齿轮结构设计和校核

合集下载

齿轮设计的一般步骤

齿轮设计的一般步骤

1、根据负载、以及运动状态(速度、是垂直运动还是水平运动)来计算驱动功率2、初步估定齿轮模数(必要时,后续进行齿轮强度校核,若在强度校核时,发现模数选得太小,就必须重新确定齿轮模数,关于齿轮模数的选取,一般凭经验、或是参照类比,后期进行安全校核)3、进行初步的结构设计,确定总传动、以及确定传动级数(几级传动)4、根据总传动比进行分配,计算出各级的分传动比5、根据系统需要进行详细的传动结构设计(各个轴系的详细设计),这样的设计一般还在总装图上进行。

6、在结构设计的时候,若发现前期的参数不合理(包括齿轮过大、相互有干涉、制造与安装困难等),就需要及时的返回上面程序重新来过7、画出关键轴系的简图(一般是重载轴,当然,各个轴系都做一遍当然好),画出各个轴端的弯矩图、转矩图,从而找出危险截面,并进行轴的强度校核8、低速轴齿轮的强度校核9、安全无问题后,拆分零件图渐开线圆柱齿轮传动设计程序主要用于外啮合渐开线圆柱标准直齿齿轮传动设计、渐开线圆柱标准斜齿齿轮传动设计和渐开线圆柱变位齿轮传动设计。

程序中的各参数和各设计方法符合相关的国家标准,即:渐开线圆柱齿轮基本轮廓(GB/T1356-2001)、渐开线圆柱齿轮模数(GB/T1357-1987等效采用ISO54-1977),以及《渐开线圆柱齿轮承载能力计算方法》(GB/T3480-1997等效ISO6336-1966)、渐开线圆柱齿轮精度(GB/T10095-2001等效ISO1328-1997)。

程序根据输入的齿轮传动设计参数和相关设计要求,进行齿轮几何尺寸的计算、齿轮接触疲劳强度校核和弯曲疲劳强度校核的计算,以及相关公差值的计算等。

整个设计过程分步进行,界面简洁,操作方便硬齿面齿轮风力发电增速齿轮箱中,其输入轴承受叶片传过来的轴向力、扭矩和颠覆力矩。

中间轴上的齿轮承受输入端传过来的力矩和输出端刹车时传过来的刹车力矩。

输出轴上的齿轮承受中间轴传过来的扭矩,同时也承受输出端刹车时带来的刹车力矩。

斜齿圆柱齿轮设计和校核计算

斜齿圆柱齿轮设计和校核计算

分度圆圆周力 材料接触应力 材料弯曲应力
承载能力计算
Ft σHlim σFE
93015.538 1300 18Cr2Ni4W 900
弧度
角度
传动比
t
1
端面模数 mt
6.0205
0.34906585
端面压力 角
αt
0.379139 21.72308008
0.41887902
βb 0.392184 22.47048266
161.50138 160.48751
136.762 135.749
分度圆直径 基圆直径 节圆直径 齿顶压力角 分度圆弧齿厚 重合度
滑动率
当量齿数 理论跨齿数 实际跨齿数 公法线长度
计算量棒直径 实际量棒直径
量棒中心所在圆上 的压力角
跨棒距
d=mt*cosβ db
ααt
ε=εα+εβ εα εβ η
630
计算中心距
244.493
分度圆直径
241.628 247.3578
计算法向模数
mn 5.93721
SIN() COS()
TAN()
ASIN ()
ACOS ()
ATAN() inv ()
0.3420201 0.9396926 0.36397023 0.35657 1.2142 0.3358 0.014904
0.4067366 0.9135455 0.44522869 0.43221 1.1386 0.3967 0.02635
0.370121 0.9289836 0.39841502 0.38887 1.1819 0.3624 0.019276
0.362053 0.9321575 0.38840325 0.37951 1.1913 0.3548 0.017934

