智能化配电网的综合设计方案 郭潇骏
智能分布式配电网自愈控制系统设计

智能分布式配电网自愈控制系统设计1. 引言1.1 背景介绍自愈控制系统作为智能配电网的重要组成部分,其设计目的在于提高配电网的抗干扰能力和自我修复能力。
在传统配电网中,一旦出现设备故障或异常,往往需要人工干预才能进行修复,造成了供电中断时间过长和供电可靠性不高的问题。
而自愈控制系统则能够通过智能化算法和自动化控制手段,实现对配电网故障的快速诊断和定位,从而实现快速恢复供电和降低故障影响范围的目的。
本研究旨在设计一套智能分布式配电网自愈控制系统,结合先进的物联网、人工智能和大数据技术,实现对配电网故障的智能化识别和快速恢复,从而提高配电网的可靠性和安全性。
本文将围绕智能配电网技术概述、自愈控制系统设计原理、自愈控制系统关键技术、系统实验与验证和系统性能评价等方面展开深入研究与讨论。
1.2 研究目的本研究旨在设计和实现一种智能分布式配电网自愈控制系统,以提高配电网的可靠性、安全性和灵活性。
具体目的包括:1. 研究现有智能配电网技术的发展现状,分析其特点和应用领域,为自愈控制系统的设计提供理论基础;2. 探讨自愈控制系统的设计原理,包括如何实现对配电网异常情况的及时监测、快速诊断和智能决策;3. 分析和总结自愈控制系统的关键技术,包括智能监测装置、智能决策算法、信息通信技术等,为系统的设计提供技术支持;4. 设计并实现一个具有自愈功能的分布式配电网控制系统,并通过实验验证系统的性能和可靠性;5. 最终评价系统性能,总结研究成果,展望未来智能分布式配电网自愈控制系统在实际应用中的发展前景。
1.3 研究意义智能分布式配电网自愈控制系统设计的研究意义主要体现在以下几个方面:智能分布式配电网自愈控制系统的设计将推动配电网技术的进步和发展,提高配电网的可靠性和稳定性。
配电网是电力系统中的最后一道防线,其稳定性直接影响到电力系统的安全运行。
自愈控制系统设计的研究可以帮助提升配电网的智能化程度,实现故障自动定位和快速恢复,从而减少故障对用户造成的影响,提高系统的可靠性。
智能分布式配电网自愈控制系统设计

智能分布式配电网自愈控制系统设计【摘要】本文旨在探讨智能分布式配电网自愈控制系统设计,首先介绍研究背景、研究意义和研究目的。
随后,详细描述了系统的概述、架构设计、故障诊断与定位技术、故障隔离与恢复策略以及通信技术与数据处理。
结论部分对智能分布式配电网自愈控制系统的成果进行评价,并展望未来发展趋势。
通过本文的研究,可以更好地了解如何利用先进技术实现配电网的智能化管理和自愈功能,在提高电网安全性和稳定性的为未来配电网的可持续发展提供重要参考。
【关键词】智能分布式配电网、自愈控制系统、设计概述、系统架构设计、故障诊断与定位技术、故障隔离与恢复策略、通信技术、数据处理、成果评价、未来发展趋势。
1. 引言1.1 研究背景智能分布式配电网自愈控制系统设计是当前电力系统领域的研究热点之一。
随着电力系统的规模不断扩大和负荷结构的复杂性增加,传统的配电网系统已经不能满足需求。
在这种背景下,智能分布式配电网自愈控制系统应运而生,其能够自动检测和诊断系统中的故障,并采取相应措施进行自修复,从而保障电网的可靠性和稳定性。
通过对智能分布式配电网自愈控制系统的研究和应用,可以提高电力系统的运行效率和可靠性,降低系统的维护成本和故障停电率。
对智能分布式配电网自愈控制系统进行深入研究具有重要的理论和实践意义。
本研究旨在通过系统设计和技术创新,构建一套高效可靠的智能分布式配电网自愈控制系统,以解决传统配电网系统存在的问题,提高电网的自动化水平和故障处理能力。
通过本研究,将为智能电网建设和未来电力系统的发展提供重要的技术支持和参考。
1.2 研究意义智能分布式配电网自愈控制系统设计的研究意义:智能分布式配电网自愈控制系统是配电网智能化的重要组成部分,具有重要的实用价值和应用前景。
