(完整)勾股定理试题分类
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
3.1勾股定理(七大题型)(解析版)

(苏科版)八年级上册数学《第3章 勾股定理》3.1 勾股定理●勾股定理: 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.◆1、勾股定理的应用条件:勾股定理只适用于直角三角形;◆2、勾股定理揭示的是直角三角形三边的关系,已知直角三角形中的任意两边可以求出第三边.◆3、勾股定理的几种变形式:勾股定理将“数”与“形”联系起来,体现了直角三角形三边之间的等量关系.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,则a 2 + b 2 = c 2、 a 2 = c 2 - b 2、b 2 = c 2 - a 2;22b a c +=、22b c a -=、22a c b -=.【拓展】◎1、锐角三角形的三边关系是:在锐角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2>c 2.◎2、钝角三角形的三边关系是:在钝角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2<c 2.●通过拼图证明勾股定理的思路:(1)图形经过割补拼接后,只要没有重叠、没有空隙,面积就不会改变.(2)根据同一种图形的面积的不同表示方法列出等式.(3)利用等式性质变化验证结论成立,即拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→推导命题结论.●下面列举几种证明方法:◆1、“赵爽弦图”证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=12ab×4+(b﹣a)2,化简得:a2+b2=c2.◆2、我国数学家邹元治的证明方法证明:在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+12ab×4,化简得:a2+b2=c2.◆3、美国第二十任总统伽菲尔德的“总统证法”证明:在图3中,梯形的面积等于三个直角三角形的面积的和.即12(a+b)(a+b)=12ab×2+12c2,化简得:a2+b2=c2.【例题1】在直角三角形中,两条直角边的长分别为9和12,则斜边的长为 .【分析】根据勾股定理直接求出斜边的长即可.【解答】解:∵在直角三角形中,两条直角边的长分别为9和12,=15.故答案为:15.【点评】本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果直角三角形的两条直角边长为a、b,斜边长为c,那么a2+b2=c2.【变式1-1】已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=(2)利用勾股定理计算b=【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.注意勾股定理应用的前提条件是在直角三角形中.【变式1-2】(2022秋•东方期末)如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )A .6B .7C .8D .9【分析】根据等腰三角形的三线合一得到AD ⊥BC ,BD =DC =12BC =6,根据勾股定理计算,得到答案.【解答】解:∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =DC =12BC =6,在Rt △ABD 中,AD 8,故选:C .【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式1-3】(2022秋•新泰市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,则点C 到直线AB 的距离是( )A .185B .3C .125D .2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB=5,∵AC⋅BC2=AB⋅CD2,∴3×42=5CD2,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.【变式1-4】(2021春•连州市期中)如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于( )A.10B.12C.24D.48【分析】本题主要考查勾股定理运用,解答时要灵活运用直角三角形的性质.【解答】解:∵AB⊥BC,DC⊥BC,∠BAE=∠DEC=60°∴∠AEB=∠CDE=30°∵30°所对的直角边是斜边的一半∴AE=6,DE=8又∵∠AED =90°根据勾股定理∴AD =10.故选:A .【点评】解决此类题目的关键是熟练掌握运用直角三角形两个锐角互余,30°所对的直角边是斜边的一半,勾股定理的性质.【变式1-5】如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,连接CD ,则CD 的长为 .【分析】根据勾股定理可以求得AB 的长,然后根据线段垂直平分线的判定方法可以得到MN 为线段AB 的垂直平分线,再根据直角三角形斜边上的中线等于斜边的一半,即可得到CD 的长.【解答】解:∵∠ACB =90°,AC =3,BC =4,∴AB ==5,连接NA ,NB ,MA ,MB ,如图所示,∵分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,∴NA =NB ,MA =MB ,∴直线MN 垂直平分AB ,∵直线MN 交AB 于点D ,∴点D 为AB 的中点,∴CD 为Rt △ACB 斜边上的中线,∴CD =12AB =52,故答案为:52.【点评】本题考查勾股定理、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-6】(2022春•河北区期末)如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.【分析】根据勾股定理求出BC即可;根据勾股定理求出AD,求出AB即可.【解答】解:∵CD⊥AB,AC=20,CD=12,BD=9,∴∠ADC=∠BDC=90°,在Rt△CDB中,由勾股定理得:BC=15,在Rt△ADC中,由勾股定理得:AD=16,∴AB=AD+DB=16+9=25.答:AB的长为25,BC的长为15.【点评】本题考查了勾股定理的应用,关键是对定理的掌握和运用.【变式1-7】如图,在△ABC中,AC=8,BC=6,CE是AB边上的中线,CD是AB边上的高,且AE=5.(1)求CD的长;(2)求DE的长.【分析】(1)先证明三角形ABC是直角三角形,再根据等面积法即可求解;(2)根据勾股定理求出BD的长即可求解.【解答】解:(1)∵CE是AB边上的中线,∴AE=BE=5,∴AB=10,又∵AC=8,BC=6,∴AC2+BC2=82+62=100=AB2,∴△ABC是直角三角形,又∵CD是△ABC的高,∴S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=4.8;(2)在Rt△BDC中,由勾股定理得,BD=3.6,∴DE=BE﹣BD=5﹣3.6=1.4.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【例题2】勾股定理的验证方法很多,用面积(拼图)证明是最常见的一种方法.如图所示,一个直立的长方体在桌面上慢慢地倒下,启发人们想到勾股定理的证明方法,设AB=c,BC=a,AC=b,证明中用到的面积相等关系是( )A.S△ABC+S△ABD=S△AFG+S△AEFB.S梯形BCEF=S△ABC+S△ABF+S△AEFC.S△BDH=S△FGHD.S梯形BCEF=S△ABC+S△ABF+S△AEF+S△FGH【分析】通过用两种方法计算梯形BCEF的面积即可证明勾股定理.【解答】解:∵矩形ACBD旋转得出矩形AGFE,∴△ABC≌△FAE,∴AB=AF,∠BAC=∠AFE,∵∠AFE+∠EAF=90°,∴∠BAC+∠EAF=90°,∴△ABF是等腰直角三角形,由题意知:S梯形BCEF =12(a+b)•(a+b)=12(a+b)2=12a2+ab+12b2,S△ABC+S△ABF+S△AEF=12ab+12ab+12c2=ab+12c2,∴12a2+ab+12b2=ab+12c2,∴a2+b2=c2,故选:B.【点评】本题主要考查了勾股定理的证明,等腰直角三角形的判定,表示出图形面积的不同表达形式,建立等量关系是解题的关键.【变式2-1】(2022春•三门峡期末)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明.古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .【分析】由正方形面积公式、三角形面积公式以及梯形面积公式分别对各个选项进行判断即可.【解答】解:A 、大正方形的面积为:c 2,也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+(b ﹣a )2=a 2+b 2,∴a 2+b 2=c 2,故A 选项能证明勾股定理;B 、大正方形的面积为:(a +b )2,也可看作是2个矩形和2个小正方形组成,则其面积为:a 2+b 2+2ab ,∴(a +b )2=a 2+b 2+2ab ,∴B 选项不能证明勾股定理.C 、大正方形的面积为:(a +b )2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+c 2=2ab +c 2,∴(a +b )2=2ab +c 2,∴a 2+b 2=c 2,故C 选项能证明勾股定理;D、梯形的面积为:12(a+b)(a+b)=12(a2+b2)+ab,也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:12ab×2+12c2=ab+12c2,∴12(a2+b2)+ab=ab+12c2,∴a2+b2=c2,故D选项能证明勾股定理;故选:B.【点评】本题考查了勾股定理的证明、正方形面积公式、三角形面积公式以及梯形面积公式,熟练掌握内弦图、外弦图是解题的关键.【变式2-2】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.3【分析】分析题意,首先根据已知条件易得,中间小正方形的边长为:a﹣b;接下来根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×12ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3.故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.【变式2-3】(2022春•高安市期中)勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是( )A.