2齿轮的设计及校核

2齿轮的设计及校核

2齿轮的设计及校核齿轮是一种常见的动力传递装置,广泛应用于机械传动中。

齿轮的设计和校核是确保齿轮传动系统正常工作的重要环节。

本文将从齿轮的设计和校核两个方面进行分析,详细介绍其原理和方法。

齿轮的设计是根据传动的要求和工作条件,确定齿轮的尺寸、型号、齿数等参数的过程。

首先需要确定传动的速比、转矩要求等。

然后根据这些参数,计算出齿轮的模数、齿轮的宽度、齿轮的材料等。

根据实际情况,可以选择使用标准齿轮或定制齿轮。

齿轮的校核是验证设计参数的合理性和齿轮传动系统的可靠性的过程。

主要包括以下几个方面:1.齿轮强度校核。

根据所选用的齿轮材料,计算其强度参数,并与设计需求进行比较。

常用的齿轮强度计算方法有弗赖德、路中曼等。

2.齿面接触强度校核。

通过计算齿轮齿面接触应力和接触应力分布,判断齿面接触是否能满足传动要求。

根据计算结果,可以调整齿轮的齿形和齿数等参数。

3.齿轮轴承能力校核。

根据齿轮传动的工作转矩,计算齿轮轴承的最大受力,并与轴承的额定负载进行比较。

如果超过了轴承的额定负载,需要重新选择适合的轴承。

4.齿轮的热强度校核。

计算齿轮的热强度参数,判断齿轮在长时间高速工作时的热强度能否满足要求。

如果不能满足,可能需要进行降速设计或采取散热措施。

5.齿轮的动态特性校核。

根据齿轮的质量、转动惯量等参数,计算齿轮系统的固有频率和谐振现象,并进行分析和校核。

如果存在谐振问题,需要采取减振措施。

在齿轮的设计和校核过程中,需要使用一些专业软件和标准规范进行计算和判断。

一般常用的计算软件有Ansys、AutoCAD等,相关的标准规范有GB/T 3456.2-2024等。

总之,齿轮的设计和校核是确保齿轮传动系统正常运行的关键步骤。

只有在设计和校核过程中充分考虑到齿轮的强度、接触、轴承、热强度和动态特性等方面的要求,才能保证齿轮传动系统的可靠性和稳定性。

齿轮齿条的设计计算与校核

齿轮齿条的设计计算与校核

齿轮齿条的设计计算与校核1. 引言齿轮齿条是一种常见的传动装置,广泛应用于机械设备中。

它们通过齿轮和齿条之间的啮合来传递运动和力量。

在设计齿轮齿条传动系统时,需要进行一系列的计算与校核,以确保其可靠性和性能满足要求。

本文将介绍齿轮齿条传动系统的设计计算与校核方法,包括齿轮参数的选择、传动比的计算、齿轮强度的校核等。

2. 齿轮参数的选择在设计齿轮齿条传动系统时,首先需要选择合适的齿轮参数。

齿轮参数包括模数、齿数、压力角等。

2.1 模数的选择模数是指齿轮齿条的齿数与圆直径之比。

模数的选择应根据齿轮传动的要求和可用的标准模数进行匹配。

一般情况下,应选择尽可能大的模数,以提高齿轮的强度和寿命。

2.2 齿数的选择齿数的选择主要考虑齿轮传动的传动比和齿轮的工作条件。

传动比是指齿轮输入轴的转速与输出轴的转速之比。

2.3 压力角的选择压力角是指齿轮齿条啮合面上法线与齿轮轴线之间的夹角。

压力角的选择应根据齿轮传动的要求和可用的标准压力角进行匹配。

一般情况下,应选择尽可能小的压力角,以减小齿轮齿条的侧向力和噪声。

3. 传动比的计算传动比是齿轮齿条传动系统中重要的性能指标之一,它影响着输出轴的转速和扭矩。

传动比的计算可以根据齿轮齿数的比值来确定。

4. 齿轮强度的校核齿轮强度是齿轮齿条传动系统设计中关键的校核指标之一,它决定了齿轮的承载能力和寿命。

齿轮强度的校核可以通过齿轮的材料强度和几何参数来确定。

4.1 齿轮模数的校核齿轮模数的校核可以通过计算齿轮的接触应力和弯曲应力来进行。

应保证齿轮的接触应力和弯曲应力不超过齿轮材料的强度极限。

4.2 齿轮齿数的校核齿轮齿数的校核可以通过计算齿轮的接触比和模数来进行。

应保证齿轮的接触比和模数满足设计要求。

4.3 齿轮强度的校核齿轮强度的校核可以通过计算齿轮的接触疲劳寿命来进行。

应保证齿轮的接触疲劳寿命不低于设计要求。

5. 结论齿轮齿条的设计计算与校核是确保齿轮齿条传动系统可靠性和性能的重要环节。

齿轮设计校核

齿轮设计校核

