高三数学一轮复习函数专题复习指导
【新高考】高三数学一轮复习知识点讲解3-1 函数的概念及其表示

专题3.1 函数的概念及其表示【考纲解读与核心素养】1.了解函数的概念,会求简单的函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法.3.了解简单的分段函数,会用分段函数解决简单的问题.4.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 5.高考预测:(1)分段函数的应用,要求不但要理解分段函数的概念,更要掌握基本初等函数的图象和性质.(2)函数的概念,经常与函数的图象和性质结合考查.6.备考重点:(1)理解函数的概念、函数的定义域、值域、函数的表示方法;(2)以分段函数为背景考查函数的相关性质问题.【知识清单】1.函数的概念2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【典例剖析】高频考点一 函数的概念【典例1】(2020·洪洞县第一中学高三期中(文))下面各组函数中是同一函数的是( ) A .32y x =-与2y x x =- B .()2y x =与y x =C .11y x x =+⋅-与()()11y x x =+-D .()221f x x x =--与()221g t t t =-- 【答案】D 【解析】因为选项A 中,对应关系不同,选项B 中定义域不同,对应关系不同,选项C 中,定义域不同,选项D 中定义域和对应法则相同,故选D.【典例2】在下列图形中,表示y 是x 的函数关系的是________.【答案】①②【解析】由函数定义可知,自变量x 对应唯一的y 值,所以③④错误,①②正确. 【规律方法】函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同. 【变式探究】1.x R ∈,则()f x 与()g x 表示同一函数的是( ) A. ()2f x x =, ()2g x x =B. ()1f x =, ()()01g x x =-C.()()2x f x x=, ()()2xg x x= D. ()293x f x x -=+, ()3g x x =-【答案】C【解析】A 中: ()2g x x =2x x =≠;B 中: ()()()0110g x x x =-=≠;C 中:, ()()2x f x x=1,0{1,0x x >=-< , ()()2xg x x =1,0{ 1,0x x >=-<;D 中: ()()29333x f x x x x -==-≠-+,因此选C.2.(2018届江西省检测考试(二))设,,函数的定义域为,值域为,则的图象可以是( )A. B.C. D.【答案】B【解析】因为定义域为,所以舍去A;因为值域为,所以舍去D;因为对于定义域内每一个x 有且只有一个y 值,所以去掉C ;选B. 【易混辨析】1.判断两个函数是否为相同函数,注意把握两点,一看定义域是否相等,二看对应法则是否相同.2.从图象看,直线x=a 与图象最多有一个交点. 高频考点二:求函数的定义域【典例3】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥, 即2670x x --≤解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2020·河南省郑州一中高二期中(文))已知函数(1)y f x =+定义域是[2,3]- ,则(21)y f x =-的定义域是( ) A .[0,52] B .[1,4]- C .[5,5]- D .[3,7]-【答案】A 【解析】因为函数(1)y f x =+定义域是[2,3]- 所以114x -≤+≤所以1214x -≤-≤,解得:502x ≤≤ 故函数(21)y f x =-的定义域是[0,52] 故选:A【典例5】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C . 【规律方法】1.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 2.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【变式探究】1.(2019·山东省章丘四中高三月考)函数1()lg(1)f x x =++ )A .[2,2]-B .[2,0)(0,2]-C .(1,0)(0,2]-⋃D .(-1,2]【答案】C 【解析】1011()lg(1)00(1,0)(0,2]lg(1)202x x f x x x x x x x +>⇒>-⎧⎪=++≠⇒≠⇒∈-⋃⎨+⎪-≥⇒≤⎩故答案选C2.(2020·福建省福州第一中学高三)已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为( )A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,4 【答案】C 【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠ .所以10022x x -≠⎧⎨≤≤⎩ 解得01x ≤< 故答案为C 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达. 