①②B.①②③C.①②④D.①②③④【分析】根据勾股定理和大正方形面积为25,可以判断①;根据小正方形面积为1,可以判断②;根据大正方形面积为25,小正方形面积为1,可以得到四个直角三角形的面积,从而可以得到ab的值,即可判断③;根据完全平方公式可以判断④.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴12ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.【点评】本题考查勾股定理的证明、正方形的性质、直角三角形的面积,利用数形结合的思想解答是解答本题的关键.【变式2-4】如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A .36B .76C .66D .12【分析】由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则x 2=122+52=169,所以x =13,所以这个风车的外围周长是:(13+6)×4=76.故选:B .【点评】此题考查了勾股定理的证明,本题是勾股定理在实际情况中的应用,并注意隐含的已知条件来解答此类题.【变式2-5】用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列三个问题:(1)如图1是著名的“赵爽弦图”,由四个全等的直角三角形拼成,请用它验证勾股定理c 2=a 2+b 2.(2)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =4,BC =3,求CD 的长度;(3)如图1,若大正方形的面积是13,小正方形的面积是1,求(a +b )2的值(a <b ).【分析】(1)根据大正方形的面积的两种表示方法求解即可;(2)根据直角三角形的面积公式求解即可;(3)根据小正方形的为1得出2ab =12,再结合c 2=13即可求解.【解答】解:(1)如图1,大正方形的面积=c 2=4×12ab +(b ―a )2,整理得,c2=a2+b2;(2)在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125;(3)∵大正方形的面积是13,小正方形的面积是1,∴c2=13,(b﹣a)2=1,∴a2+b2﹣2ab=1,∴2ab=12,∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2的值为25.【点评】本题考查了勾股定理的证明,正确表示出大正方形的面积的两种表示方法是解题的关键.【变式2-6】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC =b ,∴正方形ACDE 的面积为b 2,∵CD =DE =AC =b ,BC =a ,EF =BC =a ,∴BD =CD ﹣BC =b ﹣a ,DF =DE +EF =a +b ,∵∠CAE =90°,∴∠BAC +∠BAE =90°,∵∠BAC =∠EAF ,∴∠EAF +∠BAE =90°,∴△BAE 为等腰直角三角形,∴四边形ABDF 的面积为:12c 2+12(b ﹣a )(a +b )=12c 2+12(b 2﹣a 2),∵正方形ACDE 的面积与四边形ABDF 的面积相等,∴b 2=12c 2+12(b 2﹣a 2),∴b 2=12c 2+12b 2―12a 2,∴12a 2+12b 2=12c 2,∴a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般利用拼图的方法,再利用面积相等证明.【例题3】如图,当正方形B的面积为64,正方形C的面积为100时,正方形A的面积为( )A.36B.25C.16D.6【分析】直接根据勾股定理进行解答即可.【解答】解:由图可知,△DEF是直角三角形,∴DE2+DF2=EF2,∵正方形B的面积=DF2,正方形C的面积=EF2,正方形A的面积=DF2,正方形B的面积为64,正方形C的面积为100,∴正方形A的面积=100﹣64=36.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.【变式3-1】(2022秋•渠县期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为( )A.8B.9C.10D.12【分析】根据勾股定理、正方形的面积公式计算即可.【解答】解:由勾股定理,得正方形E的面积=正方形C的面积+正方形D的面积,正方形E的面积=正方形A的面积+正方形B的面积,则正方形B的面积=18﹣6﹣4=8,故选:A.【点评】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.【变式3-2】(2022秋•南京期末)如图,在等腰Rt△ACB中,∠ACB=90°,AC=BC,且AB=AB、AC、BC为直径画半圆,其中所得两个月形图案AFCD和BGCE(图中阴影部分)的面积之和等于( )A.8B.4C.2D.【分析】由等腰三角形的性质及勾股定理可求解AC=CB=2,进而可求得S△ACB=2,再利用阴影部分的面积=以AC为直径的圆的面积+△ACB的面积﹣以AB为直径的半圆的面积计算可求解.【解答】解:在等腰Rt △ACB 中,∠ACB =90°,AC =BC ,AB =∴AC 2+BC 2=AB 2=8,∴AC =CB =2,∴S △ACB =12AC •BC =2,∴S 阴影=π(AC 2)2+S △ACB ―12π(AB 2)2=π+2﹣π=2,故选:C .【点评】本题主要考查等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACB 的面积﹣以AB 为直径的半圆的面积是解题的关键.【变式3-3】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A =4,S B =2,S c =2,S D =1,则S =( )A .25B .20C .9D .5【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S=S F+S G=S A+S B+S C+S D=4+2+2+1=9;即S=9;故选:C.【点评】本题考查了正方形的性质、勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-4】如图,Rt△ABC中,分别以这个三角形的三边为边长作正方形,面积分别记为S1、S2、S2.如果S2+S1﹣S3=18,则阴影部分的面积为 .【分析】由勾股定理得出S2﹣S3=S1,再根据S2+S1﹣S3=18即可得出S1的值,即为图中阴影部分的面积.【解答】解:由勾股定理得,BC2﹣AC2=AB2,即S2﹣S3=S1,∵S2+S1﹣S3=18,∴S 1=9,由图形可知,阴影部分的面积=12S 1,∴阴影部分的面积=92,故答案为:92.【点评】本题考查了勾股定理,由勾股定理得出S 2﹣S 3=S 1,是解题的关键.【变式3-5】(2022秋•绿园区校级期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为16cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.【分析】如图根据勾股定理有S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,等量代换即可求四个小正方形的面积之和.【解答】解:如右图所示,根据勾股定理可知,S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,∴S 正方形C +S 正方形D +S 正方形A +S 正方形B =S 正方形2+S 正方形3=S 正方形1=162=256(cm 2).故答案为:256.【点评】本题考查了勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-6】如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB∠DAC=∠ECB,AC=CB∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S 梯形ADEB =S △ADC +S △ACB +S △CEB ,∴(a b )(a b )2=ab 2+c 22+ab 2,化简,得:a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.【例题4】(2022秋•门头沟区期末)已知:如图,在△ABC 中,AB =AC =5,BC =8.求BC 边上的高的长.【分析】过点A 作AD ⊥BC 于点D ,根据等腰三角形的性质求出BD =12BC =4,根据勾股定理求出AD 的长即可.【解答】解:如图,过点A 作AD ⊥BC 于点D ,∵AB =AC =5,BC =8,AD ⊥BC ,∴BD =CD =12BC =4,∴AD==3,即BC 边上的高的长为3.【点评】此题考查了等腰三角形的性质、勾股定理等知识,熟练掌握等腰三角形的性质、勾股定理是解题的关键.【变式4-1】如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E两点,若BE=5,CE=3,则AC的长为 .【分析】先根据线段垂直平分线的性质可得BE=AE=5,然后在Rt△ACE中,利用勾股定理进行计算,即可解答.【解答】解:连接AE,∵DE垂直平分AB,∴BE=AE=5,∵∠C=90°,CE=3,∴AC==4,故答案为:4.【点评】本题考查了勾股定理,线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式4-2】(2021春•齐齐哈尔月考)已知:△ABC中,AC=2,∠C=30°,∠B=45°,求AB和BC的长.【分析】作AD⊥BC,得∠ADC=∠ADB=90°,根据勾股定理和直角三角形30°所对的直角边是斜边的一半计算即可.【解答】解:作AD⊥BC,∴∠ADC=∠ADB=90°,∵∠C=30°,∴AD=12AC=1,在Rt△ACD,根据勾股定理得,CD=∵∠B=45°,∴∠DAB=∠B=45°,∴BD=AD=1,则BC=1∴AB=【点评】本题考查了解直角三角形,熟练掌握勾股定理和直角三角形中30°所对的直角边是斜边的一半,这两个定理的应用是解题关键.【变式4-3】(2022春•阳新县期末)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )A.14B.4C.14或4D.以上都不对【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.【变式4-4】如图,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.连接CD,在点D的运动过程中,当△ACD 为等腰三角形时,AD 的长为 .【分析】分三种情况讨论,利用等腰三角形的性质,分别求解即可解决问题.