小齿轮模数 m3齿数 Z21传动比 i压力角 α20螺旋角 β20齿宽 b30当量齿数 ZvZv=Z/cos3β25.308234端面压力角 αttan αt=tan α/cos β21.172832端面模数 mtmt=m/cos β 3.1925333分度圆直径 dd=mt*Z 67.0432基圆直径 dbdb=d*cos αt 62.51746未变位中心距 aa=(d1+d2)/2中心距 a'a'节圆直径 d'd1=2a'/(i+1) d2=i*d167.323529中心距变位系数 yy=(a'-a)/m 啮合角 αt'cos αt'=acos αt/a'21.780474啮合圆螺旋角 β'cos β'=cos αcos β/cos αt 18.747237法向啮合角 αn'tan αn'=tan αt'*cos β'20.725487总变位系数 x Σx Σ=(Z1+Z2)*(inv αt'-inv αt)/2tan α变位系数 xnx Σ=xn1+xn20.258齿顶高变动系数 ΔyΔy=x Σ-y 齿顶高 haha=(h *an+xn-Δy)m 3.796齿根高 hfhf=(h *an+c *n-xn)m 2.976齿顶圆直径 dada=d+2ha 74.63齿根圆直径 dfdf=d-2df 61.09总重合度 ξγξγ=ξα+ξβ端面重合度 ξαξα=(Z1*(tan-tan αt')+Z2(tan-tan αt'))/2/pi 纵向重合度 ξβξβ=b*sin β/pi/m 齿轮受力输入力矩 NmT 550切向力 FtFt=2*T/d'16339.01径向力 FrFr=Ft*tan α'/cos β'6894.46轴向力 FaFa=Ft*tan β'5545.47法向力 FnFn=Ft/cos β'cos α'18580.88齿面接触强度校核计算接触应力 σHσH=Z B/D σHDsqrt(K A K V K H βK H α)许用接触应力 σHP σHP=σHG/S Hmin齿轮计算校核齿轮参数 2.2381.4707051.0886832.559389-0.007108.54611090.1510.144啮合系数 Z B Z D使用系数 K A 1.25动载系数 K V接触强度计算的齿向载荷分布系数 K Hβ接触强度计算的齿间载荷分布系数 K Hα计算接触应力基本值 σHDσHD=Z H Z E ZαZβsqrt(Ft(i+1)/(d1*b*i))节点区域系数 Z H弹性系数 Z E重合度系数 Zα螺旋角系数 Zβ计算齿轮接触极限应力 σHGσHG=σHlim Z NT Z L Z V Z R Z W Z X实验齿轮接触疲劳极限 σHlim接触强度计算寿命系数 Z NT润滑剂系数 Z L速度系数 Z V粗糙度系数 Z R工作硬化系数 Z W接触强度计算尺寸系数 Z X接触强度最小安全系数 S Hmin 1.25齿根弯曲强度校核计算齿根应力 σFσF=σFDK A K V K FβK Fα许用齿根应力 σFPσFP=σFG/S Fmin齿根应力基本值 σFDσFD=FtY F Y S Yβ/bm弯曲强度计算的齿向载荷分布系数 K Fβ弯曲强度计算的齿间载荷分布系数 K Fα齿形系数 Y F应力修正系数 Y S螺旋角系数 Yβ计算齿轮弯曲极限应力 σFGσFG=σFlimY ST Y NT Yδrel T Y Rrel Y X实验齿轮弯曲疲劳极限 σFlim试验齿轮应力修正系数 Y ST弯曲强度计算寿命系数 Y NT齿根圆角敏感系数 YδrelT齿根表面状况系数 Y Rrel弯曲强度计算尺寸系数 Z X弯曲强度最小安全系数 S Fmin角度转弧度RADIAN弧度转角度DEGR 大齿轮平方POWER3472.23820203056.64223921.1728323.1925333150.04907139.92003.5461328109150.676470.15121.78047418.74723720.7254870.144-0.1140.0072.6804.092155.41141.87593893970705461886839291230.9516339.016894.465545.4718580.88。