高频考点三:求函数的解析式【典例6】(2019·天津南开中学高一期中)设函数()f x 满足1()11xf x x-=++,则()f x 的表达式为( )A .2211x x-+ B .221x + C .21x + D .11x x -+ 【答案】C 【解析】 设11x t x -=+,则11t x t -=+,所以12()111t f t t t -=+=++,所以2()1f x x=+,故选C .【典例7】(2019·安徽省毛坦厂中学高三月考(理))已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围. 【答案】(1)()222f x x x =-+;(2)5;(3)(][),01,-∞⋃+∞.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩, 所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥,因此a 的取值范围为:(][),01,-∞⋃+∞. 【规律方法】1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法.4.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解. 5.应用题求解析式可用待定系数法求解. 【变式探究】1.(2018届安徽省安庆市第一中学)已知单调函数,对任意的都有,则( )A. 2B. 4C. 6D. 8 【答案】C 【解析】 设,则,且,令,则,解得,∴,∴.故选C .2.(2020·江苏省高三专题练习)已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.【答案】21x + 【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+ ()21f x x =+高频考点四:求函数的值域【典例8】(2019·浙江省镇海中学高一期中)函数()()10f x x x x=+<的值域为( )A .[)2,+∞B .(][),22,-∞+∞ C .(],2-∞-D .R【答案】C 【解析】当0x <时,0x ->,()12f x x x ⎛⎫∴=---≤-=- ⎪⎝⎭(当且仅当1x x -=-,即1x =-时取等号),()f x ∴的值域为(],2-∞-.故选:C .【典例9】(2020·甘肃省武威十八中高三期末(理))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()112x xe f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域是__________ 【答案】{}1,0- 【解析】依题意()111111221x x xe f x e e +-=-=-++,由于11xe +>,故11112212x e -<-<+,即()f x 的值域为11,22⎛⎫- ⎪⎝⎭,所以函数()y f x ⎡⎤=⎣⎦的值域是{}1,0-. 故填:{}1,0-.【典例10】(2020·辽河油田第二高级中学高二月考)函数()f x x =的值域是________________. 【答案】1,2⎡⎫-+∞⎪⎢⎣⎭【解析】函数()f x x ,令0t t =≥则21122x t =-, 则()2211112222f t t t t t =+-=+-()21112t =+-,0t ≥. 由二次函数性质可知,在[)0,t ∈+∞内单调递增,所以当0t =即12x =-时取得最小值,最小值为12-,因而()1,2x f ⎡⎫∈-+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫-+∞⎪⎢⎣⎭. 【规律方法】函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +k x (k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +kx (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx (k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.高频考点五:分段函数及其应用【典例11】(2019·永济中学高一月考)已知5,6()(2),6x xf xf x x-≥⎧=⎨+<⎩,则(3)f为()A.2 B.3 C.4 D.5【答案】A【解析】(3)(32)(52)752f f f=+=+=-=故选:A【典例12】(2018届湖北省5月)设函数,若,则实数的值为()A. B. C. 或 D.【答案】B【解析】因为,所以所以选B.【典例13】(2018年新课标I卷文)设函数,则满足的x的取值范围是()A. B. C. D.【答案】D【解析】将函数的图象画出来,观察图象可知会有,解得,所以满足的x的取值范围是,故选D.【典例14】(2020·上海高三)若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.【答案】(]1,2【解析】 由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤.【总结提升】1.“分段求解”是处理分段函数问题解的基本原则;2.数形结合往往是解答选择、填空题的“捷径”.【变式探究】1.