【解答】解:①当AD =AC 时,△ACD 为等腰三角形,∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形,∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5;③当CD =AC 时,△ACD 为等腰三角形,如图,作CH ⊥BA 于点H ,则12×AB ×CH =12×AC ×BC ,∵AC =15,BC =20,AB =25,∴CH =12,在Rt △ACH 中,AH =9,∵CD =AC ,CH ⊥BA ,∴DH =HA =9,∴AD =18,综上所述:AD 的值为15或12.5或18.故答案为:15或12.5或18.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【例题5】如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是( )A .12.5B .13C .14D .15【分析】根据勾股定理得到AC 2+BC 2=AB 2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=7,∴12×π×(AC 2)2+12×π×(BC 2)2+12×AC ×BC ―12×π×(AB 2)2=7,∴AC ×BC =14,∴(AC +BC )2=AC 2+BC 2+2AC •BC =62+2×14=64,∴AC +BC =8(负值舍去),∴△ABC 的周长=AB +AC +BC =8+6=14,故选:C .【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式5-1】如图,三角形ABC中,∠C=90°,∠BAC的平分线交BC于D,DE⊥AB于E,已知CD=3,BD=5,求三角形ABC的周长.【分析】根据角平分线的性质得到DE=CD=3,根据勾股定理求出BE的长,再根据勾股定理列出方程,解方程得到答案.【解答】解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,AC=AE,∵DE⊥AB,DE=3,BD=5,根据勾股定理得,BE=4,∴AC2+82=(AE+4)2,解得AE=6,则AC=6,∴三角形ABC的周长=AC+AB+BC=24.【点评】本题考查的是角平分线的性质和勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式5-2】如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于E,若AB=10cm,AC=6cm,则△BED周长为( )A.10cm B.12cm C.14cm D.16cm【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根据三角形的周长列式计算即可得解.【解答】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB于E,∴CD=DE,在Rt△ACD和Rt△AED中,AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6,∴BE=AB﹣AE=10﹣6=4,由勾股定理得,BC==8,∴△BDE的周长=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记性质并求出三角形全等是解题的关键.【变式5-3】在四边形ABCD中,∠ABC=∠ADC=90°,连接AC,点E为AC的中点,连接BE,DE.若DE=132,BC=12,则△ABE的周长为 .【分析】根据直角三角形斜边上的中线等于斜边的一边得到AC=2BE=2DE=2AE=13,再利用勾股定理求出AB=5即可得到答案.【解答】解:∵∠ABC=∠ADC=90°,点E为AC的中点,∴AC=2BE=2DE=2AE=13,∵BC=12,∴AB=5,∴△ABE的周长为AE+BE+AB=5+2×132=18,故答案为:18.【点评】本题主要考查了直角三角形斜边上的中线的性质,勾股定理,熟知直角三角形斜边上的中线等于斜边的一半是解题的关键.【例题6】(2022春•范县期中)如图,正方形ABCD中,AE⊥BE,且AE=3,AB=5,则阴影部分的面积是( )A.13B.15C.18D.19【分析】利用正方形的面积减去三角形的面积即可求出阴影部分的面积.【解答】解:∵AE⊥BE,且AE=3,AB=5,∴BE=4,∴S△ABE=12AE⋅BE=12×3×4=6,∵四边形ABCD是正方形,AB=5,∴S正=5×5=25,∴S阴影=S正﹣S△ABE=25﹣6=19.故选:D.【点评】本题主要考查正方形的性质与勾股定理,解题的关键是用割补法求阴影部分的面积.【变式6-1】如图,在△ABC中,AC=BC=17,AB=16,求△ABC的面积.【分析】过C作CD⊥AB于D,根据等腰三角形的性质和勾股定理,以及三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,∵AC=BC=17,AB=16,∴AD=BD=12AB=8,∵AD2+CD2=AC2,∴CD=15,∴S△ABC =12AB•CD=12×16×15=120.【点评】本题考查了勾股定理,三角形的面积的计算,等腰三角形的性质,熟练掌握勾股定理是解题的关键.【变式6-2】(2022春•桐城市期末)如图2,在△ABC 中,AC =8,AB =4,∠BAC =120°,求△ABC 的面积.【分析】过点C 作CD ⊥AB ,交BA 的延长线于点D ,由勾股定理求出CD 的长,利用三角形面积公式可求出答案.【解答】解:过点C 作CD ⊥AB ,交BA 的延长线于点D ,∵∠BAC =120°,∴∠DAC =60°,∴∠ACD =30°,∵AC =8,∴AD =12AC =4,∴CD =∴S △ABC =12AB •CD =12×=【点评】此题主要考查了勾股定理,三角形面积公式,求得出AB ,CD 的长是解题的关键.【变式6-3】如图在四边形ABCD 中,∠ABC =120°,AB ⊥AD ,BC ⊥CD ,AB =4,CD =5,求该四边形的面积.【分析】延长DA 和CB 交于O ,求出∠O =30°,根据含30度角的直角三角形性质求出OB 和OD ,根据勾股定理求出OA 和OC ,根据三角形面积公式求出即可.【解答】解:延长DA 和CB 交于O ,∵AB ⊥AD ,BC ⊥CD ,∴∠DAB =∠C =∠OAB =90°,∵∠D =60°,∴∠O =30°,∵AB =4,DC =5,∴OB =2AB =8,OD =2DC =10,由勾股定理得:OA ==OC =∴四边形ABCD 的面积是:S △OCD ﹣S △OAB =12×OC ×CD ―12×OA ×AB =12×5―12×【点评】本题考查了含30度角的直角三角形性质,勾股定理,三角形的面积的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.【变式6-4】如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =4,BD =10,BC =8,求四边形ABCD 的面积.【分析】过点D 作DE ⊥BA 的延长线于点E ,利用勾股定理和角平分线的性质可得出DE =DC =6,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积.【解答】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.∵∠BCD=90°,BD=10,BC=8,∴BD=6,∵BD平分∠ABC,∴DE=DC=6,∴S四边形ABCD =S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×4×6+12×8×6,=36.【点评】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.【例题7】如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴∠AEB=∠BFC ∠BAE=∠CBF AB=BC,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.【变式7-1】已知AD是△ABC的中线,∠C=90°,DE⊥AB于点E,试说明AC2=AE2﹣BE2.【分析】根据直角三角形的性质和勾股定理可得AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2,从而证明结论.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵∠C=90°,DE⊥AB于E,∴AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2.故AC2=AE2﹣BE2.【点评】考查了直角三角形的性质和勾股定理,注意线段相互间的转化.【变式7-2】已知,如图,△ABC中,AB>AC,AD为BC边上的高,M是AD边上任意一点.求证:AB2﹣AC2=MB2﹣MC2.。
勾股定理测试题(含答案)初中数学

第14章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:1693. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。
高AD=12。
则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。
2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________(填“合格”或“不合格”)。
3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。
三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。
勾股定理习题大全(超全)

