中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析
中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析

一、选择题

1.图中不能证明勾股定理的是( )

A .

B .

C .

D .

2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )

A .121

B .110

C .100

D .90

3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2

B .2

C .3

D .4

4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )

A .2n ﹣2

B .2n ﹣1

C .2n

D .2n+1

5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )

A .0个

B .1个

C .2个

D .3个

6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2

a b +值为( )

A .25

B .9

C .13

D .169

7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( )

A .6

B .2

C .8

D .10

8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

A .1

B .2021

C .2020

D .2019

9.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )

A .1和2之间

B .2和3之间

C .3和4之间

D .4和5之间

10.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )

A .3

B .5

C .4.2

D .4

二、填空题

11.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.

12.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是

_____.

13.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 14.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.

15.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.

16.如图,在Rt ABC ?中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.

17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.

18.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5. ①线段OA 的取值范围是______________; ②若BD -AC =1,则AC ?BD = _________.

19.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.

20.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2

三、解答题

21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=?与线段AB 相交于点

,E DF 与射线AC 相交于点F .

()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;

()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于

点F .求证:1

2

BE CF AB +=

()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的

延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.

22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.

23.阅读与理解:

折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?

分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点

C '处,即AC AC '=,据以上操作,易证明AC

D AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.

感悟与应用:

(1)如图(a ),在ABC 中,90ACB ∠=?,30B ∠=?,CD 平分ACB ∠,试判断

AC 和AD 、BC 之间的数量关系,并说明理由;

(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,

12DC BC ==,

①求证:180B D ∠+∠=?; ②求AB 的长.

24.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .

(1)求证:AE =BD ;

(2)试探究线段AD 、BD 与CD 之间的数量关系;

(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.

25.已知ABC ?中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ?的关于点B 的二分割线.例如:如图1,Rt ABC ?中,90A ?∠=,20C ?∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ?∠=,显然直线BD 是ABC ?的关于点B 的二分割线.

(1)在图2的ABC ?中,20C ?∠=,110ABC ?∠=.请在图2中画出ABC ?关于点B 的二分割线,且DBC ∠角度是 ;

(2)已知20C ?∠=,在图3中画出不同于图1,图2的ABC ?,所画ABC ?同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;

(3)已知C α∠=,ABC ?同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).

26.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .

(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;

②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;

(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.

27.(1)如图1,在Rt ABC ?中,90ACB ∠=?,60A ∠=?,CD 平分ACB ∠. 求证:CA AD BC +=.

小明为解决上面的问题作了如下思考:

作ADC ?关于直线CD 的对称图形A DC '?,∵CD 平分ACB ∠,∴A '点落在CB 上,且

CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.

(2)参照(1)中小明的思考方法,解答下列问题:

如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.

28.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4, (1)试说明△ABC 是等腰三角形;

(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),

①若△DMN的边与BC平行,求t的值;

②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.

图1 图2 备用图

29.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,

①则线段BC,DC,EC之间满足的等量关系式为;

②求证:BD2+CD2=2AD2;

(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.

30.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.

(1)如图1,若m=8,求AB的长;

(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.A 解析:A 【分析】

根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项. 【详解】

解:A 选项不能证明勾股定理;

B 选项,通过大正方形面积的不同表示方法,可以列式()2

21

42

a b ab c +=?

+,可得222+=a b c ;

C 选项,通过梯形的面积的不同表示方法,可以列式(

)2

211

22

22

a b ab c +=?+,可得

222+=a b c ;

D 选项,通过这个不规则图象的面积的不同表示方法,可以列式

22211

2222

c ab a b ab +?=++?,可得222+=a b c .

故选:A . 【点睛】

本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.

2.B

解析:B 【分析】

延长AB 交KF 于点O ,延长AC 交GM 于点P ,可得四边形AOLP 是正方形,然后求出正方形的边长,再求出矩形KLMJ 的长与宽,然后根据矩形的面积公式列式计算即可得解. 【详解】

解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,则四边形OALP 是矩形.

90CBF ∠=?,

90ABC OBF ∴∠+∠=?,

直角ABC ?中,90ABC ACB ∠+∠=?,

OBF ACB ∴∠=∠,

在OBF ?和ACB ?中,

BAC BOF ACB OBF BC BF ∠=∠??

∠=∠??=?

()OBF ACB AAS ∴???,

AC OB =∴,

同理:ACB PGC ???,

PC AB ∴=, OA AP ∴=,

所以,矩形AOLP 是正方形, 边长347AO AB AC =+=+=,

所以,3710KL =+=,4711LM =+=, 因此,矩形KLMJ 的面积为1011110?=, 故选B .

【点睛】

本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.