(2020·辽宁省高三二模(理))设函数21log (2),1(),1x x x f x e x +-<⎧=⎨≥⎩,则(2)(ln 6)f f -+=( ) A .3B .6C .9D .12 【答案】C【解析】 由题意,函数21log (2),1(),1x x x f x e x +-<⎧=⎨≥⎩, 则ln 62(2)(ln 6)1log [2(2)]1269f f e -+=+--+=++=.2.(2020·浙江省高三二模)已知函数()231,0,2,0,x x f x x x x ⎧-≥=⎨--<⎩若存在唯一的整数x ,使得()()0x f x a ⋅-<成立,则实数a 的取值范围是( )A .12a ≤≤B .01a ≤<或28a <≤C .28a <≤D .11a -<<或28a <≤ 【答案】B【解析】如图所示,画出函数()f x 图像,当0x >时,()()0x f x a ⋅-<,即()f x a <,故()()12f a f <≤,即23131a -<≤-,即28a <≤;当0x =时,易知不满足;当0x <时,()()0x f x a ⋅-<,即()f x a >,故()01a f ≤<-,即()011a f ≤<-=.综上所述:01a ≤<或28a <≤.故选:B.3.(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.由,得或, 得或,即得取值范围是, 故答案为. 4.(2020·江苏省高三月考)已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是_____.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得 22(2)8a a a +=-++,解得1a =, 则21(1)112f f a ⎛⎫==+= ⎪⎝⎭. 故答案为:2.【易错提醒】因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.。
高三数学一轮复习备考计划与措施

高三数学一轮复习备考计划与措施一、指导思想高三数学一轮复习备考旨在系统梳理数学知识体系,强化学生对基本概念、基本定理、基本方法的理解和掌握,提高数学运算能力、逻辑思维能力及问题解决能力。
本轮复习将以课程标准和考试大纲为依据,结合学生实际情况,科学规划复习进度,注重基础与提高相结合,确保学生在高考中能够稳定发挥,取得优异成绩。
二、复习内容1. 高中数学知识点全面梳理:按照数与代数、图形与几何、统计与概率、数学文化四个模块,逐一复习各章节内容。
2. 重点难点突破:针对数列、函数与导数、三角函数、立体几何、解析几何、概率统计等重点章节进行专题突破。
3. 知识交汇点强化:加强知识点之间的联系,强化知识交汇点的应用,如数列与函数、三角函数与解析几何等。
三、复习方法1. 自主学习与小组合作相结合:鼓励学生自主学习,通过小组合作解决疑难问题,提高学习效率。
2. 专题复习与模拟测试相结合:通过专题复习强化重点难点,通过模拟测试检验复习效果,及时查漏补缺。
3. 精选习题与限时训练相结合:精选典型习题进行练习,提高学生的解题能力;通过限时训练提高学生的答题速度和准确度。
四、复习措施1. 制定详细的复习计划:根据高考时间和学生实际情况,制定详细的复习计划,确保复习进度和质量。
2. 加强教师指导与辅导:教师定期对学生的复习情况进行检查,对存在的问题进行及时指导和辅导。
3. 定期组织模拟考试:定期组织模拟考试,让学生熟悉考试流程,提高应试能力。
4. 建立错题集与反思机制:学生建立错题集,对错题进行深入分析,找出原因并及时改正;教师定期组织学生进行反思,总结复习经验。
五、心态调整1. 保持积极心态:鼓励学生保持积极的心态,遇到困难要勇于面对,相信自己能够克服。
2. 合理安排时间:合理安排学习时间和休息时间,避免过度疲劳和压力过大。
3. 关注身心健康:关注学生的身心健康状况,及时进行心理疏导和身体健康检查。
六、应试策略1. 熟悉考试题型和评分标准:让学生了解各种题型的考查重点和评分标准,为答题提供有力依据。
函数图像 高三数学一轮复习

的对称轴是直线 x= 13 ______.
2
考题讲练1(10分钟)
考向一
例1
画函数图象
作出下列函数的图象:
(x+2);
(1)y=|x-2|·
(2)y=|log2(x+1)|;
2x-1
;
(3)y=
x-1
(4)y=x2-2|x|-1.
函数图象的识别
角度1.由解析式判断函数图象
例2 函数f
A.
x =
上f x < 0,在 −2,0 上f x > 0;y = g x 是奇函数,由图象及奇函数对称性
知,在 −3, −1 上g x < 0,在 −1,0 上g x > 0;
f x > 0,
f x < 0,
< 0时,有
或
∴ 所求不等式的解集是
g x <0
g x > 0,
{x| − 2 < x < −1或0 < x < 1或2 < x < 3}.
单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值
点、最小值点、与坐标轴的交点等),描点,连线.
f(x)+k
2.利用图象变换法作函数的图象
(1)平移变换
f(x+h)
f(x-换
(3)翻折变换
保留x轴上方图象
①y=f(x)――――――――――――――――――→y= |f(x)| .
将x轴下方图象翻折上去
保留y轴右侧图象,并作其
②y=f(x)―――――――――――――――――――――→y= f(|x|) .