其研究意义主要体现在以下几个方面:1. 提高配电网安全性和可靠性:自愈控制系统能够实时监测配电网运行状态,快速识别故障并采取控制措施,从而减少电网故障对用户的影响,提高电网的安全性和可靠性。
智能分布式配电网自愈控制系统设计

智能分布式配电网自愈控制系统设计1. 引言1.1 研究背景智能分布式配电网自愈控制系统设计是基于智能电网技术的发展而提出的一项重要技术。
近年来,随着电力系统规模的不断扩大以及可再生能源的大规模接入,传统的电力系统结构已经无法满足对电网安全、可靠和高效运行的要求。
在传统电力系统中,一旦出现故障,往往需要人工干预来恢复系统运行,效率低下且容易引起连锁故障。
研究智能分布式配电网自愈控制系统成为当前电力系统研究的热点之一。
随着信息通信技术和智能控制技术的日益成熟,智能电网技术逐渐引起了人们的关注。
智能电网技术能够对电力系统实现实时监测、故障诊断、智能控制和自愈恢复,提高了系统的安全性、可靠性和经济性。
而智能分布式配电网自愈控制系统作为智能电网技术的重要组成部分,对于解决传统电力系统中的故障处理问题具有重要意义。
本研究旨在设计并实现智能分布式配电网自愈控制系统,将其应用于现代电力系统中,提高系统的稳定性和可靠性,推动电力系统向智能化的方向发展。
1.2 研究意义智能分布式配电网自愈控制系统设计具有重要的研究意义。
随着智能电网技术的不断发展和应用,分布式配电网在电力系统中的地位日益重要。
传统的集中式配电网存在着单点故障易扩散、供电可靠性低、电能浪费大等问题。
而采用分布式配电网可以有效提高电网的容量利用率、抗干扰能力和供电可靠性,对于提高电网的智能化水平具有重要意义。
自愈控制系统是智能分布式配电网中的关键技术之一,它可以实现对电网故障的快速诊断和恢复,提高了电网的抗灾能力和供电可靠性。
通过设计智能分布式配电网自愈控制系统,可以有效解决传统电网中存在的故障自动定位和隔离、故障恢复时间长的问题,提高了电网的自动化水平和运行效率。
开展智能分布式配电网自愈控制系统设计的研究具有重要的现实意义和应用前景。
通过深入研究自愈控制系统的原理、系统架构设计、关键技术与算法应用等内容,可以进一步提高电网的智能化水平和运行效率,推动电力系统向智能化、可靠化、高效化方向发展。
智能分布式配电网自愈控制系统设计

智能分布式配电网自愈控制系统设计1. 引言1.1 研究背景随着能源需求的不断增长和清洁能源的发展,智能分布式配电网自愈控制系统的研究和应用变得日益重要。
传统的配电网存在着线损率高、安全性差、供电可靠性低等问题,而智能分布式配电网自愈控制系统的引入可以有效解决这些问题。
在传统的配电网中,供电中断问题常常会导致用户用电需求无法满足,影响用户生活和生产。
而智能分布式配电网自愈控制系统可以实现故障时自动切换、快速恢复供电,提高供电可靠性和连续性。
随着我国能源需求的增长和清洁能源政策的实施,智能分布式配电网自愈控制系统的设计和应用已经成为能源领域的研究热点。
通过智能化的分布式控制和监测,可以实现配电网的快速自愈和智能调度,提高供电质量和稳定性,满足用户不同的用电需求。
对智能分布式配电网自愈控制系统进行深入研究和设计具有重要的实用价值和意义。
1.2 研究意义智能分布式配电网自愈控制系统设计的研究意义在于提高配电网的可靠性和稳定性,降低电网故障对用户的影响,为新能源接入提供支撑。
随着电力需求的增长和电网规模的不断扩大,电力系统的安全性和可靠性成为迫切需要解决的问题。
智能分布式配电网自愈控制系统设计的研究可以有效地提高电网的自愈能力,快速地恢复电网故障,减小故障范围,减少停电时间,提高供电可靠性。
智能分布式配电网自愈控制系统设计能够实现对电网设备和系统运行状态的实时监测和智能控制,提高电网运行的灵活性和自适应性,为未来智能电网的建设奠定基础。
研究智能分布式配电网自愈控制系统设计具有重要的现实意义和深远的发展前景。
