()22log 1<log 1x -,所以011x <-<, 所以12x <<,所以()1,2A =, 不等式40+1xx -≥可化为()()4+10x x ->或=4x ,所以14x -<?,所以(]=1,4B -,所以(][)R 12A ,,=-∞+∞ð,所以()A B ⋂=R ð(][]1,12,4-⋃, 故选:C. 2.C【分析】由已知条件结合一元二次方程根与系数的关系,利用等比数列的性质求解. 【详解】113,a a 是方程213160x x -+=的两根,11311313,16a a a a ∴+=⋅=,21131132127>0,>0,===16a a a a a a a ∴⋅⋅,又等比数列{}n a 中奇数项符号相同,可得74a =21271644a a a ⋅∴==. 故选:C . 3.A【分析】设,AB x =则BC =,利用正弦定理即得解. 【详解】解:设,AB x =则BC . 由题得53412CBD ππππ∠=--=. 51sinsin()12642πππ=+==在△BCD20x ∴=. 所以塔高20m. 故选:A4.D【分析】对于A ,利用含量词的命题的否定即可判断;对于B ,由p 是假命题可得p ⌝:x ∀∈R ,210ax ax ++>为真命题,分=0a 和0a ≠进行讨论即可;对于C ,利用“,a b 的夹角为钝角”的充要条件即可判断;对于D ,利用正弦定理和三角形性质即可求解.【详解】对于A ,由含量词的命题的否定知,命题“2x ∀>,ln 1x x ≤-”的否定是“02x ∃>,00ln 1x x >-”,故不正确;对于B ,因为命题p 是假命题,所以p ⌝:x ∀∈R ,210ax ax ++>为真命题, 当=0a 时,不等式为10>恒成立;当0a ≠时,需满足2>0Δ=4<0a a a -⎧⎨⎩,解得04a <<, 综上所述,a 的取值范围为{}0<4a a ≤,故不正确;对于C ,“,a b 的夹角为钝角”的充要条件是“0a b ⋅<且a 不平行于b ”,所以“0a b ⋅<”是“a ,b 的夹角为钝角”的必要不充分条件,故不正确;对于D ,若A B >,由三角形中“大边对大角”可知,a b >,由正弦定理可知,sin sin A B >; 若sin sin A B >,由正弦定理可知,a b >,从而A B >, 故“A B >”是“sin sin A B >”的充要条件,故正确, 故选:D 5.D【分析】由OC xOA yOB =+uu u r uu r uu u r两边平方可得,x y 的关系,设(),m x y =,()2,1n =由数量积的性质求2x y +的最大值.【详解】因为OC xOA yOB =+uu u r uu r uu u r,两边平方可得()()()222222OC x OA xyOA OB y OB =+⋅+uuu r uu r uu r uu u r uu u r ,因为0OA OB ⋅=,所以()()()22222OC x OA y OB =+uu u r uu r uu u r ,因为点C 在以点O 为圆心的劣弧AB 上,所以OC OA OB ==uuu r uu r uu u r,且0x ≥,0y ≥,所以221x y +=, 设(),m x y =,()2,1n =,则2m n x y ?+,又=cos ,m n m n m n m n ⋅⋅⋅≤⋅,当且仅当m ,n 同向时等号成立,所以2x y +?x y ==故选:D. 6.B【分析】由题意表示出()1(1)--=--f x f x 与()1(1)f x f x -+=+,令=1x ,=0x ,=2x ,结合题目所给条件列式求解,k m ,再由两式化简可推导出()f x 的周期为8T =,从而代入计算. 【详解】因为()1f x -为奇函数,所以()1(1)--=--f x f x ①; 又()1f x +为偶函数,所以()1(1)f x f x -+=+②; 令=1x ,由②得:()(2)20==+f f k m ,又()33=+f k m , 所以()()032(3)1f f k m k m k -=+-+=-=-,得=1k , 令=0x ,由①得:()()1(1)10-=--⇒-=f f f ; 令=2x ,由②得:()1(3)0-==f f , 所以()3330f k m m =+=⇒=-. 得[]1,3x ∈时,()3f x x =-,结合①②得,()2()(2)(4)()(8)(4)()f x f x f x f x f x f x f x f x +=-=--⇒+=-⇒+=-+=, 所以函数()f x 的周期为8T =,所以()()()()()20222528662231f f f f =⨯+==-=--=. 故选:B 7.D【分析】由图象求出()f x 的解析式,再结合三角函数的性质与图像逐项分析即得. 