关于y轴对称的图象
(4)对称变换
①函数 y=f(x)和函数 y= 09 _________的图象关于
函数概念知识点总结 高三数学一轮复习

知识点总结 3-1函数概念一.函数的概念1.定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 注:函数的实质是从一个非空集合到另一个非空集合的映射.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(函数问题定义域优先)(2)相同函数:如果两个函数的定义域相同,并且对应关系完全一致,那么这两个函数是同一个函数.3.函数的表示法:解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.5.复合函数如果函数y=f(t)的定义域为A, 函数t=g(x) 的定义域为B, 值域为C, 则当C ⊆A 时,称函数y=f(g(x))为f(t)与g(x)在B 的复合函数,其中t 叫做中间变量,t=g(x)叫做内层函数,y=f(t)叫做外层函数.提示:①内层函数的值域是外层函数的定义域或定义域的子集.②函数f(g(x))的定义域是指x 的取值范围,而不是g(x)的取值范围.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空实数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.二.求函数定义域时常用限制条件:函数的定义域是使解析式有意义的自变量的取值集合;(1)分式的分母不为零;(2)偶次方根的被开方数大于或等于零:(3)对数的真数大于零,底数大于零且不等于1;(4)零次幂或负指数次幂的底数不为零;(5)三角函数中的正切tan y x =的定义域是{,x x R ∈且x ≠kπ+π2,k ∈Z};(6)①若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域为不等式a ≤g (x )≤b 的解集;②已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a,b ])的值域.(7)对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域.三.函数的值域1.求函数的值域(最值)的常用方法(1)配方法:主要用于和一元二次函数有关的函数求值域问题.(2)单调性法:利用函数的单调性,再根据所给定义域来确定函数的值域.(3)数形结合法.(4)换元法:引进一个(几个)新的量来代替原来的量,实行这种“变量代换”.(5)分离常数法:分子、分母同次的分式形式采用配凑分子的方法,把函数分离成一个常数和一个分式和的形式.2.基本初等函数的值域(1))0(≠+=k b kx y 的值域是R .(2))0(2≠++=a c bx axy 的值域是:当0>a 时,值域为[4ac−b 24a ,+∞);当0<a 时,值域为(−∞,4ac−b 24a ]. (3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)0(>=a a y x 且)1≠a 的值域是)0(∞+,. (5)0(log >=a x y a 且)1≠a 的值域是R .3.区间:设a,b ∈R ,且a <b ,我们规定: 集合区间名称 符号表示 数轴表示{x |a ≤x ≤b }闭区间 [a ,b ]{x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 左闭右开区间 [a ,b ){x |a <x ≤b } 左开右闭区间 (a ,b ]{x |x ≥a } [a ,+∞){x |x >a } (a ,+∞){x |x ≤a } (-∞,a ]{x |x <a }(-∞,a )R(-∞,+∞) 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.(1)分段函数虽由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交,写分段函数的定义域时,区间端点应不重不漏.。
高三数学一轮复习知识点专题2-7函数的图象及其应用