C勾股定理评估试卷(1)第一阶段1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.CAC等腰三角形的腰长为13,底边长为10,则顶角的平分线为___.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形 B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是().(A )20cm (B )10cm (C )14cm (D )无法确定在Rt △ABC 中,斜边AB=2,则AB 2+BC 2+AC 2=_____.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对26.如果Rt △的两直角边长分别为n 2-1,2n (n >1),那么它的斜边长是( )A 、2n B、n+1 C 、n 2-1 D 、n 2+127.在△ABC 中,,90︒=∠C 若,7=+b a △ABC 的面积等于6,则边长c= 如图△ABC 中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则MN=下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2ABC一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25C .斜边长为5D .三角形面积为20如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A . 0B . 1C . 2D . 3 如图,数轴上的点A 所表示的数为x,则x 2—10的立方根为( )A ..2 D .-2把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍B . 4倍C . 6倍D . 8倍小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) A .8cm B .10cm C .12cm D .14cm△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( )(A)4 (B)6 (C)16 (D)55第二阶段一、选择题1、有六根细木棒,它们的长度分别是2、4、6、8、10、12(单位:cm),从中取出三根首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为()(A)2、4、8 (B)4、8、10 (C)6、8、10 (D)8、10、122、木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据?()A.25,48,80 B.15,17,62 C.25,59,74 D.32,60,683、如果直角三角形的三条边2,4,a,那么a的取值可以有()(A)0个(B)1个(C)2个(D)3个4、已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是()(A)2厘米(B)4厘米(C)6厘米(D)8厘米5、如图,直角三角形三边上的半圆的面积依次从小到大记作S1、S2、S3,则S 1、S2、S3之间的关系是()(A)S1+S2>S3(B)S1+S2<S3(C)S1+S2=S3(D)S12+S22=S32二、填空题1、若直角三角形斜边长为6,则这个三角形斜边上的中线长为______.2、如果直角三角形的两条直角边的长分别是5cm和12cm,那么这个直角三角形斜边上的中线长等于 cm.3、如图,CD是Rt⊿ABC斜边AB上的中线,若CD=4,则AB= .4、在△ABC中,∠A:∠B:∠C=1:2:3.已知BC=3cm,则AB= cm.5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.7、如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得∠BAC =90°,∠ABC =30°,又量得BC =160 m ,则A 、B 两点之间的距离为 m (结果保留根号)8、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而c 2= + .化简后即为c 2= .第6题图abc11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是 .12、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′ 到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB′等于1米;②大于1米;③小于1米.其中正确结论的序号是________________.13、观察下面各组数:(3,4,5)、(5,12,13)、(7,24,25)、(9,40,41)、…,可发现:4=2132-,12=2152-,24=2172-,…,若设某组数的第一个数为k,则这组数为(k,,)。
2019年秋江苏省八年级上册数学期中考试《勾股定理》试题分类——填空题

2019年秋江苏省八年级上册数学期中考试《勾股定理》试题分类——填空题 1.如图,在Rt ABC ∆中,90C ∠=︒,CD AB ⊥,垂足为D .若32A ∠=︒,则BCD ∠= ︒.2.如图,四边形ABCD 内,90A C ∠=∠=︒,45D ∠=︒,4AB =,42BC =,则BD = .3.一副直角三角板叠放如图所示,现将含45︒角的三角板固定不动,把含30︒角的三角板绕直角顶点按每秒15︒的速度沿逆时针方向匀速旋转一周,当两块三角板的斜边平行时,则三角板旋转运动的时间为 .4.如图,在直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于D ,若42AC =+,42BC =-,则CD 的长 .5.在ABC ∆中,90C ∠=︒,12BC =,13AB =,AC = .6.如图,在ABC ∆中,90ACB ∠=︒,分别以AC 、AB 为边长向外作正方形,且它们的面积分别为9和25,则Rt ABC ∆的面积为 .7.如图,在ABC ∆中,90BAC ∠=︒,16AC =,20BC =,AD BC ⊥,垂足为D ,则AD 的长为 .8.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A 的边长为37,另外四个正方形中的数字8,x ,10,y 分别表示该正方形面积,则x 与y 的数量关系是 .9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是28cm ,210cm ,214cm ,则正方形D 的面积是 2cm .10.已知直角三角形的两直角边长分别为5cm 和12cm ,则此直角三角形斜边上的中线的长为 cm .11.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30︒角,那么这棵树折断之前的高度是 米.12.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4AC =,分别以Rt ABC ∆三边为直径作半圆,则阴影部分面积为 .13.如图,已知四边形ABCD 中,90ABC ∠=︒,3AB =,4BC =,13CD =,12DA =,则四边形ABCD 的面积等于 .14.如图,在Rt ABC ∆中,90ACB ∠=︒,7.5AB cm =, 4.5AC cm =,动点P 从点B 出发沿射线BC 以2/cm s的速度移动,设运动的时间为t 秒,当ABP ∆为等腰三角形时,t 的取值为 .15.在ABC ∆中,90ACB ∠=︒,6AC =,10AB =,BC = .16.如图,以Rt ABC ∆的两条直角边为边长向外作正方形1S ,2S ,若2AB =,则正方形1S ,2S 的面积和为 .17.如图,在Rt ABC ∆中,90ACB ∠=︒,48A ∠=︒,将其折叠,E 是点A 落在边BC 上的点,折痕为CD ,则EDB ∠的度数为 .18.如图,ABC ∆中,90C ∠=︒,点D 为AC 上一点,245ABD BAC ∠=∠=︒,若12AD =,则ABD ∆的面积为 .19.在ABC ∆中,90C ∠=︒,2c =,则222a b c ++= .20.如图,AC CD =,90B E ∠=∠=︒,AC CD ⊥,则12∠+∠= .21.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a ,较短直角边为b ,若8ab =,大正方形的面积为25,则小正方形的边长为 .22.ABC ∆中,10AB AC ==,16BC =,则BC 边上的高长为 .23.ABC ∆中,三边之比为3:4:5,且最长边为10m ,则ABC ∆周长为 cm .24.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.25.如图,ABC ∆中,90C ∠=︒,DE 为线段AB 的垂直平分线,25B ∠=︒,则CAE ∠的度数为 .26.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 长度为 .27.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤⋯,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为 .28.斜边上的中线长为5的等腰直角三角形的面积为 .29.在Rt ABC ∆中,90C ∠=︒,如果61AB =,11BC =,那么AC = .30.如图,小华将升旗的绳子拉到竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆6m 处,此时绳子末端距离地面2m ,则绳子的总长度为 m .31.如图,在ABC ∆中,41AB =8BC =,5AC =,则ABC ∆的面积为 .32.如图,ABC ∆中,90ACB ∠=︒,分别以ABC ∆的边AB 、BC 、AC 向外作等腰Rt ABF ∆,等腰Rt BEC∆和等腰Rt ADC ∆,记ABF ∆、BEC ∆,ADC ∆的面积分别是1S ,2S ,3S ,则1S 、2S 、3S 之间的数量关系是33.已知直角三角形的两边长为2和3,则第三边长度为 .34.如图,在ABC ∆中,4AB AC ==,E 在边BC 上且3AE =,90BAE ∠=︒,则CE 的长为 .35.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 是AC 的中点,作ADB ∠的角平分线DE 交AB 于点E ,6AE =,10DE =,点P 在边BC 上,且DEP ∆为等腰三角形,则BP 的长为 .36.已知等腰ABC ∆中,5AB AC ==,6BC =,则ABC ∆的面积为 .37.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是 .38.如图,台风过后某中学的旗杆在B 处断裂,旗杆顶部A 落在离旗杆底部C 点6米处,已知旗杆总长15米,则旗杆是在距底部 米处断裂.39.如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是5、8、3、5,则最大正方形E的面积是.40.已知等腰直角ABC∆,90==,平面内有一点D,连接CD、AD,若2AD=,CD=,6AB BCABC∠=︒,4则BCD∠=.41.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.42.如图,在正方形网格中,每个小正方形的边长都为1,两格点A,B之间的距离5(填“>”,“<”或“=”).43.如图,在33x的网格中每个小正方形的边长都是1,点A、B、C都是小正方形的顶点,则ABC∠的度数为.44.如图,ABC∆中,5AB ACBC=,点D在BC上,且AD平分BAC∠,则AD的长为.==,645.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个正方形的面积ABCD分别为10和24,则正方形A的面积是.46.