红外光谱的特征吸收峰

合集下载

红外光谱的特征吸收峰

红外光谱的特征吸收峰
C H
(C-H面外弯曲) 官能团
2 R C H C H
吸收频率(cm-1) 1000和900
______________________________________________________
顺式 R C H C H R 反式
730~675
970~960 880 840~800
R2C CHR
C-H 伸缩 (cm-1)
3300
5. 组成化学键的原子质量
原子质量越小,红外吸收频率越大
C-H C-C C-O C-Cl C-Br C-I 800 550 500
伸缩 (cm-1) ~3000 1200 1100
各类官能团的特征吸收峰
4000~2400cm-1(主要为Y-H伸缩振动吸收) 官能团 吸收频率(cm-1) _______________________________________________________ -醇,酚 3650~3600(自由) OH3500~3200(分子间氢键)
R2C CH2
(C-H面外弯曲)
官能团 吸收频率(cm-1) ______________________________________________
R
770~和710~690 770~735 810~和725~680 860~800
R R
R R
R
R
官能团区
3600 ~ 1500 cm-1 吸收带不多,化学键和官能团的特征频率区 OH 3650~3100 cm-1 1700 cm-1
C
O
指纹区
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个 分子的特征。可用于鉴定两个化合物是否同一化合物

红外吸收光谱特征峰

红外吸收光谱特征峰

红外吸收光谱特征峰1. 水平振动峰:大部分物质在红外光谱中显示出实数振动峰,这些峰通常位于1500-4000 cm^-1区间。

在这个区间内,主要的振动模式有:C-H拉伸振动,C=O伸缩振动,C-N伸缩振动和O-H伸缩振动等。

2. 弯曲振动峰:这些峰通常位于500-1500 cm^-1区间,代表物质中相对较低能量的振动模式。

其中,主要的弯曲振动包括:C-H弯曲振动、O-H弯曲振动和C-N弯曲振动等。

3. 拉曼峰:拉曼光谱是一种与红外光谱类似的光谱,主要用于研究物质的分子振动。

拉曼光谱中的峰通常位于200-4000 cm^-1区间,包括了与红外光谱重叠的水平和弯曲振动。

4. 振动-转动峰:当分子既有振动运动又有转动运动时,红外光谱中会出现振动-转动峰。

这些峰通常位于0-500 cm^-1区间,具有特定的振动和转动组合频率,可以用来确定分子的对称性。

5. 过渡金属峰:一些过渡金属化合物在红外光谱中显示出独特的吸收峰。

这些峰通常位于400-2000 cm^-1区间,对应于金属-配体之间的振动模式。

6. 质子峰:质子(H+)在红外光谱中呈现为一个孤立线峰。

质子峰的位置通常在1500-2500 cm^-1之间,变化范围较大,取决于质子的环境。

红外吸收光谱中的这些特征峰可以提供物质的结构、键合和功能基团等信息。

通过分析化合物在红外光谱中的峰值位置和形状,可以确定其化学组成和化学结构,实现化合物的鉴定和分析。

同时,红外光谱还可以用于跟踪反应过程、监测化学变化和定量分析等方面。

这些特征峰在各个研究领域,如有机化学、材料科学和生物化学等中都有广泛的应用。

红外吸收光谱特征峰

红外吸收光谱特征峰

表15.1 典型有机化合物的重要基团频率(/cm-1)化合物基团X—H伸缩振动区叁键区双键伸缩振动区部分单键振动和指纹区烷烃—CH3asCH:2962±10(s)asCH:1450±10(m)sCH:2872±10(s)sCH:1375±5(s)—CH2-asCH:2926±10(s)CH:1465±20(m)sCH:2853±10(s)CH:2890±10(s)CH:~1340(w)烯烃CH:3040~3010(m)C=C:1695~1540(m)CH:1310~1295(m)CH:770~665(s)CH:3040~3010(m)C=C:1695~1540(w)CH:970~960(s)炔烃-C≡C-HCH:≈3300(m)C≡C:2270~2100(w)芳烃CH:3100~3000(变)泛频:2000~1667(w)C=C:1650~1430(m)2~4个峰CH:1250~1000(w) CH:910~665单取代:770~730(vs)≈700(s)邻双取代:770~735(vs)间双取代:810~750(vs)725~680(m)900~860(m)~对双取代:860~790(vs)醇类R-OHOH:3700~3200(变)OH:1410~1260(w)CO:1250~1000(s)OH:750~650(s)酚类Ar-OHOH:3705~3125(s)C=C:1650~1430(m)OH:1390~1315(m)CO:1335~1165(s)脂肪醚R-O—R'CO:1230~1010(s)酮C=O:≈1715(vs)醛CH:≈2820,≈2720(w)双峰C=O:≈1725(vs)羧酸OH:3400~2500(m)C=O:1740~1690(m)OH:1450~1410(w)CO:1266~1205(m)酸酐C=O:1850~1880(s)C=O :1780~1740(s)CO:1170~1050(s)酯泛频C=O:≈3450(w)C=O:1770~1720(s)COC:1300~1000(s)胺-NH2NH2:3500~3300(m)双峰NH:1650~1590(s,m) CN(脂肪):1220~1020(m,w)CN(芳香):1340~1250(s)—NHNH:3500~3300(m)NH:1650~1550(vw)CN(脂肪):1220~1020(m,w)CN(芳香):1350~1280(s)酰胺asNH:≈3350(s)C=O:1680~1650(s)CN:1420~1400(m)sNH:≈3180(s)NH:1650~1250(s)NH2:750~600(m)NH:≈3270(s)C=O:1680~1630(s)NH+CN:1750~1515(m)CN+NH:1310~1200(m)C=O:1670~1630酰卤C=O:1810~1790(s)腈-C≡NC≡N:2260~2240(s)硝基化合物R—N02NO2:1565~1543(s)NO2:1385~1360(s)CN:920~800(m)Ar—NO2NO2:1550~1510(s)NO2:1365~1335(s)CN:860~840(s)不明:≈750(s)吡啶类CH:≈3030(w)C=C及C=N:1667~1430(m)CH:1175~1000(w)CH:910~665(s)嘧啶类CH:3060~3010(w)C=C及C=N:1580~1520(m)CH:1000~960(m)CH:825~775(m)*表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

红外光谱1000左右的吸收峰

红外光谱1000左右的吸收峰

红外光谱1000左右的吸收峰
红外光谱中,吸收峰的位置通常与特定的化学键或者分子振动模式有关。

在1000 cm-1左右的区域,常见的吸收峰主要与以下几种化学键或分子振动有关:
C-O键的拉伸振动:在醇、醚或酯等含有C-O键的有机化合物中,C-O键的拉伸振动通常会在1050-1150 cm-1的区域产生吸收峰。

C-N键的拉伸振动:在胺或酰胺等含有C-N键的有机化合物中,C-N键的拉伸振动通常会在1080-1360 cm-1的区域产生吸收峰。

S=O键的拉伸振动:在磺酰或亚磺酰等含有S=O键的有机化合物中,S=O键的拉伸振动通常会在1000-1300 cm-1的区域产生吸收峰。

C-Cl键的拉伸振动:在含有C-Cl键的有机化合物中,C-Cl键的拉伸振动通常会在600-800 cm-1的区域产生吸收峰,但在某些情况下也可能出现在1000 cm-1左右。

以上只是一些常见的情况,实际上在1000 cm-1左右的吸收峰可能与其他类型的化学键或分子振动有关。

具体的判断需要结合化合物的结构和其他谱图信息。

红外光谱特征吸收峰[1]

红外光谱特征吸收峰[1]

C 吸收带多,整个分子振动转动引起的,反映整个 分子的特征。可用于鉴定两个化合物是否同一化合物
-羧酸
NHCH-
3400~2500(缔合)
3500~3100 ~3300 3100~3010 3000~2850 2900~2700 (一般2820和2720)
伯,仲胺,酰胺
C C H
C C H (C6H5 C H
O C H
H)
2400~1500cm-1(主要为不饱和键的伸缩振动吸收)
官能团 吸收频率(cm-1) ______________________________________________ C N 2260~2240 C C 2250~2100 酮,酸 1725~1700 醛,酯 1750~1700 C O 酰胺 1680~1630 酰氯 1815~1785 酸酐 1850~1800 和1780~1740 烯 1650~1640 C C 芳环 1600~1450(多峰)
C-H 伸缩 (cm-1)
3300
5. 组成化学键的原子质量
原子质量越小,红外吸收频率越大
C-H C-C C-O C-Cl C-Br C-I 800 550 500
伸缩 (cm-1) ~3000 1200 1100
各类官能团的特征吸收峰
4000~2400cm-1(主要为Y-H伸缩振动吸收) 官能团 吸收频率(cm-1) _______________________________________________________ -醇,酚 3650~3600(自由) OH3500~3200(分子间氢键)
§2.3 红外光谱的特征吸收峰
影响特征吸收峰的结构因素 1. 化学键的强度
化学键越强, 力常数 k 越大,红外吸收 频率υ越大