高三数学一轮复习知识点专题专题专题2-7函数的图象及其应用【核心素养分析】1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】知识点一 利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.知识点二 利用图象变换法作函数的图象 (1)平移变换(2)对称变换y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; y =f (x )的图象――→关于y 轴对称y =f (-x )的图象; y =f (x )的图象――→关于原点对称y =-f (-x )的图象;y =a x (a >0,且a ≠1)的图象――——————————→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )―——————————————————―→纵坐标不变各点横坐标变为原来的1a(a >0)倍y =f (ax ).y =f (x )―——————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻折变换y =f (x )的图象―————————————————―→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;y =f (x )的图象―————————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.【特别提醒】记住几个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.【典型题分析】高频考点一 由函数式判断图像 例1.【2020·天津卷】函数241xy x =+的图象大致为 ( )A BC D 【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误,故选A 。
高三一轮复习建议——单元五:函数与导数

1、13年11题【考题分析】:本题考查分段函数及导数的几 何意义。体现了数形结合思想和化归与转化思想,函数与 方程思想。
解析: 可画出 y1=|f(x)|的图象如图所示. 当 a>0 时,y=ax 与 y=|f(x)|恒有公共点,所以排除 B,C; 若 x ≤0,则以 y=ax 与 y=|-x2+2x|相切为界限,由
' x
,可以看到,主要研究的是 ex 与一次函
数,应该说不难;
14 年第二问证明不等式,转化为 两个常见函数(xlnx 与 x/ ex )的最值问题(最小值大于最大值)。
就是研究我们所说的
3.16 年与 17 年的第一问就开始提升难度(是否是刻意为之);16 年的第一问是求通 过零点个数讨论参数范围,求导后核心函数是:
(一)本单元近五年来全国高考试题卷(Ⅰ)统计分析 (理科)
年份 (理) 题号 2013 11 16 21 3 2014 11 21 分值 5 5 12 5 5 12 题型 选择题 填空题 解答题 选择题 选择题 解答题 知识考点 分段函数 函数的对称性 导数的 几何意义,导 数与函数的最 值, 导数与函数的单调性 函数的奇偶性 函数与方程 导数的几何 意义, 导数与函数 的单调性, 两小一大 利用导数求函数的最值 22 分 12 2015 13 21 7 2016 8 21 5 2017 11 21 5 12 5 5 12 5 5 12 填空题 解答题 选择题 选择题 解答题 选择题 选择题 解答题 5 选择题 函数的 图象与性 质、导数公式 和导数运 算法则 函数的奇偶性 导数的 几何意义,分 段函数的处理 ,函 数的零点 函数的图象 幂函数、指数函数 、对数函数 函数的零点,不等式的 证明 函数的单调性、奇偶性 对数与对数函数 函数的零点,导数与函 数的单调性 22 分 22 分 两小一大 22 分 两小一大 两小一大 22 分 两小一大 说明
专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(解析版)
则 M∪∁RN=[﹣2,1).
故选:A.
考点 2.抽象函数定义域
3.若函数 f(3﹣2x)的定义域为[﹣1,2],则函数 f(x)的定义域是
【解答】解:∵函数 f(3﹣2x)的定义域为[﹣1,2],
即﹣1≤x≤2,
∴﹣2≤2x≤4
∴﹣1≤3﹣2x≤5
[﹣1,5] .
高中数学一轮复习讲义
,
�
�
1−�2
�
得到�(�) =
所以�(�) =
1
�
1−(1�)2
=
�
,
�2−1
�
(x≠0,x≠±1).
�2−1
1
1
1
(2)f(x+ )=x2+ 2 = (� + )2 − 2,
�
�
�
所以 f(x)=x2﹣2(x≥2 或 x≤﹣2).
6.已知 f(3x)=4xlog23+10,则 f(2)+f(4)+f(8)+…+f(210)的值等于
,解得﹣1≤x≤1.
−1 ≤ 1 − � ≤ 2
∴函数 y=f(1+x)+f(1﹣x)的定义域为[﹣1,1].
故选:C.
考点 3.已知定义域求参
5.已知函数 f(x)=lg(ax2+3x+2)的定义域为 R,则实数 a 的取值范围是
∞)
.
9
( ,+
8
【解答】解:根据条件可知 ax2+3x+2>0 恒成立,
(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是
判断两函数相等的依据.