如图,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S ,2S ,3S 表示,若15S =,23S =,则3S = .47.直角三角形的两条直角边长分别是3cm 、4cm ,则斜边长是 cm .48.如图,将一根长12厘米的筷子置于底面半径为3厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为 厘米.49.如图,ABC ∆为等边三角形,BD AB ⊥,BD AB =,则DCB ∠= ︒.50.若一个三角形的三边长分别为1.5、2、2.5,则这个三角形最长边上的中线为 .2019年秋江苏省八年级上册数学期中考试《勾股定理》试题分类——填空题1.如图,在Rt ABC ∆中,90C ∠=︒,CD AB ⊥,垂足为D .若32A ∠=︒,则BCD ∠= 32 ︒.【解答】解:90C ∠=︒,90BCD ACD ∴∠+∠=︒,CD AB ⊥,90ADC ∴∠=︒,90A ACD ∴∠+∠=︒,32BCD A ∴∠=∠=︒,故答案为:32. 2.如图,四边形ABCD 内,90A C ∠=∠=︒,45D ∠=︒,4AB =,42BC =,则BD = 410 .【解答】解:延长AB ,DC 交于E ,则ADE ∆,BCE ∆都是等腰直角三角形,在Rt BCE ∆中,42BC =则22(42)(42)8BE =+,则4812AE AB BE =+=+=,则12AD AE ==,连结BD ,在Rt ABD ∆中,22412410BD +=.故答案为:4103.一副直角三角板叠放如图所示,现将含45︒角的三角板固定不动,把含30︒角的三角板绕直角顶点按每秒15︒的速度沿逆时针方向匀速旋转一周,当两块三角板的斜边平行时,则三角板旋转运动的时间为 7秒或19秒 .【解答】解:如图,当斜边//AB DC 时,60CFE B ∠=∠=︒,604515BED ∴∠=︒-︒=︒,∴旋转角为9015105︒+︒=︒,105157︒÷︒=;如图,将ABE ∆继续逆时针旋转180︒,可得斜边//A B DC '',此时,旋转角为105180285︒+︒=︒,2851519︒÷︒=;综上所述,当两块三角板的斜边平行时,则三角板旋转运动的时间为7秒或19秒, 故答案为:7秒或19秒.4.如图,在直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于D ,若42AC =,42BC =CD 的长 73.【解答】解:如图,在直角三角形ABC 中,90ACB ∠=︒,42AC =+,42BC =-, 则由勾股定理知2222(42)(42)6AB AC BC =+=++-=. CD AB ⊥,∴1122AC BC AB CD =. (42)(42)763AC BC CD AB +-∴===. 故答案是:73. 5.在ABC ∆中,90C ∠=︒,12BC =,13AB =,AC = 5 .【解答】解:在ABC ∆中,90C ∠=︒,12BC =,13AB =, 225AC AB BC ∴=-=.故答案为:5.6.如图,在ABC ∆中,90ACB ∠=︒,分别以AC 、AB 为边长向外作正方形,且它们的面积分别为9和25,则Rt ABC ∆的面积为 6 .【解答】解:90ACB ∠=︒,222AC BC AB ∴+=,2925BC ∴+=,225916BC ∴=-=,4BC ∴=,Rt ABC ∴∆的面积4926=⨯÷=.故答案为:6.7.如图,在ABC ∆中,90BAC ∠=︒,16AC =,20BC =,AD BC ⊥,垂足为D ,则AD 的长为 485. 【解答】解:90BAC ∠=︒,16AC =,20BC =,2212AB BC AC ∴=-=,1122ABC S AB AC BC AD ∆==,∴1112162022AD ⨯⨯=⨯, 485AD ∴=. 故答案为:485.8.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A 的边长为37,另外四个正方形中的数字8,x ,10,y 分别表示该正方形面积,则x 与y 的数量关系是 19x y += .【解答】解:正方形A 的边长为37, 37A S ∴=,根据勾股定理的几何意义,得10(8)37A x y S +++==, 371819x y ∴+=-=,即19x y +=. 故答案为19x y +=.9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是28cm ,210cm ,214cm ,则正方形D 的面积是 17 2cm .【解答】解:根据勾股定理可知, 1249S S S +==正方形正方形大正方形,2C D S S S +=正方形正方形正方形, 1A B S S S +=正方形正方形正方形,49C D A B S S S S S ∴=+++=正方形正方形正方形正方形大正方形. ∴正方形D 的面积2498101417()cm =---=;故答案为:17.10.已知直角三角形的两直角边长分别为5cm 和12cm ,则此直角三角形斜边上的中线的长为 6.5 cm . 【解答】解:直角三角形的两直角边长分别为5cm 和12cm∴根据勾股定理斜边的长为:2251213cm +=∴三角形斜边上的中线的长为113 6.52cm ⨯=.11.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30︒角,那么这棵树折断之前的高度是 6 米.【解答】解:一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30︒角,如图,可知:90ACB ∠=︒,2AC =米,30ABC ∠=︒, 24AB AC ∴==米,∴折断前高度为246+=(米). 故答案为6.12.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4AC =,分别以Rt ABC ∆三边为直径作半圆,则阴影部分面积为 6 .【解答】解:设别BC ,AC ,AB 三边为直径的三个半圆面积分别表示为1S 、2S 、3S ,则有:2211()228BC BC S ππ==, 同理,228AC S π=,238AB S π=,222BC AC AB +=, 123S S S ∴+=;123ABC ABC S S S S S S ∆∆∴=++-=阴影,在直角ABC ∆中,223BC AB AC =-=,则1143622ABC S S AC BC ∆==⋅=⨯⨯=阴影.故答案为6.13.如图,已知四边形ABCD 中,90ABC ∠=︒,3AB =,4BC =,13CD =,12DA =,则四边形ABCD 的面积等于 36 .【解答】解:连接AC ,90ABC ∠=︒,3AB =,4BC =,2222345AC AB BC ∴=+=+=,在ACD ∆中,22225144169AC CD AD +=+==, ACD ∴∆是直角三角形,111134512362222ABCD S AB BC AC CD ∴=⋅+⋅=⨯⨯+⨯⨯=四边形.故答案为:36.14.如图,在Rt ABC ∆中,90ACB ∠=︒,7.5AB cm =, 4.5AC cm =,动点P 从点B 出发沿射线BC 以2/cm s的速度移动,设运动的时间为t 秒,当ABP ∆为等腰三角形时,t 的取值为 3.75或6或7532.【解答】解:在Rt ABC ∆中,222227.5 4.536BC AB AC =-=-=, 6()BC cm ∴=;①当7.5AB BP cm ==时,如图1,7.53.752t ==(秒);②当7.5AB AP cm ==时,如图2,212BP BC cm ==,6t =(秒);③当BP AP =时,如图3,2AP BP tcm ==,(62)CP t cm =-, 4.5AC cm =,在Rt ACP ∆中,222AP AC CP =+, 所以2224 4.5(62)t t =+-,解得:7532t =,综上所述:当ABP ∆为等腰三角形时, 3.75t =或6t =或7532t =. 故答案为:3.75或6或7532.15.在ABC ∆中,90ACB ∠=︒,6AC =,10AB =,BC = 8 .【解答】解:由勾股定理得:22221068BC AB AC =-=-=, 故答案为:8.16.如图,以Rt ABC ∆的两条直角边为边长向外作正方形1S ,2S ,若2AB =,则正方形1S ,2S 的面积和为 4 .【解答】解:以Rt ABC ∆的两条直角边为边长向外作正方形1S ,2S , ∴正方形1S 的面积是2AC ,正方形2S 的面积是2BC ,222AC BC AB +=, ∴正方形1S ,2S 的面积和为:222224AC BC AB +===.故答案是:4.17.如图,在Rt ABC ∆中,90ACB ∠=︒,48A ∠=︒,将其折叠,E 是点A 落在边BC 上的点,折痕为CD ,则EDB ∠的度数为 6︒ .【解答】解:90ACB ∠=︒,48A ∠=︒, 90904842B A ∴∠=︒-∠=︒-︒=︒, CDE ∆是CDA ∆翻折得到, 48CED A ∴∠=∠=︒,在BDE ∆中,CED B EDB ∠=∠+∠, 即4842EDB ︒=︒+∠, 6EDB ∴∠=︒. 故答案为:6︒.18.如图,ABC ∆中,90C ∠=︒,点D 为AC 上一点,245ABD BAC ∠=∠=︒,若12AD =,则ABD ∆的面积为 36 .【解答】解:作ABC ∆关于AC 的对称AEC ∆,延长BD 交AE 于点F ,如图所示: 则EAC BAC ∠=∠,BC EC =, 245ABD BAC ∠=∠=︒, 45BAF ABD ∴∠=︒=∠, BF AF ∴=, 90AFD ∠=︒, 90BFE ∴=︒,90EBF E DAF E ∠+∠=∠+∠=︒, EBF DAF ∴∠=∠,在BFE∆和AFD∆中,90,BFE AFDEBF DAFBF AF∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()BFE AFD AAS∴∆≅∆,12BE AD∴==,6BC EC∴==,ABD∴∆的面积111263622AD BC=⨯=⨯⨯=;故答案为:36.19.在ABC∆中,90C∠=︒,2c=,则222a b c++=8.【解答】解:ABC∆中,90C∠=︒,2c=,2224a b c∴+==,222448a b c∴++=+=,故答案为:820.如图,AC CD=,90B E∠=∠=︒,AC CD⊥,则12∠+∠=90︒.【解答】解:AC CD⊥,90ACD B E∴∠=∠=∠=︒,290DCE DCE ACB∴∠+∠=∠+∠=︒,2ACB∴∠=∠,190ACB∠+∠=︒,1290∴∠+∠=︒,故答案为:90︒.21.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a,较短直角边为b,若8ab=,大正方形的面积为25,则小正方形的边长为3.【解答】解:由题意可知:中间小正方形的边长为:a b-,每一个直角三角形的面积为:118422ab=⨯=,214()252ab a b∴⨯+-=,2()25169a b ∴-=-=, 3a b ∴-=, 故答案是:322.ABC ∆中,10AB AC ==,16BC =,则BC 边上的高长为 6 . 