通过不断完善自愈控制系统设计,可以提高配电网的自动化水平,提高电网运行效率,降低运行成本,为电力系统的可持续发展和健康运行提供坚实的技术支持。
1.3 研究目的本研究旨在设计智能分布式配电网自愈控制系统,通过引入先进的信息技术和智能算法,实现对配电网故障的自动定位和隔离,并通过智能控制方法实现故障恢复或转移,从而提高配电网的可靠性和供电质量。
智能配电网

智能配电网目录1.引言1.1 背景1.2 目的2.智能配电网概述2.1定义2.2 特点3.智能配电网的架构3.1 主要组成部分3.1.1 智能电网监测系统3.1.2 智能电网控制系统3.1.3智能电网管理系统3.1.4 智能终端设备3.2 通信网络4.智能配电网的功能4.1 负荷监测和优化4.2 故障检测和修复4.3 功率质量管理4.4 能源管理与优化5.智能配电网的优势5.1 提高供电可靠性5.2 节约能源5.3增强安全性6.智能配电网的实施步骤6.1 规划和设计6.2建设和安装6.3 运行和维护7.智能配电网的案例研究7.1 国内案例7.2国际案例8.智能配电网的未来发展趋势8.1 在智能配电网中的应用8.2 规模化应用的挑战与机遇8.3智能配电网与可再生能源的结合9.法律名词及注释10.结论11.参考文献附件:附件1:智能配电网系统示意图附件2:智能配电网实施方案法律名词及注释:1.智能电网:利用现代化的信息通信技术,使电力系统具备智能化、高效率和灵活性的电网2.负荷监测和优化:通过监测负荷信息,优化电力分配,提高电能利用效率3.故障检测和修复:通过智能系统检测和定位电力设备故障,并快速修复故障,减少停电时间4.功率质量管理:针对电力系统中的功率质量问题,通过智能技术进行监测和管理,提供高质量的电能供应5.能源管理与优化:通过智能系统对能源的监测和分析,优化能源利用,实现节能减排目标本文档涉及附件,请参考附件1和附件2。
电力企业配电网智能化运行管控系统设计

电力企业配电网智能化运行管控系统设计摘要:现阶段智能电网建设工作的不断推进,对南方电网多配电网的管控有了更高的需求。
而现有的配电网运维管控平台无法有效地满足用电需求,因此需要从多方面来提升对配电网的运维和管理。
所以,本文将以大数据技术为方向,深度挖掘配电网运检数据,进行智能化配电网运维管控平台设计,从而使得配电网在智能化技术的支撑下,能够有效实现配电网的精准管理。
关键词:电力企业;配电网;智能化;运行管控;设计1配电网智能化运维系统架构想要通过大数据平台,设计一套智能化配电网运维管控平台,不仅需要借助物联网、移动通信、云计算技术以及大数据技术等等现代信息技术,还需要结合电力企业自身的实际情况和对设备的管控以及与配电自动化PMS2.0等专业数据的有效融合,才能够实现配电网运检业务的创新和发展,促进配电网工作效率的提升。
配电网智能化运维管控平台的设计中不仅具备了业务数据中心,还具备了企业级专业管控决策系统,为配电网的供电服务提供支撑。
同时,还能够有效解决传统配电网管控平台中存在的问题,从而实现供电服务的全方位管控。
2配电网智能化运行管控系统设计2.1通信接口设计基于当下市场电力产业建设工作的不断推进,配电网运行已在市场内形成了一个多企业联合的大型业务,但多个电力企业之间的交流存在障碍,导致配电网运行存在资源分散的问题。
为了解决与此相关的问题,本文系统选择的通信接口,将从EAI层面入手展开设计。
此种结构可有效地实现多个电力业务信息之间的灵活调度与高效集成,并在应用过程中,保障数据接口之间的应用与交互,以此避免传统通信接口存在的点对点(P-to-P)硬线接口方式。
结合本文系统运行需求,配电网运行中的通信接口包括GIS接口、EMC接口、信息管理接口、SCADA接口等。
在设计接口过程中,应严格按照接口兼容性、健壮性、可靠性等需求。
当外部信息与本文系统请求信息交互时,本文系统应提供信息传输有效通道,并保证不同类型信息在系统内部传输时,可以实现技术与信息的衔接。