齿轮强度校核方法--熊猫出品

齿轮强度校核方法--熊猫出品
点。它的纵坐标就 是YFa的数值。查表 求得YFa=2.66。
齿数z
24齿
σFE齿轮材料的弯曲疲劳强度的基本值,见8.4.2节中的(8)。在(8)中,给出五 个图表:14-1-110、111、112、113、114。根据所选齿轮的实际情况选择表14-1113中的(b)。查询数值方法按照公式①中的方法查询。求得σFP=σFlim=230N/mm2 则
K:载荷系数。在新版机械设计手册第三册的14-133中可以找到关于载荷系数 K的选取方法:载荷系数K,常用值K=1.2~2,当载荷平稳,齿宽系数较小,轴承 对称布置,轴的刚性较大,齿轮精度较高(6级以上),以及齿轮的螺旋角较大时 取较小值;反之取较大值。从以上六个条件中来对应所要核算的齿轮的条件。根 据对比后的结果在K的常用范围内选取。此次我选择K=1.8(载荷平稳,齿宽系数 较小,轴为非对称分布,轴的刚性不大,齿轮精度不高,螺旋角0°) T1电机减速机输 出扭矩。这个不用具 体说了。此次所选伺 服电机输出扭矩为31 N· m,减速比为15.84。 则 T1=31×15.84=491.04 N· m ψd齿宽系数,可 根据表14-1-69去选取。 这个表比较容易查询, 因为各项条件给的都 很明确。此次我选择 ψd=0.4 1.先选择配置形式
≈5.2
理论上,m ≥ 5.2取最小且最接近整数则为m = 6。此次切换机构选择的齿轮模 数为m = 5。当齿轮厚度b,齿轮齿数z,减速机输出扭矩T1相同时。模数为6的标准 齿轮比模数为5的标准齿轮承载能力更强。而分度圆直径越大,齿轮的齿受力越小。 所以,当分度圆理论值约为100mm,模数理论值为5.2时。可以用分度圆直径 120mm,模数为5的标准齿轮代替。由于我公司所用的齿轮主要模数均为5,所以 考虑到各方面因素。则可认定切换机构所选择模数m = 5,齿数: z1=24的齿轮在合 理范围内。 关于齿宽b,在表14-1-6中最后一项齿宽的选择原则中,推荐在表14-1-69下面的注 释中有说明。 ψd=b/d1 ,当d1=120mm,ψd=0.4时,b=120×0.4=48mm。

(整理)2齿轮的设计及校核

(整理)2齿轮的设计及校核

2 齿轮的设计及校核2.1 设计参数及基本参数表2.1 设计对象主要参数项目参数前进档档数 5最高时速140km/h最大扭矩200Nm/1400r/min最高转速4800r/min传动比范围0.5-5.572.1.1 基本参数表表2.2 各档传动比传动比/档位一档二档三档四档五档计算值 5.57 3.14 1.77 1 0.56 实际值 5.46 3.20 1.76 1 0.58表2.3各档齿轮齿数档位/齿数常啮合一档二档三档五档倒档输出轴齿轮21 40 36 28 18 362.2 齿轮参数确定2.2.1 齿形、压力角α、螺旋角β汽车变速器齿轮的齿形、压力角、及螺旋角按表2.4选取。