3.B

解析:B 【分析】

过点O 作OE ⊥BC 于E ,OF ⊥AC 于F ,由角平分线的性质得到OD=OE=OF ,根据勾股定理求出BC 的长,易得四边形ADFO 为正方形,根据线段间的转化即可得出结果. 【详解】

解:过点O 作OE ⊥BC 于E ,OF ⊥AC 于F , ∵BO,CO 分别为∠ABC ,∠ACB 的平分线, 所以OD=OE=OF , 又BO=BO,

∴△BDO ≌△BEO,∴BE=BD. 同理可得,CE=CF.

又四边形ADOE 为矩形,∴四边形ADOE 为正方形. ∴AD=AF.

∵在Rt △ABC 中,AB=6,AC=8,∴BC=10. ∴AD+BD=6①, AF+FC=8②, BE+CE=BD+CF=10③,

①+②得,AD+BD+AF+FC=14,即2AD+10=14, ∴AD=2.

故选:B.

【点睛】

此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.

4.A

解析:A 【分析】

连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答. 【详解】

解:∵△ABC 是边长为1的等腰直角三角形

1211

11222

ABC S -?∴=??== ,

∴2222AC 112,AD (2)(2)2=+=

=+=

2232

1

2212:

2

1

22122

AACD ADE S S --?∴====??==

∴第n 个等腰直角三角形的面积是22n - , 故答案为A. 【点睛】

本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.

5.D

解析:D 【解析】

分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE 与三角形DCG 全等,利用全等三角形对应边相等即可得到BE=DG ,利用全等三角形对应角相等得到∠CBM=∠MDO ,利用等角的余角相等及直角的定义得到∠BOD 为直角,利用勾股定理求出所求式子的值即可. 详解:①∵四边形ABCD 和EFGC 都为正方形, ∴CB=CD ,CE=CG ,∠BCD=∠ECG=90°, ∴∠BCD+∠DCE=∠ECG+∠DCE ,即∠BCE=∠DCG. 在△BCE 和△DCG 中,CB =CD ,∠BCE =∠DCG ,CE =CG , ∴△BCE ≌△DCG , ∴BE=DG ,

故结论①正确.

②如图所示,设BE 交DC 于点M ,交DG 于点O.

由①可知,△BCE ≌△DCG , ∴∠CBE=∠CDG ,即∠CBM=∠MDO.

又∵∠BMC=∠DMO ,∠MCB=180°-∠CBM-∠BMC ,∠DOM=180°-∠CDG-∠MDO , ∴∠DOM=∠MCB=90°, ∴BE ⊥DG. 故②结论正确.

③如图所示,连接BD 、EG , 由②知,BE ⊥DG ,

则在Rt △ODE 中,DE 2=OD 2+OE 2, 在Rt △BOG 中,BG 2=OG 2+OB 2, 在Rt △OBD 中,BD 2=OD 2+OB 2, 在Rt △OEG 中,EG 2=OE 2+OG 2,

∴DE 2+BG 2=(OD 2+OE 2)+(OB 2+OG 2)=(OD 2+OB 2)+(OE 2+OG 2)=BD 2+EG 2. 在Rt △BCD 中,BD 2=BC 2+CD 2=2a 2, 在Rt △CEG 中,EG 2=CG 2+CE 2=2b 2, ∴BG 2+DE 2=2a 2+2b 2. 故③结论正确. 故选:D.

点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.

6.A

解析:A 【分析】

根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2

222a b a ab b +=++即可求解. 【详解】

根据勾股定理可得2213a b +=, 四个直角三角形的面积是:

1

4131122

ab ?=-=,即212ab =,

则()2

222131225a b a ab b +=++=+=. 故选:A . 【点睛】

本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.

7.A

解析:A 【分析】

设CF=x ,则AC=x+2,再由已知条件得到AB=6,BC=6+x ,再由AB 2+AC 2=BC 2得到62+(x+2)2=(x+4)2,解方程即可. 【详解】

设CF=x ,则AC=x+2,

∵正方形ADOF 的边长是2,BD=4,△BDO ≌△BEO ,△CEO ≌△CFO , ∴BD=BE ,CF=CE ,AD=AF=2, ∴AB=6,BC=6+x , ∵∠A=90°, ∴AB 2+AC 2=BC 2, ∴62+(x+2)2=(x+4)2, 解得:x=6, 即CF=6, 故选:A . 【点睛】

考查正方形的性质、勾股定理,解题关键是设CF=x ,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.

8.B

解析:B 【分析】

根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可. 【详解】

解:由题意得,正方形A 的面积为1,

由勾股定理得,正方形B 的面积+正方形C 的面积=1, ∴“生长”了1次后形成的图形中所有的正方形的面积和为2, 同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3, ∴“生长”了3次后形成的图形中所有的正方形的面积和为4, ……

∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021, 故选:B .

【点睛】

本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.