(2.2)智能配电网调度控制系统技术方案_郭建成

2 0 6
郭建成 , 等 智能配电网调度控制系统技术方案
( ( ,北京市 1 ) 国网电力科学研究院 ) 北京 ) 1.国家电网公司国家电力调度控制中心 ,北京市 1 0 0 0 3 1; 2.南瑞集团公司 ( 0 0 1 9 2
摘要 :简述了配电自动化技术最新发展情况 , 对配电自动化建设中存在的问题进行了总结分析 , 提 出了智能配电网调度控制系统新的技术方案 。 系统框架设计采用了配电网调度控制与故障抢修一 重点对系统实用化关键技术进行了研究和探讨 , 包括配电网大数据量采 体化技术和信息集成技术 ; 集技术 、 馈线自动化技术 、 配电地理信息展示技术 , 以及适应配电网特性的应用分析软件等 ; 考虑新 能源接入对配电网的影响 , 探讨了对相关技术的改进和调整方案 。 关键词 :配电自动化 ;配电网调度控制 ;抢修指挥 ;数据采集 ;馈线自动化 ;地理信息系统 ;配电 网应用分析软件 ;新能源接入
1 系统建设总体方案
1. 1 总体架构 配电网调度控制系统基于新一代智能电网调度 ) , 简称“ 在安全Ⅰ 控制系统基础 平 台 ( D 5 0 0 0 平 台” 区实现图模管理 、 实 时 监 控、 拓 扑 分 析、 馈线自动化 和分析应用等配电 网 调 度 控 制 功 能 ; 在安全Ⅲ区实
图 1 配电网调度控制系统总体架构 F i . 1 A r c h i t e c t u r e o f d i s t r i b u t i o n d i s a t c h i n a n d c o n t r o l s s t e m r i d g p g y g
基于营配融合的智能配电网解决方案

新型电网环境下基于营配融合的智能配电网解决方案目录1建设背景 (2)2方案概述 (3)2.1建设内容 (3)2.2建设思路 (4)3设备介绍 (5)3.1智能配变终端 (5)3.1.1配变监测 (5)3.1.2状态量采集 (5)3.1.3实现对充电设施有序接入控制 (5)3.1.4台区设备监测 (6)3.1.5数据处理及传送 (6)3.1.6数据统计 (7)3.1.7就地及外接设备异常指示 (7)3.1.8后备电源 (7)3.1.9程序升级维护 (8)3.1.10自恢复 (8)3.1.11无线管理 (8)3.1.12安全防护 (8)3.2智能配电箱 (8)3.2.1主要功能 (8)3.2.2执行标准 (9)3.3出线监测终端 (9)3.4超级智能开关 (10)4系统功能 (12)4.1数据管理 (12)4.1.1基于GIS的设备台账管理 (12)4.1.2通讯状态展示 (12)4.1.3通讯状态查询 (13)4.2数据采集与实时监控 (13)4.3智能配电网 (14)4.3.1停电主动上报 (14)4.3.2故障报警 (14)4.3.3台区识别 (14)4.3.4有序用电 (14)4.3.5环境监测 (15)4.4大数据分析 (15)4.4.1台账分析 (15)4.4.2窃电分析 (15)4.4.3负荷预测 (15)4.4.4重过载分析 (16)5.应用场景 (16)1建设背景国家电网公司建立了生产管理系统、营销管理系统,还存在GIS系统、配电自动化系统、同期线损系统、用电信息采集系统等,特别是生产类系统众多,缺少总体设计和统一规划,各个系统间通信接口复杂,数据交换与共享困难,使用维护个性化,各系统数据存储形式各异,物理空间分散,数据重复,缺乏有效整合,数据一致性难以保证,缺乏统一的应用平台,每个独立的系统都不能展现电网运行全景,查看不同数据需要登陆不同的系统。
一方面员工对多个系统熟悉程度不一,造成操作维护上的困难;另一方面,基础数据维护的一致性和准确性很难保证,无法为相关业务提供坚强支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能化配电网的综合设计方案郭潇骏