压力角一般大的压力角,可提高齿轮的抗弯强度与表面强度,使承载能力加大;而小的压力角,会使重合度加大,降低轮齿刚度,但其减少了动载荷,使传动平稳,降低噪声。

本设计的商用汽车要求承载能力大,齿轮的强度高,采用大压力角,全部齿轮选用相同的压力角,按国家标准为20°。

2.2.2 齿宽 (1)设计齿宽的要求设计变速器各齿轮齿宽,应考虑变速器的质量与轴向尺寸,同时中间轴齿轮 38 13 23 31 41 19表2.4汽车变速器齿轮的齿形、压力角与螺旋角项目/车型 齿形 压力角α螺旋角β轿车 高齿并修形的齿形 14.5°,15°,16°16.5° 25°~45° 一般货车GB1356-78规定的标准齿形 20°20°~30°重型车同上低档、倒档齿轮22.5°,25°小螺旋角也要保证齿轮工作平稳以及轮齿的强度要求。

齿宽可以设计得小,这样就可以减少变速器的轴向尺寸和减小质量,工作应力也会加大。

而大的齿宽,工作时会因轴的变形导致齿轮倾斜,齿轮会受力不均匀产生偏载,所以应合理设计齿宽的大小。

(2)齿宽的设计方案第一轴常啮合齿轮的齿宽可以设计得大一些,使接触应力降低,提高齿轮的传动平稳性,此外,对于选取相同的模数的各档齿轮,档位低的齿轮的齿宽(如一档齿轮齿宽)可以取得稍大一些。

设计齿轮强度校核

设计齿轮强度校核

设计齿轮强度校核齿轮是一种常见的机械传动装置,广泛应用于机械设备中,它能够将电动机或其他动力源的转速和扭矩传递到机械装置中。

在设计齿轮时,强度校核是非常重要的,它能够确保齿轮在运行过程中具有足够的强度和刚度,能够承受来自外部载荷的影响,同时保持良好的运转性能和寿命。

齿轮传动中,主要的应力包括接触应力和弯曲应力。

接触应力是由于齿轮齿面之间的接触而产生的,它的大小与齿轮的载荷、齿数、模数、齿面硬度等因素有关。

弯曲应力是由于齿轮受到外部载荷而产生的弯曲应力,它的大小与载荷、模数、齿轮的几何尺寸以及材料强度等因素有关。

齿轮强度校核的目标是确保齿轮的强度能够满足设计要求,即在规定的工作条件下,齿轮的应力不超过材料的强度,以确保齿轮的安全可靠运行。

齿轮的强度校核一般由以下几个步骤组成:1.确定齿轮的载荷:根据机械传动系统的设计要求和操作条件,确定齿轮所受到的载荷大小和方向。

2.计算接触应力:根据载荷大小、齿数、模数、齿面硬度等参数,利用接触应力公式计算齿轮齿面的接触应力。

3.计算弯曲应力:根据载荷大小、模数、齿轮的几何尺寸,利用弯曲应力公式计算齿轮受到的弯曲应力。

4.检验强度校核:根据材料的强度参数,比较齿轮的接触应力和弯曲应力与材料强度之间的关系,判断齿轮的强度是否能够满足要求。

5.结构改进:如果齿轮的强度不满足要求,可以采取一些结构改进措施,如增加齿宽、增加齿数、优化齿形等,以提高齿轮的强度。

齿轮的强度校核需要考虑到多个因素,包括载荷、齿数、模数、齿厚、齿轮几何尺寸、材料强度等。

在进行强度校核时,需要进行合理的假设和简化,以简化计算和分析的复杂性。

同时,还需要考虑齿轮的疲劳寿命和可靠性等因素,以确保齿轮的长期使用性能和可靠性。

总之,齿轮强度校核是设计齿轮时非常重要的一环,它能够确保齿轮具有足够的强度和刚度,能够承受来自外部载荷的影响,同时保持良好的运转性能和寿命。

在进行强度校核时,需要综合考虑多个因素,并进行合理的假设和简化,以确保齿轮设计的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直齿锥齿轮传动是以大端参数为标准值的。