【解答】解:过A 作AD BC ⊥于D ,则8BD =,在Rt ABD ∆中,10AB =,8BD =,则221086AD =-=.所以BC 边上高的长的高为6. 故答案为:6.23.ABC ∆中,三边之比为3:4:5,且最长边为10m ,则ABC ∆周长为 2400 cm . 【解答】解:设ABC ∆三边分别是3xm 、4xm 、5xm , 最长边为10m , 510x ∴=, 解得:2x =,36x ∴=,48x =,681024()2400m cm ∴++==, 故答案为:2400. 24.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 20 ︒.【解答】解:ED 是AC 的垂直平分线, AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒, 9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒. 故答案为:20.25.如图,ABC ∆中,90C ∠=︒,DE 为线段AB 的垂直平分线,25B ∠=︒,则CAE ∠的度数为 40︒ .【解答】解:90C ∠=︒,25B ∠=︒, 902565CAB ∴∠=︒-︒=︒,DE 是线段AB 的垂直平分线,AE BE ∴=,25EAB B ∴∠=∠=︒,652540CAE CAB EAB ∴∠=∠-∠=︒-︒=︒. 故答案为:40︒. 26.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 长度为5 .【解答】解:如图所示:2222215AB AC BC =+=+=,故答案为:527.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤⋯,若第1个等腰直角三角形的直角边为1,则第2020个等腰直角三角形的面积为 20182 .【解答】解:第①个直角三角形的边长为01(2)=, 12(2), 第③个直角三角形的边长为22(2)=,第④个直角三角形的边长为32(2)=, ⋯第2020个直角三角形的边长为2019(2),面积为:2019201920181(2)(2)22⨯⨯=.故答案为:2018228.斜边上的中线长为5的等腰直角三角形的面积为 25 .【解答】解:根据直角三角形的斜边上的中线等于斜边的一半,可得斜边长为10, 由等腰直角三角形的性质得:斜边上的中线=斜边上的高5=,则面积为1105252⨯⨯=.故答案为:25.29.在Rt ABC ∆中,90C ∠=︒,如果61AB =,11BC =,那么AC = 60 . 【解答】解:在Rt ABC ∆中,90C ∠=︒,61AB =,11BC =,2222611160AC AB BC ∴=-=-=. 故答案为60.30.如图,小华将升旗的绳子拉到竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆6m 处,此时绳子末端距离地面2m ,则绳子的总长度为 10 m .【解答】解:过C 作CB AD ⊥于B ,设绳子的长度为xm ,则AC AD xm ==,(2)AB x m =-,6BC m =, 在Rt ABC ∆中,222AB BC AC +=,即222(2)6x x -+=, 解得:10x =,即绳子的长度为10m . 故答案为:10.31.如图,在ABC ∆中,41AB =,8BC =,5AC =,则ABC ∆的面积为 16 .【解答】解:过A 作AD BC ⊥于D ,设BD x =,8DC x =-,由勾股定理可得:2222AB BD AC DC -=-, 即224125(8)x x -=--, 解得:5x =,2241254AD AB BD ∴--=,ABC ∴∆的面积11841622BC AD ==⨯⨯=,故答案为:16.32.如图,ABC ∆中,90ACB ∠=︒,分别以ABC ∆的边AB 、BC 、AC 向外作等腰Rt ABF ∆,等腰Rt BEC ∆和等腰Rt ADC ∆,记ABF ∆、BEC ∆,ADC ∆的面积分别是1S ,2S ,3S ,则1S 、2S 、3S 之间的数量关系是12312S S S =+【解答】解:在Rt ABC ∆中,222AB AC BC =+, ABF ∆、BEC ∆、ADC ∆都是等腰直角三角形,2112S AB ∴=,2221124S EC BC ==,2231124S AD AC ==,22223111444S S BC AC AB +=+=,23112S S S ∴+=,故答案为:12312S S S =+.33.已知直角三角形的两边长为2和3,则第三边长度为 13或5 .【解答】解:当3是直角边时,由勾股定理得,斜边长222313=+=, 当3是斜边时,第三边22325=-=, 则第三边长度为13或5,故答案为:13或5.34.如图,在ABC ∆中,4AB AC ==,E 在边BC 上且3AE =,90BAE ∠=︒,则CE 的长为 1.4 .【解答】解:过A 作AD BC ⊥,3AE =,90BAE ∠=︒,4AB AC ==,2222345BE AB AE ∴=+=+,125AB AE AD BE ∴==,90ADE ∠=︒,22221293()55DE AE AD ∴--=,222212164()55CD AC AD ∴=-=-=,1691.455CE ∴=-=,故答案为:1.4 35.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 是AC 的中点,作ADB ∠的角平分线DE 交AB 于点E ,6AE =,10DE =,点P 在边BC 上,且DEP ∆为等腰三角形,则BP 的长为 2、5、8、18 .【解答】解:如图:在Rt ABC ∆中,90ABC ∠=︒,点D 是AC 的中点, DB AD DC ∴==,DE 是ADB ∠的角平分线, 6AE BE ∴==,10DE =,①DE 中点G 作GP BC ⊥于点P ,得矩形EGPB ,所以152PB DE ==;②作DP DE =,交BC 于两个点P '和P ,作EP ED =④交BC 于点P ④, 作DF BC ⊥于点F ,得矩形EBFD , 6DF BE ∴==,10BF DE ==, ∴根据勾股定理,得48P F BP '==, 1082P B ∴'=-=,或10818P B ''=+=. 所以BP 有四个值,分别为2、5、8、18. 故答案为2、5、8、18.36.已知等腰ABC ∆中,5AB AC ==,6BC =,则ABC ∆的面积为 12 . 【解答】解:如图,过点A 作AD BC ⊥,垂足为点D , 5AB AC ==,6BC =,116322BD CD BC ∴===⨯=,在ABD ∆中,222AD BD AB +=,2222534AD AB BD ∴=-=-=,11461222ABC S BC AD ∆∴==⨯⨯=, 故答案为:12.37.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是 5cm .【解答】解:如图所示:ABC ∆是直角三角形,底面半径为半径为6cm ,高为16cm ,12AB cm ∴=,16BC cm =,由勾股定理得:2222121620()AC AB BC cm =+=+=,∴吸管露在杯口外的长度最少为:25205()cm -=.故答案为:5cm .38.如图,台风过后某中学的旗杆在B 处断裂,旗杆顶部A 落在离旗杆底部C 点6米处,已知旗杆总长15米,则旗杆是在距底部 6.3 米处断裂.【解答】解:设旗杆是在距底部x 米处断裂,则折断部分的长为(15)x m -,由勾股定理得:2226(15)x x +=-,解得: 6.3x =,即旗杆是在距底部6.3米处断裂,故答案为:6.3.39.如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长分别是5、8、3、5,则最大正方形E 的面积是 123 .【解答】解:由勾股定理得,正方形F 的面积=正方形A 的面积+正方形B 的面积225889=+=, 同理,正方形G 的面积=正方形C 的面积+正方形D 的面积223534=+=,∴正方形E 的面积=正方形F 的面积+正方形G 的面积8934123=+=,故答案为:123.40.已知等腰直角ABC ∆,90ABC ∠=︒,4AB BC ==,平面内有一点D ,连接CD 、AD ,若2CD =,6AD =,则BCD ∠= 135︒或45︒ .【解答】解:90ABC ∠=︒,4AB BC ==,2224432AC ∴=+=,而24CD =,22636AD ==,222AD AC CD ∴=+,ACD ∴∆为直角三角形,90ACD ∠=︒;ABC ∆为等腰直角三角形,45ACB ∴∠=︒,∴①9045135BCD ∠=︒+︒=︒;②904545BCD ∠=︒-︒=︒.故135BCD ∠=︒或45︒.故答案为:135︒或45︒.41.已知小明和小王从同一地点出发,小明向正东方向走了2km ,小王向正南方向走了3km ,此时两人之间相距 13 .【解答】解:如图所示,90ACB ∠=︒,22222313()AB AC BC km ∴++=.1342.如图,在正方形网格中,每个小正方形的边长都为1,两格点A ,B 之间的距离 = 5(填“>”,“ <”或“=” ).【解答】解:如图所示:3AC =,4BC =,90ACB ∠=︒,22345AB ∴=+=,∴两格点A ,B 之间的距离5=,故答案为:=.43.如图,在33x 的网格中每个小正方形的边长都是1,点A 、B 、C 都是小正方形的顶点,则ABC ∠的度数为 45︒ .【解答】解:由勾股定理得:22215AC BC ==+=,223110AB =+=,22210AC BC AB +==,ABC ∴∆为等腰直角三角形,45ABC ∴∠=︒.故答案为:45︒.44.如图,ABC ∆中,5AB AC ==,6BC =,点D 在BC 上,且AD 平分BAC ∠,则AD 的长为 4 .【解答】解:AB AC =,AD 是BAC ∠的角平分线,132DB DC CB ∴===,AD BC ⊥, 在Rt ABD ∆中,222AD BD AB +=,2222534AD AB BD ∴=-=-=,故答案为:445.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个正方形的面积ABCD 分别为10和24,则正方形A 的面积是 14 .【解答】解:由题意知,224BD =,210BC =,且90DCB ∠=︒,2241014CD ∴=-=, 正方形A 的面积为214CD =.故答案为14.46.如图,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S ,2S ,3S 表示,若15S =,23S =,则3S = 2 .【解答】解:设直角三角形ABC 的三边BC 、CA 、AB 的长分别为a 、b 、c ,则222c a b =+可得:123S S S =+;15S =,23S =,则3532S =-=,故答案为:247.直角三角形的两条直角边长分别是3cm 、4cm ,则斜边长是 5 cm .【解答】解:直角三角形的两条直角边长分别是3cm 、4cm ,则∴斜边长22345cm =+=,故答案为:548.如图,将一根长12厘米的筷子置于底面半径为3厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为 2 厘米.【解答】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即226810cm +=,∴筷子露在杯子外面的长度至少为12102cm -=,故答案为2.49.如图,ABC ∆为等边三角形,BD AB ⊥,BD AB =,则DCB ∠= 15 ︒.【解答】解:ABC ∆为等边三角形,BA BC ∴=,60ABC ∠=︒.BD AB ⊥,BD AB =,ABD ∴∆为等腰直角三角形,90ABD ∴∠=︒,BD BC =, 150C B D A B C A B D ∴∠=∠+∠=︒,1(180)152DCB BDC CBD ∴∠=∠=︒-∠=︒. 故答案为:15.50.若一个三角形的三边长分别为1.5、2、2.5,则这个三角形最长边上的中线为54. 【解答】解:三角形的三边长分别为1.5、2、2.5,2221.52 2.5∴+=,∴此三角形是直角三角形,斜边长为2.5,∴这个三角形最长边上的中线为152.524⨯=, 故答案为:54.。