【详解】由图可知,1(0)sin 2f ϕ==, 又π02ϕ<<,所以π6ϕ=, 所以由五点作图法可知4ππ3π362ω⋅+=,得1ω=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,对于A ,由π2ππ133sin 6f ⎛⎫-⎛⎫+ ⎪⎝⎭=-=- ⎪⎝⎭,所以A 错误;对于B ,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦的最小值为12-,所以B 错误;对于C ,当[]0,πx ∈,则ππ13π2,666x ⎡⎤⎢⎥⎣∈⎦+, 由πππ2,662x ⎡+∈⎤⎢⎥⎣⎦,可得π0,6x ⎡⎤∈⎢⎥⎣⎦,由π13π22π,66x +∈⎡⎤⎢⎥⎣⎦,可得11π,π12x ⎡⎤∈⎢⎥⎣⎦, 所以()f x 在[]0,π上的单调递增区间为π0,6⎡⎤⎢⎥⎣⎦,11π,π12⎡⎤⎢⎥⎣⎦,故C 错误; 对于D ,由题可得()πsin 26g x tx ⎛⎫+ ⎝=⎪⎭,因为()12g x =在[]0,π上有且只有三个不等实根,所以π1sin 262tx ⎛⎫+= ⎪⎝⎭在[]0,π上有且只有三个不等实根,由[]0,πx ∈,可得πππ2,2π666tx t ⎡⎤+∈+⎢⎥⎣⎦,作出正弦函数的图象,由图象可知ππ5π2π2π2π666t +≤+<+,即413t ≤<,故D 正确. 故选:D. 8.C【分析】构造函数()(0)x a f x e lnx a x -=-->,将原不等式转化为求解函数()f x 的最小值,通过导数判断函数的单调性研究函数的最值,得到000x a e lnx a ---…,再利用基本不等式进行求解即可.【详解】解:设()(0)x a f x e lnx a x -=-->,则()0f x …对一切正实数x 恒成立,即()0min f x …, 由1()x a f x e x -'=-,令1()x a h x e x -=-,则21()0x ah x e x -'=+>恒成立,所以()h x 在(0,)+∞上为增函数,当0x →时,()h x →-∞,当x →+∞时,()h x →+∞, 则在(0,)+∞上,存在0x 使得0()0h x =,当00x x <<时,()0h x <,当0x x >时,()0h x >,故函数()f x 在0(0,)x 上单调递减,在0(x ,)∞+上单调递增,所以函数()f x 在0x x =处取得最小值为000()0x a f x e lnx a -=--…, 因为001x aex -=,即00x a lnx -=-, 所以0010x a a x +--…恒成立,即0012a x x+…,又0012x x +=…,当且仅当001x x =,即01x =时取等号,故22a …,所以1a …. 故选:C .【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④ 讨论参数. 9.ACD【分析】根据复数模、共轭复数的积运算即可判断A ,由复数除法的运算及共轭复数、虚部的概念判断B ,根据复数模的几何意义及圆的性质判断C ,利用复数的加减运算、模的运算求解可判断D.【详解】设i,(,R)z a b a b =+∈,对A ,2224z a b =⇒+=,22i)(i (4)z a b a b a z b +-=+⋅==,故正确;对B ,()72i3i z(2i)3i z +=+⇒-=+,所以3i (3i)(2i)55iz 1i 2i (2i)(2i)5++++====+--+, z 1i =-,其虚部为1-,故错误;对C ,由1i 1z +-=的几何意义,知复数z 对应的动点Z 到定点(1,1)-的距离为1, 即动点Z 的轨迹为以(1,1)-为圆心,1为半径的圆,1i z --表示动点Z 到定点(1,1)的距离,由圆的性质知,max 1i 13z --==,故正确; 对D ,设12=+i,=+i,(,,,R)z m n z c d m n c d ∈,因为12z =,22z =, 所以22224+=4m n c d +=,,又121z z +=,所以+=1,+m c n d 所以+=2mc nd -,所以12=|()+(z z m c n d ---.故选:ACD 10.AD【分析】求得等差数列{}n a 的通项公式判断选项A ;求得116m n+的最小值判断选项B ;求得n S 取到最大值时n 的值判断选项C ;求得数列{}n b 的最小项判断选项D.【详解】由11+=37?67+=72a d a d ⎧⎪⎨⎪⎩,可得1=4=1a d -⎧⎨⎩, 则等差数列{}n a 的通项公式为5n a n =-,则选项A 判断正确; 若210m n a a a a +=+,则21012m n +=+= 则116116116125(17)(178)12121212m n n m m n m n m n +⎛⎫+=+⨯=++≥+= ⎪⎝⎭ (当且仅当1248,55m n ==时等号成立) 又,m n ∈Z ,则116m n +的最小值为不为2512.