在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。

对轴交角 刀=90。

的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为:
Zj "亠
=■« 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为
(a)
丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b)
V 2 2 _ dm2 _ R - ~ = ~R - 令© R =b/R,称为锥齿轮传动的齿宽系数,通常取 © R =0.25-0.35,最常用的值为 ~c = © R =1/3
由右图可
找出当量
直齿圆柱
齿轮得分
度圆半径
r v 与平均
分度圆直
径d m 的关
系式为
AjIL
2cos8 --(e)
直齿锥齿轮传动的几何参数
(0
显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮
的根切齿数。

另外,由式(d)极易得出平均模数mm和大端模数m的关系为
111^=111(1-0.5^)------------------------------------ (h)
、直齿圆锥齿轮的背锥及当量齿数
为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图
OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。

由图可见A、B附近背锥面与球面非常接近。

因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。

从而实现了平面近似球面。

将背锥展成扇形齿轮,它的参数
等于圆锥齿轮大端的参数,齿数就是圆锥齿轮的实际齿数。

将扇形齿轮补足,则齿数增加为。

这个补足后的直齿圆柱齿轮称为当量齿轮,齿数称
为当量齿数。

其中
当量齿数的用途:
1.仿形法加工直齿圆锥齿轮时,选择
铣刀的。

2.计算圆锥齿轮的齿根弯曲疲劳强度
时查取齿形系数。

标准直齿圆锥齿轮不发生根切的最少齿数与当
量齿轮不发生根切的最少齿数的关系:
、直齿圆锥齿轮的几何尺寸
标准直齿圆锥齿轮机构的几何尺寸计算公式
称号代计算公式
小齿轮大齿轮
分度圆锥

b
齿顶

J
齿根

J
分度圆直

b
齿顶圆
直径
齿
三、直齿圆锥齿轮传动的受力分析和强度计算
1、受力分析
在齿宽中点节线处的法向平面,法向力可分解为三个分力:圆周力、径向力和轴向力。

(1)力的大小
⑵力的方向
圆周力:主动轮上的与转向相反,从动轮上的与转向相同;
径向力:分别指向各自轮心;
轴向力:分别由各轮的小端指向大端。

(3)力的对应关系
2、计算载荷
式中:按表查取;
;;=1° 三、齿面接触疲劳强度条件齿面接触疲劳强度按齿宽中点处的当量
直齿圆柱齿轮进行计算。

因直齿圆锥齿轮一般制造精度较低,可忽略重合
度的影响,并取有效齿宽,将当量齿轮的有关参量代入直齿圆柱齿轮的强
度计算公式,得(MPa)
把代入上式,得到直齿锥齿轮的接触强度计算的
校核式:
(MPa)
计算式:(mm) 式中:、、与直齿圆柱齿轮相同。

四、轮齿弯曲疲劳强度条件与接触疲劳强度的计算相同,忽略重合度系数,按齿宽中点的当量直齿圆柱齿轮进行计算,将当量齿轮的参数代入,得:
(MPa) 再将、、等代入上式,得锥齿轮的齿根弯曲疲劳强度条件
校核式:
(MPa)
设计式:
(mm)
1、、按当量齿数分别查图;
2、与直齿圆柱齿轮的相同;
3、采用弯曲强度的设计式时,用大的值代入;、按当量齿数分别查图;。

相关文档
最新文档