高三数学一轮复习知识点专题2-4二次函数与幂函数
精品基础教育教学资料,仅供参考,需要可下载使用!专题2-4二次函数与幂函数【核心素养分析】1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】 知识点一 幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 知识点二 二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质【特别提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【典型题分析】高频考点一 幂函数的图象与性质例1.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【答案】-1【解析】由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数, ∴α<0,取α=-1.【方法技巧】(1)幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.【变式探究】(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )A .-1B .0C .1D .2【答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.高频考点二 求二次函数的解析式例2.(2020·河北衡水中学调研) 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【答案】f (x )=-4x 2+4x +7.【解析】法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 2-2-3mm法三:(利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7. 【方法技巧】求二次函数解析式的策略 (1)已知三点坐标,选用一般式(2)已知顶点坐标、对称轴、最值,选用顶点式 (3)已知与x 轴两点坐标,选用零点式【变式探究】(2020·湖南湘潭二中模拟)已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【答案】19x 2+49x -59【解析】法一:(一般式)设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:(顶点式)设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.高频考点三 二次函数的图象及应用例3.(2020·吉林长春实验中学模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()【答案】A【解析】若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.【方法技巧】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【变式探究】(2020·河南商丘一中模拟)已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()A BC D【答案】D【解析】A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D。
高考一轮复习函数知识点
高考一轮复习函数知识点函数作为数学的一个重要概念,在高中数学课程中占据着非常重要的地位。
对于学生来说,掌握好函数的相关知识点不仅有助于在高考中取得更好的成绩,还能为将来的学习和工作打下坚实的数学基础。
在本文中,我们将介绍一些高考中常见的函数知识点,希望能对大家的复习提供一些帮助。
一、函数的定义函数是一种对应关系,它将一个自变量的值映射到一个因变量的值上。
在数学中,我们常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数的定义包括定义域、值域和对应关系三个要素。
在复习函数的过程中,我们要注意区分函数和方程的概念,理解函数作为一种映射关系的特性。
二、常见函数类型1. 一次函数一次函数,也称线性函数,是指函数的表达式中只含有一次幂的变量。
例如,f(x) = ax + b就是一个一次函数,其中a和b为常数。
在高考中,一次函数的性质和应用经常会被考察,我们要掌握一次函数的图像特征、截距和斜率等重要概念。
2. 二次函数二次函数是函数的表达式中含有二次幂的变量。
例如,f(x) =ax^2 + bx + c就是一个二次函数,其中a、b和c为常数,a ≠ 0。
二次函数的图像通常为抛物线,我们需要对二次函数的开口方向、顶点坐标和对称轴等进行熟练掌握。
3. 指数函数指数函数是以一个常数为底数,自变量是指数的函数。
例如,f(x) = a^x就是一个指数函数,其中a为常数。
指数函数在自然界和社会现象中有广泛应用,我们要了解指数函数的增减性、图像特征和指数函数与对数函数的相关性质。
4. 对数函数对数函数是指以某个正常数为底数,自变量为真数的对数的函数。
例如,f(x) = loga(x)就是一个对数函数,其中a为大于0且不等于1的常数。
在复习对数函数时,我们要熟练掌握对数函数的单调性、图像特征和对数函数与指数函数的性质。
5. 三角函数三角函数是以角度(或弧度)为自变量的周期函数。
例如,f(x) = sin(x)就是一个正弦函数,其中x可以表示角度或弧度。
高三数学专题复习教案--函数
高三数学专题复习――函数一、本章知识结构:二、考点回顾1.理解函数的概念,了解映射的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.3.了解反函数的概念及互为反函数的函数图像间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图像和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。
三、经典例题剖析考点一:函数的性质与图像函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.函数的图像是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。
因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。
复习函数图像要注意以下方面。