则选项B 判断错误; 等差数列{}n a 中,123456432101a a a a a a =>=>=>=>=>=->则等差数列{}n a 的前n 项和n S 取到最大值时,=4n 或5n =.则选项C 判断错误; 设2n n n a b =,则52n n n b -=,则111546222n n n n n n n n b b +++----=-= 则12345678b b b b b b b b >>>>>=<<则数列{}n b 的最小项为766561264b b -===-.则选项D 判断正确 故选:AD 11.ABD【分析】利用余弦定理可判断A ,利用正弦定理结合三角恒等变换可判断B ,结合条件可得角A 的范围可判断C ,利用正弦定理及三角函数的性质可判断D. 【详解】因为cos cos a a B b A +=,所以22222222a c b b c a a a b ac bc +-+-+⋅=⋅, 整理可得22=b a ac -,故A 正确;由cos cos a a B b A +=,可得sin sin cos sin cos A A B B A +=, 所以()sin sin cos sin cos sin A B A A B B A =-=-,所以A B A =-或πA B A +-=(舍去),即2B A =,故B 正确;因为ABC △为锐角三角形,所以π0<<2π0<=2<2π0<=π3<2A B A C A -⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得ππ<<64A ,故C 错误;由题可得()sin 2sin 3sin sin sin sin A A b c B C a A Aπ+-++==, sin 2sin 2cos cos 2sin sin A A A A A A++=22cos 2cos cos2A A A =++ 24cos 2cos 1A A =+-,又ππ<<64AA所以)+b ca∈,故D 正确. 故选:ABD 12.ACD【分析】利用向量的数量积运算律和模的运算求解2a b +r r,根据投影向量定义求解a 在b 方向上的投影向量,构造如图所示的几何图形集合几何意义求c 的最小值,作出满足题意的几何图形求解()m m b ⋅-的最小值.【详解】因为1a =,2b =且()a ab ⊥-,所以()20a a b a a b ⋅-=-⋅=,所以1a b ⋅=,1cos ,2a b a ba b⋅=,所以a ,b 的夹角为60,因为()222224423a b a ba b a b +=+=++⋅=,所以A 正确;a 在b 方向上的投影向量为1cos ,4ba ab b b ⋅=,所以B 错误;如图,作半径都等于2且公共弦长等于2的两个圆中, 2,,,OA a OB b OC c ===则2,AC c a BC c b =-=-,因为30ACB ∠=,所以2,30c a c b --=︒,符合题意, 由图可知,当OC 同过两圆的圆心时c 最大,此时c 的最大值等于圆心距加半径为2, 所以C 正确;作,,OA a OB b ==如图,222222()23AB b a b a b a OB OA =-=+-⋅==-, 所以90OAB ∠=,令OM m =,由2m a ⋅=得cos 2OM AOM ∠=, 在射线OA 上取点E ,使得2OE =,过E 作直线l OA ⊥,则有点M 在直线l 上,取OB 中点C ,过C 作CD l ⊥,垂足为D , 连接,,BM CM OM ,()()()()()m m b OM BM OC CM BC CM OC CM OC CM ⋅-=⋅=+⋅+=+⋅-+2222151124CM OC CD OA AE ⎛⎫=-≥-=+-= ⎪⎝⎭, 当且仅当,M D 重合时取得等号,所以()m m b ⋅-的最小值为54. 所以D 正确. 故选:ACD.【点睛】结合向量间的关系作出满足题意的几何图形,利用几何意义求解相关最值问题是向量最值问题有效的手段. 13.2【分析】转化条件为()112+226a d a d =++,即可得解.【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.14.