红外光谱特征吸收峰讲解

红外光谱特征吸收峰讲解

红外光谱特征吸收峰讲解在红外光谱中,红外光与物质分子相互作用,使得分子中不同的化学键发生振动,从而吸收特定的红外辐射能量。

这些振动涉及键的拉伸、弯曲、扭转等运动,其振动频率和强度与分子结构和化学键的性质有关。

因此,红外光谱特征吸收峰可以提供分子结构和化学键信息。

红外光谱的横坐标是波数(cm-1),波数是光的频率的倒数,与光的能量成反比。

而纵坐标则是吸光度,表示物质对红外光的吸收程度。

吸收峰的位置可以通过测量吸收带的最大峰值处的波数来确定。

下面介绍一些常见的红外光谱特征吸收峰:1. 羧酸吸收峰(1700-1715 cm-1):羧酸的OH键弯曲振动和C=O双键伸缩振动引起的强吸收峰。

该吸收峰可以用来鉴别羧酸。

2. 羧酸盐吸收峰(1560-1640 cm-1):与羧酸吸收峰相比,羧酸盐的C=O双键伸缩振动引起的吸收峰位置左移。

3. 醛和酮吸收峰(1690-1750 cm-1):与羧酸吸收峰类似,它们也是由于C=O双键伸缩而引起的吸收峰。

但醛和酮的吸收峰位置通常比羧酸略高。

4. 羧酸和酮醇吸收峰(3200-3550 cm-1):由于羟基(OH)的振动引起的宽吸收峰。

在红外光谱中,羧酸和酮醇的羟基吸收峰位置和形状相似。

5. 烷基的C-H伸缩振动吸收峰(2850-3000 cm-1):烷基的C-H键伸缩振动引起的吸收峰。

短直链烷烃的C-H伸缩振动吸收峰出现在2850-2960 cm-1的范围内,而长直链烷烃的C-H伸缩振动峰则出现在2960-3000 cm-16. 芳香族化合物的C-H伸缩振动吸收峰(3020-3100 cm-1):芳香环中C-H键伸缩振动引起的吸收峰的位置通常在3020-3100 cm-17. N-H伸缩振动吸收峰(3300-3500 cm-1):含氮化合物中的氮氢键伸缩振动引起的吸收峰。

在氮-氢键的存在下,吸收峰位置可能出现在3300-3500 cm-1之间。

这些是红外光谱中常见的一些特征吸收峰范围和其对应的化学结构或基团。

总结 红外光谱频率与官能团特征吸收峰

红外波谱分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。

相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。

常见官能团的红外吸收频率整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900波数范围内常常出现力常数大的三件、累积双键如:- C≡C-,- C≡N, -C=C=C-, -C=C=O, -N=C=O等的伸缩振动吸收带。

在1900以下的波数端有-C=C-, -C=O, -C=N-, -C=O等的伸缩振动以及芳环的骨架振动。

1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰,因此光谱非常复杂。

该区域各峰的吸收位置受整体分子结构的影响较大,分子结构稍有不同,吸收也会有细微的差别,所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

红外光谱特征吸收峰

红外光谱特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。

多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。

这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。

实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。

通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

一、基团频率区和指纹区(一)基团频率区中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。

最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。

区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。

在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。

这种振动与整个分子的结构有关。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。

O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。

当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。

当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。

红外光谱的特征吸收峰


CH2
CH
1465(C-H面内弯曲) 1340(C-H面内弯曲)
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________________
R CH CH2
1000和900
顺式
RCH CHR
反式
730~675 970~960
官能团
吸收频率(cm-1)
_______________________________________________________
-醇,酚
3650~3600(自由)
OH-
3500~3200(分子间氢键)
-羧酸
3400~2500(缔合)
NH- 伯,仲胺,酰胺
3500~3100
CH-
CCH
~3300
R2C CHR R2C CH2
880 840~800
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________
R R
R R
R
770~和710~690 770~735 810~和725~680
R
R
860~800
官能团区
官能团
吸收频率(cm-1)
______________________________________________
NO2
1565~1545和1385~1360
C O(醇,酚,羧酸,酯,酸酐) 1300~1000
胺1350~1000源自CN伸缩酰胺
1420~1400
CH3