发表时间:2019-07-19T16:29:46.437Z 来源:《基层建设》2019年第12期作者:郭潇骏[导读] 摘要:智能化配电网的改造工程是造福人民、满足经济发展需要的重大基础设施建设结合项目工程,对2020年全面建成小康社会有巨大的促进作用。
广东电网有限责任公司惠州惠城供电局广东惠州 516000摘要:智能化配电网的改造工程是造福人民、满足经济发展需要的重大基础设施建设结合项目工程,对2020年全面建成小康社会有巨大的促进作用。
在建设项目的综合设计中,一方面要注重学习发达国家成功的先进经验,另一方面要立足自身的发展基础,发挥自主创新的积极作用,因地制宜,全方位优化设计方案,以满足基础电网的智能化建设,提高运行效率和可靠性。
关键词:智能化;配电网;综合设计;分析 1导言
所谓的智能化配电网技术就是将传统的配电网优化,利用先进的技术改进传统技术,从而使得电能的配送效率能够有效提升。
这样一来就会从根本上适应现代化技术的发展趋势。
目前我国经济发展需求就是要利用智能化技术优化我国的配电网技术,从而可以从根本上优化我国的配电网现状。
2网络配电与终端数据的设计方案 2.1根据输配电网络结构进行合理分析
要做好网络配电系统的设计,必须要科学合理地分析终端数据,确定优化改造的措施,确保配电线网设备系统管理科学合理,遵循网络构建的基础原则,对配电设备结构进行优化处理,消除整体线路存在的缺陷,提高环网率,提高输配电智能化自动化水平。
2.2终端线路自动化控制设计
针对配电网架空线路的类型安装实际需要,线路终端智能化、自动化的设计方法是在线路开关段加装相关传感器设备,满足故障迅速隔离的自动化需要;同时,实时监测线路中存在的故障隐患及其发生定点,及时反馈相关信息。
2.3数据采集与监控系统的升级设计
目前,智能化配电网采用的数据采集与监控系统,基本上是SCADA软件。
在进行设计时,需要注意的问题是合理分析软件和网络模块间的接口形式,制定出主网络推送设计的相关图形,合理校验、分配其他相关信息,满足配电网综合模块智能自动化升级的条件。
设计中还要注意其他自动化网络模块系统的相互关联和安全级别,耦合不同模块的数据信息并进行筛选,以确定所需要的信息。
3配电网的设备功能配置管理设计 3.1在线监测监控配置的设计
在配电网运行过程中,线路、开关、变压器以及调度管理都是随时发生变化的,对各种动态数据进行实时监测,对运行状态的安全性可靠性进行科学的分析,有效防范故障风险作用。
因此,对在线监测监控配置的设计,必须按照电力行业规程,进行规范操作,确保设计审核标准与配电运行过程相适应,满足配电网设备系统运行降耗增效、安全平稳运行的需要。
3.2选取配电网络的适合模式
在进行配电网的智能化改造时,要按照实际电网的运行条件,选取相应的配电网络模式,明确变电站图形,优化科学地网络拓扑静态结构,使设备间有效连接配电网络,实现输配电设备的直观供电。
3.3智能化配电网主站的设计 3.3.1智能化配电网终端/子站的设计
智能电网配电终端的设计要根据国家规定的配电网技术导则要求,正确处理各个功能板块的关系。
设计中注意以下设备功能之间的关系:开关站、配电室、环网柜、箱式变电站、柱上开关、配电变压器、线路、监测以及控制的设备装置。
一般为模块化设计,遵循的基本原则:稳定性、安全性、可靠性、维护方便性和可扩展性。
智能化配电网配电子站的设计。
一般的配电子站是开关站或配电站的组成部分,主要具备集中与转发终端数据的功能。
3.3.2综合设计通信系统
智能化电网建设的目标,是电网运行管理和客户服务实现自动化。
所有的电网运行过程都是通过计算机网络的智能软件实施完成,包括线路维护、电能计量收费、设备的运行质量实时监测等。