【分析】将2sin18m =︒代入,根据恒等变换公式化简,即可求得结果 【详解】2sin18m =︒Q ,2sin144m -⋅︒4sin 182sin 36︒-︒===故答案为:15.32##1.5【分析】设三角形ABC 的外接圆的半径为r ,根据向量数量积的几何定义可得22211222b c c b mr c b ⋅+⋅=,从而可得22bc mr =,从而可得222m b br r =⋅,又sin sin B C +=正弦定理可得sin 2b B r =,sin 2cC r =,从而可得22b c r r+ 【详解】设三角形ABC 的外接圆的半径为r ,2||||2()||||AC AB AB AO AC AO m AO AB AC ⋅+⋅=, ∴根据向量数量积的几何定义可得:22211222b c c b mr c b ⋅+⋅=,即22bc mr =,∴=222m b c r r⋅,又sin sin B C +=sin 2b B r =,sin 2cC r =,∴22b c r r+ ∴2322()22224b cm b b r r r r +=⋅≤=,当且仅当22b c r r =时,即ABC △为等边三角形时取等号,∴324m ≤,32m ∴≤,∴实数m 的最大值为32. 故答案为:3216.4【分析】先将题给条件转化为()()2+1++2=0e e x x x x a a -⎛⎫⎪⎝⎭有三个不同的零点1x ,2x ,3x ,且123<<x x x ,再转化为()()2+1++2=0t a t a -有二根12,t t ,且121<0,0<<et t ,进而利用根与系数关系求得3122312111e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值 【详解】()()()()()22222e 1e =e 12e e xxxx x x xf x a a x x a a ⎡⎤⎛⎫=+-++-+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又2e >0x ,则()()2+1++2=0e e x x x x a a -⎛⎫⎪⎝⎭有三个不同的零点1x ,2x ,3x ,且123<<x x x ,令()e xx g x =,则1()e x x g x -'=, 当>1x 时()<0g x ',()g x 单调递减;当<1x 时()>0g x ',()g x 单调递增 则()g x 在=1x 时取得最大值1(1)=eg ,>0x 时()>0g x ,令e xx t =,则1e t ≤ 则()()2+1++2=0t a t a -必有二根12,t t ,且121<0,0<<et t则12121,2t t a t t a +=+=+ 则1e x x t =有一解1<0x ,2ex xt =有二解23,x x 且230<<1<x x 故()()3122223121211111e e ex x x x x x t t ⎛⎫⎛⎫⎛⎫---=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭[][]221212=1(+)+=1(+1)++2=4t t t t a a --故答案为:417.(1)函数()f x 的最小正周期为π,单调递增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【分析】(1)由三角恒等变换化简解析式,求出周期,再由正弦函数的单调性求解即可;(2)由()f A sin 23A π⎛⎫=-= ⎪⎝⎭A ,利用余弦定理可求得AB 边的长,再利用三角形的面积公式可求得结果. (1)()22sin cos cos sin sin sin cos 33f x x x x x x x ππ⎛⎫=+= ⎪⎝⎭)1cos211sin2sin2sin 22223x x x x x π-⎛⎫=+==- ⎪⎝⎭ 所以函数()f x 的最小正周期为22T ππ== 由222,232k x k k Z πππππ-+≤-≤+∈得出5,1212k x k k Z ππππ-+≤≤+∈ 故函数()f x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)()f A sin 23A π⎛⎫=-=⎪⎝⎭因为02A π<<,则22333A πππ-<-<,所以233A ππ-=,可得3A π=,由余弦定理可得222232cos23BC AB AC AB AC AB π==+-⋅=+,即210AB -=,因为0AB >,解得AB = 此时,AB 为最长边,角C 为最大角,此时222cos 02AC BC AB C AC BC+-=>⋅,则角C 为锐角,所以,11sin 22ABCSAB AC A =⋅=18.(1)2n n a =;(2)1112(1)2n n T n +=-+⋅.【分析】(1)由等比数列前n 项和公式列方程组求得1,a q ,得通项公式; (2)用裂项相消法求和. (1)设{}n a 的公比为q ,显然1q ≠,0q >,由题意1141+=6(1)=301a a q a q q--⎧⎪⎨⎪⎩,解得1=2=2a q ⎧⎨⎩(负数舍去).