红外光谱特征吸收峰讲解


O R C Cl
伸缩(cm-1 ) 1715
1815~1785
3. 共轭效应
由于羰基与α 、β 不饱和双键共轭削弱了碳 氧双键,使羰基伸缩振动吸收频率减小
O R C R
O R C C C
R
O C C C
+
C=O伸缩(cm-1)
1715
1685~1670
4. 成键碳原子的杂化类型 化学键的原子轨道 s 成分越多,化学键 力常数 k 越大,吸收频率越大 C H C H C H sp sp2 3100 sp3 2900
C H
(C-H面外弯曲) 官能团 吸收频率(cm-1)
______________________________________________________
R
CH
CH2
1000和900
顺式 RCH CHR 反式
730~675
970~960 880 840~800
R2C CHR
R2C CH2
C
O
指纹区
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个 分子的特征。可用于鉴定两个化合物是否同一化合物
1500~400cm-1 (某些键的伸缩和C-H弯曲振动吸收)
官能团 吸收频率(cm-1) ______________________________________________ NO2 1565~1545和1385~1360 C O(醇,酚,羧酸,酯,酸酐) 1300~1000 胺 1350~1000 C N 伸缩 酰胺 1420~1400 CH3 1460和1380 (C-H面内弯曲) CH2 1465(C-H面内弯曲) 1340(C-H面内弯曲)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响特征吸收峰的结构因素
1. 化学键的强度
化学键越强, 力常数 k 越大,红外吸收 频率υ越大
CC
CC
CC
伸缩 2150cm-1 1650cm-1 1200cm-1
CC
CC
.
2. 诱导效应
如羰基连有拉电子基团可增强碳氧双键, 加大常数 k 使吸收向高频方向移动
O
O
RCR
R C Cl
伸缩(cm-1 ) 1715
CH2
CH
1465(C-H面内弯曲) 1340(C-H面内弯曲)
.
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________________
R CH CH2
1000和900
顺式
RCH CHR
反式
730~675 970~960
CN
2260~2240
CO
CC
酮,酸 醛,酯 酰胺 酰氯 酸酐
烯 C C 芳环
2250~2100 1725~1700 1750~1700 1680~1630 1815~1785 1850~1800
和1780~1740 1650~1640 1600~1450(多峰)
.
1500~400cm-1 (某些键的伸缩和C-H弯曲振动吸收)
官能团
吸收频率(cm-1)
______________________________________________
NO2
1565~1545和1385~1360
C O(醇,酚,羧酸,酯,酸酐) 1300~1000

1350~1000
CN
伸缩
酰胺
1420~1400
CH3
1460和1380
(C-H面内弯曲)
3600 ~ 1500 cm-1 吸收带不多,化学键和官能团的特征频率区
OH
CO
指纹区
3650~3100 cm-1 1700 cm-1
1500~400 cm-1 吸收带多,整个分子振动转动引起的,反映整个
分子的特征。可用于鉴定两个化合物是否同一化合物
.
官能团
吸收频率(cm-1)
_______________________________________________________
-醇,酚
3650~3600(自由)
OH-
3500~3200(分子间氢键)
-羧酸
3400~2500(缔合)
NH- 伯,仲胺,酰胺
ቤተ መጻሕፍቲ ባይዱ
3500~3100
CH-
CCH
~3300
C C H(C6H5 H)
3100~3010
CH
O
3000~2850
2900~2700
CH
. (一般2820和2720)
2400~1500cm-1(主要为不饱和键的伸缩振动吸收)
官能团
吸收频率(cm-1)
______________________________________________
C H CH
C-H 伸缩 (cm-1)
sp 3300
sp2 3100
sp3 2900
.
5. 组成化学键的原子质量 原子质量越小,红外吸收频率越大 C-H C-C C-O C-Cl C-Br C-I
伸缩 (cm-1) ~3000 1200 1100 800 550 500
.
各类官能团的特征吸收峰
4000~2400cm-1(主要为Y-H伸缩振动吸收)
R2C CHR R2C CH2
880
840~800
.
(C-H面外弯曲)
官能团
吸收频率(cm-1)
______________________________________________
R R
R R
R
770~和710~690 770~735 810~和725~680
R
R
860~800
.
官能团区
.
1815~1785
3. 共轭效应
由于羰基与α 、β 不饱和双键共轭削弱了碳 氧双键,使羰基伸缩振动吸收频率减小
C=O伸缩(cm-1)
O
O
RCRRC CC
1715 1685~1670
O
+
RCCC
.
4. 成键碳原子的杂化类型
化学键的原子轨道 s 成分越多,化学键 力常数 k 越大,吸收频率越大
CH
相关文档
最新文档