因此,在设计中通信系统的设计是综合性较强的设计内容,需要多电网内运行设备的需求,做通盘的考虑,统一进行规划。
一方面提高了设备的利用率,减少了设备运行的损耗;另一方面实现了不同模式的强强联合,提升了电网的智能化水平。
第一,处理好主站与子站的关系,做好综合配比设计。
一般的主站与子站的连接都是骨干层通信网络,终端为接入层,设计时,应采用多种连接方式的组合,以备信息传输非正常状态下,选择正确的路径。
4智能化配电网络管理的设计 4.1在设计中需要注意的问题
第一,确定能够实现信息共享的全网管理模式。
第二,具有数据信息的高效采集和分析处理功能。
第三,符合综合数据信息与部门数据信息交互分析处理的技术需求。
第四,有效监测、故障排除以及高效控制。
在设计中,主要对综合性网络发令平台的控制调度功能进行优化,实现综合性配电网的可靠输送。
第五,人机交互的方便快捷高效。
智能化配电网的网络管理系统,主要内容是通过采集和处理信息实现对电网稳定安全运行的有效控制,需要人工操作与软件自动化处理的有机结合。
在设计过程中,考虑到操作人员的操作能力和专业技术能力,选用较为直观的软件,方便人机交互的高效便捷。
4.2故障隐患处理的自动化设计
全方位的信息共享提高了智能化电网运行过程中的故障隐患处理自动化质量。
首先,数据库及时把故障隐患信息由相关子站上传总站,相关部门的工作人员快速了解信息,及时做出正确的判断,发出指令,进行配电网运行中故障隐患的修复。
其次,系统及时进行信息理转化。
在设计中,根据实际需要加装的软件必须具有信息转化功能,满足人工操作需要。
一般的工作人员在实地操作中,需要的信息应该满足工程应用价值特点。
所以,系统软件诊断和分析处理的信息,需要具备科学的转化功能。
4.3配电调控的自动化设计
电网主线和配线的承载调控,在自动化智能化配电网的设计中也是重要内容,包括多个软件的综合应用,涉及电网运行的不同方面,以区分用户、电量、电价和故障隐患影响方式的多样性。
具体设计还要注意宏观和微观的关系,做到有机系统的相互联系,使自动化运行成为一个整体。
4.4故障隐患的排除和抢修管理设计
由于多重因素,电网在运行过程中难免有一定的隐患或突发故障,对故障隐患的排除和抢修管理的自动化设计要具备以下条件。
第一,缩小事故造成的停电范围;第二,最大限度地减少修复时间;第三,杜绝二次停电引发的次生事故;第四,确保通信畅通。
在设计上解决这些问题,要随电网运行模式结构与终端用户的全部信息进行梳理,分析出影响电网不正常运行的所有因素信息,制定有效的应急预案,存储于相关的信息模块,方便及时排除故障,缩小影响。
针对突发性大面积的停电事故发生,在设计中,根据电网运行的条件和供电区域的环境,做好分布抢修的安排,有备无患。
5结论
智能化配电网的综合设计关联相当多的内容和技术环节,不仅要分析配电网系统各个相关设备技术的功能要点,还要认识配电设备系统应用于具体的电力资源有效供给和传输过程的重要作用,以便保证智能化配电网络电力资源的质量,不断提高电网传输效率,确保综合性网络满足客户服务的能力。
参考文献:
[1]毕志磊.10kV配电网自动化系统的智能化建设分析[J].民营科技,2018(12):140.
[2]丁家满,沈书琳,李川.基于区间偏好和MADM的配电网智能化规划方案评估方法[J].电力系统保护与控制,2018,46(23):18-27.
[3]孙保华,陈蕾,夏栋,韩韬.基于大数据平台的配电网智能化运维管控平台设计及应用[J].电气自动化,2018,40(06):81-84.
[4]何安宏,肖徐兵.基于智能化技术与大数据技术的配电网运维管控平台[J].自动化应用,2018(11):97-98.
[5]冯应兵.基于智能化、大数据的配电网运维管控平台研究[J].企业改革与管理,2018(21):82+110.
[6]薛晓丰,徐妍,陈鑫.10kV配电网自动化系统的智能化建设分析[J].科技风,2018(31):157.。