所以1222n nn a -=⨯=;(2) 由(1)11211(1)22(1)2n n n n n b n n n n +++==-+⋅⋅+⋅,所以2231111111()()[]122222322(1)2n n n T n n+=-+-++-⋅⋅⋅⋅⋅+⋅1112(1)2n n +=-+⋅.19.1; (2)【分析】(1)已知214S a =,由面积公式和余弦定理得π)4c b A b c +=+,由已知及正弦定理和三角恒等变换得π4A =,则有c b b c+=. (2)由π)4c b A b c +=+,结合正弦函数性质求最值..(1)ABC 的面积211sin 42S a bc A ==,有22sin a bc A =,由余弦定理,2222sin 2cos a bc A b c bc A ==+-,得2sin 2cos c bA A bc=+-,即π2sin +2cos)4c bA A A b c +==+, cosB b -cos sin A B CB =-,由[]sin sin()sin()sin coscos sin C A B A B A B A B =π-+=+=+, i n c n n cos sin sin os si A A B C B B A B B =--=sin sin 0A B B -=,ABC 中sin 0B ≠,∴cos A =(0,π)A ∈,则π4A =,∴π)4c b A b c +=+=c t b =,则有1t t+=1t ,由正弦定理,sin 1sin C cB b==. (2)由(1)有:π)4c b A b c +=+,A 为ABC 的内角,当π4A =时,c bb c +有最大值20.(1)12n n a +=,12n n b +=; (2)3【分析】(1)由等差数列的基本量法求得n b ,由1(2)n n n a S S n -=-≥求得n a ; (2)用错位相减法求得和n T ,代入不等式化简后转化为用基本不等式求函数的最值. (1)设数列{}n b 的公差为d ,则225168(22)1222325b d b b b d d d +==++-++++,12d =, 所以112(3)22n n b n +=+-⨯=, 1=1b ,224n n S +=-,311244a S ==-=,2n ≥时,211124(24)2n n n n n n a S S +++-=-=---=,1=4a 也适用,所以12n n a +=;(2)由(1)(1)2nn n a b n =+⋅,22232(1)2n n T n =⨯+⨯+++⋅,231222322(1)2n n n T n n +=⨯+⨯++⋅++⋅,两式相减得2314222(1)2n n n T n +-=++++-+⋅1114(12)4(1)2212n n n n n -++-=+-+⋅=-⋅-,所以12n n T n +=⋅.所以不等式226>8+25n n kT n a n n -即为26>8+25nk n n -, 又266258258n n n n n =-++-,2510n n +≥=,当且仅当5n =时等号成立, 所以26825n n n -+的最大值是63108=-,故3k ≥, 所以k 的最小值是3.21.(1)当0a ≤ 时,()f x 在R 上单调递增;当>0a 时,()f x在)∞上单调递增,在(-∞上单调递减. (2)()h x 的最小值为0.【分析】(1)先函数求导,对参数进行分类讨论得出结论(2)构造函数对函数求导,利用已知条件求出参数,分析问题,将参数的值代入表达式中求出函数的最小值. (1)由()e e 2x xf x a -=+-,所以()e e x x f x a -'=-,当0a ≤ 时,()0f x '≥,此时()f x 在R 上单调递增, 当0a > 时,由()0f x '>,有x >()f x在)+∞上单调递增, 由()0f x '<,有x <()f x在(-∞上单调递减, 综上所述:当0a ≤ 时,()f x 在R 上单调递增;当0a > 时,()f x在)+∞上单调递增,在(-∞上单调递减. (2)由()()()2e 2x x e a h x g x xf x ---==+-所以()e e 2x xa x x h --'=-,又函数()h x 有相同零点和极值点0x ,所以有0000200e +e 2=0e e 2=0x x x x a x a x --⎧--⎪⎨--⎪⎩,两式相加得:02002e 22x x x =++, 令()22e 22x p x x x =---,则()2e 22xp x x '=--,设()2e 22x s x x =--,则()2e 2xs x '=-,所以()s x 在(),0-∞上单调递减,在()0,+∞上单调递增,所以()()00s x s ≥=, 所以()p x 单调递增,由()00p =可得00x =,=1a ,所以()22x x e x e x h -+--=,所以()2x x e x h x e ---'=,设()2x xe e x t x --=-所以()120xxx e t e '+-≥=,当且仅当=0x 时取等号. 