[数学]-专题11 勾股定理中的蕴含数学思想的典型试题(原版)
![[数学]-专题11 勾股定理中的蕴含数学思想的典型试题(原版)](https://img.taocdn.com/s3/m/96f95c62905f804d2b160b4e767f5acfa1c783d4.png)
专题11 勾股定理中的蕴含数学思想的典型试题(原卷版)第一部分典例剖析类型一方程思想(1)单勾股列方程1.(2022秋•泰兴市期末)如图,某渡船从点B处沿着与河岸垂直的路线AB横渡,由于受水流的影响,实际沿着BC航行,上岸地点C与欲到达地点A相距70米,结果发现BC比河宽AB多10米,求该河的宽度AB.(两岸可近似看作平行)2.(2021春•全南县期中)小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知CD=3,求AC的长.3.(2022秋•运城期末)如图,∠AOB=90°,OA=18cm,OB=6cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?二、双勾股方程4.(2022秋•仪征市期中)我们规定:三角形任意一条边的“线高差”等于这条边与这条边上高的差.如图1,△ABC中,CD为BA边上高,边BA的“线高差”等于BA﹣CD,记为h(BA).(1)如图2,若△ABC中AB=AC,AD⊥BC垂足为D,AD=6,BD=4,则h(BC)=;(2)若△ABC中,∠B=90°,AB=6,BC=8,则h(AC)=;(3)如图3,△ABC中,AB=21,AC=20,BC=13,求h(AB)的值.5.(2020秋•金台区校级期末)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE 翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,(1)求∠ECF的度数;(2)若CE=4,B′F=1,求线段BC的长和△ABC的面积.6.如图①,现有一张三角形ABC纸片,沿BC边上的高AE所在的直线翻折,使得点C与BC边上的点D重合.(1)填空:△ADC是三角形;(2)若AB=15,AC=13,BC=14,求BC边上的高AE的长;(3)如图②,若∠DAC=90°,试猜想:BC、BD、AE之间的数量关系,并加以证明.类型二数形结合思想7.(2022•锡山区)如图,数轴上点A,B分别对应2,4,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C;以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.4√2B.2√5C.5D.3√28.(2022春•雁塔区校级期末)为比较√13+√6与√13+6的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为√13与√6,则由勾股定理可求得其斜边长为√(√13)2+(√6)2=√13+6.根据“三角形三边关系”,可得√13+√6>√13+6.小亮的这一做法体现的数学思想是()A.分类讨论思想B.方程思想C.类比思想D.数形结合思想9.(2019秋•海州区校级月考)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.(1)探究√x2+y2的几何意义:如图①,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),即OP=|x|,OQ=|y|,在△OPM中,PM=OQ=|y|,则MO=√OP2+PM2=√|x|2+|y|2=√x2+y2,因此,√x2+y2的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离OM.①√(−2)2+32的几何意义可以理解为点N1(填写坐标)与点O(0,0)之间的距离N1O;②点N2(5,﹣1)与点O(0,0)之间的距离ON2为.(2)探究√(x−1)2+(y−5)2的几何意义:如图②,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(1)可知,A′O=√(x−1)2+(y−5)2,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=√(x−1)2+(y−5)2,因此√(x−1)2+(y−5)2的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离.(3)探究√(x+2)2+(y−3)2的几何意义:请仿照探究二(2)的方法,在图③中画出图形,那么√(x+2)2+(y−3)2的几何意义可以理解为点C(填写坐标)与点D(x,y)之间的距离.(4)拓展应用:①√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F(填写坐标)的距离之和.②√(x−1)2+(y+4)2+√(x+2)2+(y+3)2的最小值为(直接写出结果)类型三分类讨论思想10.(2019春•自贡期末)如图,在四边形ABCD中,AB=BC=2√2,AD=2,AB⊥BC,CD⊥AD,连接AC,点P是在四边形ABCD边上的一点;若点P到AC的距离为√3,这样的点P有()A.0个B.1个C.2个D.3个11.(如皋市期末)已知∠MAN=30°,点B在射线AN上,点C在射线AM上,且AB=12.(1)若△ABC是直角三角形,求AC的长;(2)若BC=8,求AC的长;(3)要使满足条件的△ABC唯一确定,直接写出BC的长度x的取值范围.12.(2022秋•南关区校级期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A出发,沿A→B方向运动,速度为每秒2cm;点Q从点B出发,沿B→C→A方向运动,速度为每秒4cm;两点同时开始运动,设运动时间为t秒.(1)①Rt△ABC斜边AC上的高为;②当t=3时,PQ的长为;(2)当点Q在边BC上运动时,出发几秒钟后,△BPQ是等腰三角形?(3)当点Q在边AC上运动时,直接写出所有能使△BCQ成为等腰三角形的t的值.类型四转化思想13.(2022秋•卧龙区校级期末)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.14.(2019•柯桥区模拟)如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=13AB,AF=13AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=13(S1+S3)第二部分专题提升训练1.(2020春•长春期末)如图,四边形ABCD和四边形AEFG都是正方形,点B在EF上,S1=140,S2=124,EB的长为.2.(2021春•东昌府区期末)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′D=6,则BN的长是.3.如图,已知等腰△ABC的底边BC=25cm,D是腰AB上一点,连接CD,且CD=24cm,BD=7cm.(1)求证:△BDC是直角三角形;(2)求AB的长.4.如图,在长方形ABCD中,AB=3,BC=2√6,点E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点.(1)求证:DF=GF;(2)求DF的长度.5.(2022•岳池县模拟)在劳技课上,老师请同学们在一张长为9cm,宽为8cm的长方形纸板上,剪下一个腰长为5cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).请你帮助同学们画出图形并计算出剪下的等腰三角形的面积.(求出所有可能的情况)6.设计师要用四条线段CA,AB,BD,DC首尾相接组成如图所示的两个直角三角形图案,∠C与∠D为直角,已知其中三条线段的长度分别为1cm,9cm,5cm,第四条长为xcm,试求出所有符合条件的x的值.7.(2022秋•南关区校级期末)如图,在△ABC中,∠ACB=90°,AB=10,AC=8,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,设点P的运动时间为t秒(t>0).(1)求BC的长.(2)斜边AB上的高是.(3)若点P在∠BAC的角平分线上,则t的值为.(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.。
专题04 勾股定理常考压轴题汇总(原卷版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。
(完整版)勾股定理综合测考试试题

1 / 3勾股定理全章综合测试题(120分)一。