9.C

解析:C 【分析】

利用勾股定理求出AB 的长,再根据无理数的估算即可求得答案. 【详解】

由作法过程可知,OA=2,AB=3, ∵∠OAB=90°,

∴22222313OA AB +=+=, ∴P 13 ∵

91316<

∴3134<<,

即点P 所表示的数介于3和4之间, 故选C. 【点睛】

本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.

10.C

解析:C 【分析】

根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度. 【详解】

设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺, 由勾股定理可得:222=OA OB AB + 即:()2

224=10x x +-, 解得:x =4.2

故折断处离地面的高度OA 是4.2尺.

故答案选:C . 【点睛】

本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.

二、填空题

11.48 【分析】

用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.

【详解】

解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,

则()221S AB a b ==+,222

2S HE a b ==+,()2

23S TM a b ==-,

∵123144S S S ++=,

∴()()2

2

22144a b a b a b ++++-=

22222222144a b ab a b a b ab ++++++-= 2233144a b += 2248a b +=,

∴248S =. 故答案是:48. 【点睛】

本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用. 12.(0,21009) 【解析】

【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.

【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,

∴OA 12,OA 2=2)2,…,OA 2018=2)2018, ∵A 1、A 2、…,每8个一循环, ∵2018=252×8+2

∴点A 2018的在y 轴正半轴上,OA 2018=()

2018

2=21009,

故答案为(0,21009).

【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号. 13.1425+或825+ 【分析】

分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长. 【详解】

解:分两种情况考虑:

如图1所示,此时△ABC 为锐角三角形,

在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,

∴BC=253+,

∴△ABC 的周长为:652531425+++=+; 如图2所示,此时△ABC 为钝角三角形,

在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,

∴BC=253-,

∴△ABC 的周长为:65253825++=+ 综合上述,△ABC 的周长为:145+85+ 故答案为:145+825+ 【点睛】

此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 14.12 【分析】

延长BA 至E ,使AE=BC ,并连接OE.证?BCO ?∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()

2

2

2210210220BO EO +=+=,可得AB=BE-AE.

【详解】

如图,延长BA 至E ,使AE=BC ,并连接OE. 因为三角形COA 是等腰直角三角形 所以CO=AO,∠AOC=∠BOC+∠AOB=90° 因为∠ABC=90°,∠AOC=90°, 所以∠BAO+∠BCO=180°, 又∠BAO+∠OAE=180° 所以∠BCO=∠OAE 所以?BCO ?∠EAO 所以BO=EO, ∠BOC=∠EOA 所以,∠BOE=∠EOA+∠AOB=90° 所以三角形BOE 是等腰直角三角形 所以(

)(

)

2

2

22102

102

20BO EO +=+=

所以AB=BE-AE=20-8=12 故答案为:12 【点睛】

考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 15.5 【分析】

设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值 【详解】

如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10 设绳索x 尺,则OA=OB=x ∴OC=x+1-5=x-4

在Rt △OBC 中,OB 2=OC 2+BC 2 ∴2

2

2

(4)10x x =-+ 得x=14.5(尺) 故填14.5

,

【点睛】

此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键.

16.

258

【分析】

先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论. 【详解】

∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5; ∵DE 垂直平分AC ,垂足为F , ∴FA=

1

2AC=52

,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C , ∴△AFD ∽△CBA , ∴

AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258

. 【点睛】

本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 17.4或2510 【分析】

分三种情况讨论:①以A 为直角顶点,向外作等腰直角三角形DAC ;②以C 为直角顶点,向外作等腰直角三角形ACD ;③以AC 为斜边,向外作等腰直角三角形ADC .分别画图,并求出BD . 【详解】

①以A 为直角顶点,向外作等腰直角三角形DAC ,如图1. ∵∠DAC =90°,且AD =AC , ∴BD =BA +AD =2+2=4;

②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.

∵△ABC是等腰直角三角形,∠ACD=90°,

∴∠DCE=45°.

又∵DE⊥CE,

∴∠DEC=90°,

∴∠CDE=45°,

∴CE=DE=2

2

2

2

?=.

在Rt△BAC中,BC22

22

=+=22,∴BD2222

2222

BE DE()()

=+=++= 25;

③以AC为斜边,向外作等腰直角三角形ADC,如图3.

∵∠ADC=90°,AD=DC,且AC=2,

∴AD=DC=AC sin45°=2

2

2

2

?=.

又∵△ABC、△ADC是等腰直角三角形,

∴∠ACB=∠ACD=45°,

∴∠BCD=90°.

又∵在Rt△ABC中,BC22

22

=+=22,

∴BD2222

22210

BC CD

=+=+=

()().

故BD的长等于4或510.

故答案为4或510.

【点睛】

本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,

18.①1<OA<4.②67

2

【解析】

(1)由三角形边的性质5-3<2OA<5+3,

1<OA<4.

相关主题
相关文档
最新文档