所以()h x '在R 单调递增,又()00h '=所以当0x >时,()0'>h x ,所以()h x '在(0,)+∞上单调递增, 当0x <时,()0'<h x ,所以()h x '在(,0)-∞上单调递减 所以()min 0)0(h x h == 故()h x 的最小值为0. 22.(1)=y x (2)(0,1)【分析】(1)求得(0),(0)f f ',利用导数的几何意义得出切线的方程;(2)求出()g x 的导数,通过分类讨论a 的范围,求出函数的单调区间,结合函数的零点个数确定a 的范围即可. (1)()21e x f x x =+-,()2e x f x '=-∴,则(0)0,(0)1f f '==,因此,曲线()y f x =在点()()0,0P f 处的切线方程为y x =.(2)()21e ln(1),(1)x g x x a x x =+--+>-,则()(1)e 2()2e 11x xa x a g x x x ⎡⎤-++-⎣⎦'=---=++, 设h ()()(1)e 2xx a x =++-,则()(2)e 2x h x x '=+-,显然()h x '在(1,)-+∞内递增且(0)0h '=, 所以,在(1,0)x ∈-时,()0,()h x h x <'单调递减, 在(0,)x ∈+∞时,()0,()h x h x >'单调递增, 所以()h x 有极小值(0)1h a =-,又(1)h a -=,①当1a ≥时,()0h x ≥在(1,)x ∈-+∞恒成立,即()0g x '≤,所以()g x 在区间(1,)-+∞内单调递减,最多一个零点,不符合题意; ②当01a <<时,(1)0,(0)0,(2)0h h h -><>, 所以存在12(1,0),(0,2)x x ∈-∈使得()()120h x h x ==, 则在()11,x -内,()0h x >,()0,()g x g x <'单调递减, 在()12,x x 内,()0h x <,()0,()g x g x >'单调递增, 在()2,x +∞内,()0h x >,()0,()g x g x <'单调递减,又()()12(0)0g x g g x <=<,则()g x 在()12,x x 上有且只有一个零点0, 又2(2)5e ln30g a =--<,则()g x 在()2,x +∞上有且只有一个零点,又4411544442e e e e 12e 11eln e 2e e 2e e 130a a a a a a ag a ----------⎛⎫⎛⎫-=-+-+--=->> ⎪⎝⎝⎭+⎪ ⎭,则()g x 在()11,x -上有且只有一个零点,所以函数()g x 恰有三个零点;③当0a ≤时,在(1,0]-内()(0)0h x h <<,又()2(2)(3)e (3)02ah a a a a a --=+->+->-,结合()h x 的单调性可知,存在0(0,)x ∈+∞,使得()00h x =,在()01,x -内,()0h x <,()0g x '>,()g x 单调递增, 在()0,x +∞内,()0h x >,()0g x '<,()g x 单调递减, 函数()g x 最多两个零点,不合题意. 综上所述,实数a 的取值范围是(0,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省高三上学期数学10月月考试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共9题;共18分)
1. (2分)(2018·山东模拟) 已知全集,集合,
,则中元素的个数是()
A . 0
B . 1
C . 2
D . 3
2. (2分)《九章算术》是中国古代的数学专著,有题为:今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几何日相逢及各行几何?用享誉古今的“盈不足术”,可以精确的计算用了多少日多少时相逢,那么你认为在第几日相遇()
A . 13
B . 14
C . 15
D . 16
3. (2分) (2015高一上·莆田期末) 函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()
A . 关于点对称
B . 关于点对称
C . 关于直线对称
D . 关于直线对称
4. (2分)下列函数f(x)中,满足“对任意的x1 ,x2∈(0,+∞)时,均(x1﹣x2)[f(x1)﹣f(x2)]>0”的是()
A . f(x)=()x
B . f(x)=x2﹣4x+4
C . f(x)=|x+2|
D . f(x)=log x
5. (2分) (2019高二下·哈尔滨月考) 已知函数的定义域为 ,为函数的导函数,当
时,且,,则下列说法一定正确的是()
A .