选择题(每小题3分,共30分)1. △ABC 中, AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC 等于( ) A. 6. B.6 C.5 D.42.(如图)在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°, BD=2,AB=32,则AC 的长是( ) A.3 B. 23 C. 3 D.323 3.△ABC 中,∠B=30°,∠C=45°,AB=8, 则AC 等于( ) A .4 B.24 C.34 D.64 4.等腰三角形一腰上的高是a, 且这条高与底边的夹角为60°,则这个三角形的面积为( )A.22a B.23a C.2321a D.2331a 5. △ABC 在下列条件中不是直角三角形的是( )A.a ﹕b ﹕c=1﹕3﹕2B.222c a b -= C.∠C=2∠A-∠B D. ∠A ﹕∠B ﹕∠C=1﹕2﹕36.一个直角三角形斜边的平方等于两条直角边乘积的2倍,则这个三角形中有一个角是( )A.15°B.30°C. 45°D. 75°7.直角三角形两条直角边上的中线长分别是4和7,则这个直角三角形的面积是( )A .133 B. 64 C.136 D.以上都不对8.在直角三角形中,两直角边分别为a ﹑b ,斜边为c ,斜边上的高为h ,则( )A.c b a 111=+ B. 2222h b a =+ C.22111b a h +=D.bah =1 9.已知三角形三内角之比为1﹕2﹕3,它的最长边为10,则此三角形的面积为( ) A.20 B.103 C.35 D.2325 10. (如图)在△ABC 中,AC=8,BC=6,在△ABE 中,DE 为AB 边上的高, DE=12,60=∆ABE S ,则△ABC 的面积为( )A.24B.48C.64D.72二.填空题((每小题3分,共30分)11.在RT △ABC 中,∠C=90°,三内角A 、B 、C 的对边分别为a 、b 、c ,当∠A=30°时, a ﹕b ﹕c= ;当∠A=45°时, a ﹕b ﹕c= ;12.直角三角形的两直角边长为8和10,则斜边上的高为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整)勾股定理试题分类编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)勾股定理试题分类)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)勾股定理试题分类的全部内容。
《数学》八年级下册 第十七章勾 股 定 理【题型一】勾股定理的验证与证明1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 .得出S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2.2。
如图,每个小正方形的边长是1,图中三个正方形的面积分别是S 1、S 2、S 3,则它们的面积关系是 ,直角△ABC 的三边的关系是 .参考答案:对于S 3显然用数方格的方法不合适,利用“相减法”或“相加法"用面积公式计算三个正方形面积,得出S 1+S 2=S 3,从而得到:AB 2+BC 2=AC 2。
3。
如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗?参考答案:由S 大正方形=4S Rt△+S 小正方形,得c 2=4×ab+(b -a )2∴a 2+b 2=c 2。
4.如图,是由四个全等的Rt△拼成的图形,你能用它证明勾股定理吗?参考答案:由S 大正方形=4S Rt△+S 小正方形,得(a+b )2=4×ab+c 2∴a 2+b 2=c 2.5.如图,已知∠A =∠B =90°且△AED≌△BCE ,A 、E 、B 在同一直线上。
根据此图证明勾股定理.1212BABAa参考答案:先证明△DCE 是等腰直角三角形,再根据梯形面积为三个三角形面积之和得 (a+b )2=2×ab+c 2,∴a 2+b 2=c 2.6.如图,一个直立的火柴盒倒下来就可以证明勾股定理,请你根据图形,设计一种证明方法。
参考答案:方法类似第5题.7.(2011温州) 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1).图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成。
记图1-2中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,则S 2的值是 。
参考答案:8。
(2010 湖北孝感)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话"的语言。
[定理表述]请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述); [尝试证明]以图1中的直角三角形为基础,可以构造出以a 、b 为底,以a+b 为高的直角梯形(如图2),请你利用图2,验证勾股定理; [知识拓展]利用图2中的直角梯形,我们可以证明其证明步骤如下:121212103.2<+c ba cb a D CBAGFED CBAG F c ba DCA图2图1a c b c cb a= .又∵在直角梯形ABCD中有BC AD(填大小关系),即,参考答案:[定理表述]如果直角三角形的两直角边长分别为a、b,斜边长为c,那么[尝试证明]≌又整理,得[知识拓展]【题型二】以勾股定理为基础的有趣结论1。
如图,根据所标数据,确定正方形的面积A=,B=,C=。
参考答案:10,144,1600。
2。
如图,直线l上有三个正方形a、b、c若a和c的面积分别为5和11,则b的面积为多少?参考答案:先证两直角三角形全等,得FE=BC,从而得正方形b的面积为16。
3。
如图,以直角三角形的三边向形外作等边三角形,探究S a、S b和S c参考答案:显然S△BCE a2,S△ACD b2,S△ABF=c2又a2+b2=c2∴S a+S b=S c.4.如图,以直角三角形的三边向形外作等腰直角三角形,探究S a、S b和S c之间的关系。
ADbaBC,+=.2<+∴cba,222cba=+ABERt∆,,EDCAEBECDRt∠=∠∴∆90,90=∠+∠∴=∠+∠DECAEBDECEDC.90=∠∴AED,AEDRtDECRtABERtABCDSSSS∆∆∆++=梯形.212121))((212cababbaba++=++∴.222cba=+cbaADRCcAD2,,2<+<=A91B25169C419cbalFEDCBAbacCBAFEacBFE参考答案:类似上一题。
5. 如图,以直角三角形的三边向形外作半圆,探究S a 、S b 和S c 之间的关系.参考答案:类似上一题.6。
如图,已知ΔABC 中,∠ACB =90°,以ΔABC 的各边为长边向形外作矩形,使其宽为长的一半,则这三个矩形的面积S 1、S 2、S 3之间有什么关系,并证明你的结论.参考答案:类似上一题.7. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm ,则正方形A 、B 、C 、D 的面积之和为多少?参考答案:49cm 2.8。
如图,在水平面上依次放置着七个正方形已知斜放置的三个正方形的面积分别是a 、b 、c ,正放置的四个正方形的面积依次是S 1、S 2、S 3 ,则 S 1 +S 2 +S 3 +S 4= .参考答案:a+c【题型三】利用勾股定理求边长和进行论证 【选择题】1.在Rt△ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A.26 B.18 C 。
20 D.21 参考答案:C2。
在平面直角坐标系中,已知点P 3,4),则OP 的长为( ) A.3 B.4 C 。
5 D.参考答案:C3。
在Rt△ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A 。
5 B. C. D 。
710255abcCBACBAS 1S 2S 37cmFEDCBA参考答案:C 42)A。
C。
D。
3参考答案:B5。
若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A。
6 B。
7 C。
8 D.9参考答案:C6。
若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是( )A。
5 B.6 C。
D.5或参考答案:D7。
下列各组数中以a,b,c为边的三角形不是Rt△的是()A。
a=2,b=3, c=4 B。
a=7, b=24, c=25 C.a=6, b=8, c=10 D。
a=3, b=4, c=5参考答案:A8。
要从电杆离地面5m处向地面拉一条长为13m的电缆,则地面电缆固定点与电线杆底部的距离应为( )。
A.10m B。
11m C.12m D.13m参考答案:C9.现有两根木棒,长度分别为44㎝和55㎝.若要钉成一个三角形木架,其中有一个角为直角,所需最短的木棒长度是( ).A.22㎝ B。
33㎝ C.44㎝ D。
55㎝参考答案:B10.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10 B。
三角形的周长为25 C。
三角形的面积为48 D. 第三边可能为10参考答案:D11.直角三角形的斜边为20cm,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A 。
27cm B。
30cm C。
40cm D. 48cm参考答案:D12.将直角三角形的三边扩大相同的倍数后,得到的三角形是()A 直角三角形B 锐角三角形C 钝角三角形D 不能确定参考答案:A13.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里 B. 30海里C。
35海里D. 40海里参考答案:D14。
(2010山东临沂)如图,和都是边长为4的等边三角形,点、、在同一条直线上,连接)A B.C。
D。
参考答案:D77A B C∆D C E∆B C EBD BDEDCBAEDCBA15. (2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) A.4 cm B.5 cm C.6 cm D 。
10 cm 参考答案:B16。
(2010广西南宁)图中,每个小正方形的边长为1,的三边的大小关系式()A. B 。
C 。
D 。
参考答案:C17。
(2011山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( ) A2m B 。
3m C 。
6m D.9m参考答案:C18。
(2011湖北黄石)将一个有45度角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30)cm D. 6cm参考答案:D19. (2011贵州贵阳)如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A.3。
5B.4.2C.5.8 D 。
7 参考答案:D20. 直角三角形三边的长分别为3、4、x ,则x 可能取的值有( ).A 。
1个B 。
2 个 C. 3个 D 。
无数多个 参考答案:B 斜边可以为4或x,故两个答案。
21.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A.60∶13 B.5∶12 C 。
12∶13 D 。
60∶169 参考答案:D22.直角三角形一直角边长为11,另两边均为自然数,则其周长为( ) A 。
121 B.120 C.132 D 。
以上答案都不对 参考答案:C 【填空题】1.3和4,则此三角形的周长为__________. 12或7 提示:长为5,所以直角三角形的周长为3+4+5=12或3+4=7。
2.直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
ABC ∆c b a ,,b c a <<c b a <<b a c <<a b c <<C BA参考答案:3。