B .
C .
D .
6. (2分) (2019高三上·朝阳月考) 已知函数是奇函数,
是偶函数,则()
A .
B .
C .
D . 3
7. (2分)若表示的区间长度,函数的值域区间长度为,则实数的值是()
A . 4
B . 2
C .
D . 1
8. (2分) (2019高二上·城关期中) 若钝角三角形三内角的度数成等差数列,且最大边长与最小边长之比值为 ,则的范围是()
A .
B .
C .
D .
9. (2分)(2018·商丘模拟) 将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为()
A . 2
B . 4
C . 6
D . 8
二、填空题 (共6题;共6分)
10. (1分) (2018高二下·海安月考) 已知复数z满足:z(1-i)=2+4i,其中i为虚数单位,则复数z的模为________.
11. (1分)已知sinθ=,θ∈(﹣,),则sin(π﹣θ)sin(π﹣θ)的值为________
12. (1分)(2020·随县模拟) 若函数在点处的切线与直线垂直,则实数 ________.
13. (1分)(2018·安徽模拟) 已知函数,其中且,若函数的图象上有且只有一对点关于轴对称,则的取值范围是________.
14. (1分)(2019高二下·吉林月考) 设集合,,,
,且在直角坐标平面内,从所有满足这些条件的有序实数对表示的点中,任取一个,其落在圆内(不含边界)的概率恰为,则的所有可能的正整数值是________.
15. (1分) (2019高一下·中山月考) 已知,函数在上单调递减,则的取值范围是________.
三、解答题 (共5题;共40分)
16. (10分) (2018高一下·安徽期末) 如图所示,扇形中,,,矩形
内接于扇形 .点为的中点,设,矩形的面积为 .
(1)若,求;
(2)求的最大值.
17. (5分)(2017·枣庄模拟) 已知函数f(x)=x•ex﹣1﹣a(x+lnx),a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线为x轴,求a的值:
(2)在(1)的条件下,求f(x)的单调区间;
(3)若∀x>0,f(x)≥f(m)恒成立,且f(m)≥0,求证:f(m)≥2(m2﹣m3).
18. (15分) (2017高一下·禅城期中) 已知函数f(x)=2cosx(sinx+cosx).
(Ⅰ)求f()的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.
19. (5分)(2014·新课标I卷理) 已知曲线C: + =1,直线l:(t为参数)(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.20. (5分)(2017·南通模拟) 已知函数,,其中e为自然对数的底数.(1)
求函数在x 1处的切线方程;
(2)
若存在,使得成立,其中为常数,
求证:;
(3)
若对任意的,不等式恒成立,求实数a的取值范围.
参考答案一、单选题 (共9题;共18分)
1-1、
2-1、
3-1、答案:略
4-1、答案:略
5-1、
6-1、
7-1、答案:略
8-1、
9-1、
二、填空题 (共6题;共6分)
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共5题;共40分) 16-1、答案:略
16-2、答案:略
17-1、答案:略
17-2、答案:略
17-3、答案:略
18-1、答案:略
19-1、答案:略
19-2、答案:略
20-1、答案:略
20-2、答案:略
20-3、答案:略。