1.掌握描绘函数图像的两种基本方法——描点法和图像变换法.2.会利用函数图像,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.例1、设集合A={x|x<-1或x>1},B={x|log2x>0},则A∩B=( )A.{x| x>1} B.{x|x>0} C.{x|x<-1} D.{x|x<-1或x>1}【解析】:由集合B得x>1 , A∩B={x| x>1},故选(A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009届一轮复习函数专题复习指导复习要求1、函数的定义及通性;2、函数性质的运用。
学习指导1、函数的概念:(1)映射:设非空数集A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射,记为f :A →B ,f 表示对应法则,b=f(a)。
若A 中不同元素的象也不同,则称映射为单射,若B 中每一个元素都有原象与之对应,则称映射为满射。
既是单射又是满射的映射称为一一映射。
(2)函数定义:函数就是定义在非空数集A ,B 上的映射,此时称数集A 为定义域,象集C={f(x)|x ∈A}为值域。
定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。
逆过来,值域也会限制定义域。
求函数定义域,通过解关于自变量的不等式(组)来实现的。
要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。
复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。
理解函数定义域,应紧密联系对应法则。
函数定义域是研究函数性质的基础和前提。
函数对应法则通常表现为表格,解析式和图象。
其中解析式是最常见的表现形式。
求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合法。
求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。
在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。
2、函数的通性(1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如0)x (f )x (f =±-,1)x (f )x (f ±=-(f(x)≠0)。
奇偶性的几何意义是两种特殊的图象对称。
函数的奇偶性是定义域上的普遍性质,定义式是定义域上的恒等式。
利用奇偶性的运算性质可以简化判断奇偶性的步骤。
(2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。
判断函数单调性的方法:①定义法,即比差法;②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则。
函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。
函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。
(3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。
求周期的重要方法:①定义法;②公式法;③图象法;④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a ≠b ,则T=2|a-b|。
(4)反函数:函数是否是有反函数是函数概念的重要运用之一,在求反函数之前首先要判断函数是否具备反函数,函数f(x)的反函数f -1(x)的性质与f(x)性质紧密相连,如定义域、值域互换,具有相同的单调性等,把反函数f -1(x)的问题化归为函数f(x)的问题是处理反函数问题的重要思想。
设函数f(x)定义域为A ,值域为C ,则 f -1[f(x)]=x ,x ∈A f[f -1(x)]=x ,x ∈C 2、函数的图象函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。
图象作法:①描点法;②图象变换。
应掌握常见的图象变换。
4、本单常见的初等函数;一次函数,二次函数,反比例函数,指数函数,对数函数。
在具体的对应法则下理解函数的通性,掌握这些具体对应法则的性质。
分段函数是重要的函数模型。
对于抽象函数,通常是抓住函数特性是定义域上恒等式,利用赋值法(变量代换法)解题。
联系到具体的函数模型可以简便地找到解题思路,及解题突破口。
应用题是函数性质运用的重要题型。
审清题意,找准数量关系,把握好模型是解应用题的关键。
5、主要思想方法:数形结合,分类讨论,函数方程,化归等。
典型例题例1、已知1x 3x 2)x (f -+=,函数y=g(x)图象与y=f -1(x+1)的图象关于直线y=x 对称,求g(11)的值。
分析:利用数形对应的关系,可知y=g(x)是y=f -1(x+1)的反函数,从而化g(x)问题为已知f(x)。
∵ y=f -1(x+1)∴ x+1=f(y)∴ x=f(y)-1∴ y=f -1(x+1)的反函数为y=f(x)-1即 g(x)=f(x)-1∴ g(11)=f(11)-1=23 评注:函数与反函数的关系是互为逆运算的关系,当f(x)存在反函数时,若b=f(a),则a=f -1(b)。
例2、设f(x)是定义在(-∞,+∞)上的函数,对一切x ∈R 均有f(x)+f(x+2)=0,当-1<x ≤1时,f(x)=2x-1,求当1<x ≤3时,函数f(x)的解析式。
解题思路分析:利用化归思想解题∵ f(x)+f(x+2)=0∴ f(x)=-f(x+2)∵ 该式对一切x ∈R 成立∴ 以x-2代x 得:f(x-2)=-f[(x-2)+2]=-f(x)当1<x ≤3时,-1<x-2≤1∴ f(x-2)=2(x-2)-1=2x-5∴ f(x)=-f(x-2)=-2x+5∴ f(x)=-2x+5(1<x ≤3)评注:在化归过程中,一方面要转化自变量到已知解析式的定义域,另一方面要保持对应的函数值有一定关系。
在化归过程中还体现了整体思想。
例3、已知g(x)=-x 2-3,f(x)是二次函数,当x ∈[-1,2]时,f(x) 的最小值,且f(x)+g(x)为奇函数,求f(x)解析式。
分析:用待定系数法求f(x)解析式设f(x)=ax 2+bx+c (a ≠0)则f(x)+g(x)=(a-1)x 2+bx+c-3 由已知f(x)+g(x)为奇函数⎩⎨⎧=-=-03c 01a ∴ ⎩⎨⎧==3c 1a ∴ f(x)=x 2+bx+3下面通过确定f(x)在[-1,2]上何时取最小值来确定b ,分类讨论。
4b 3)2b x ()x (f 22-++=,对称轴2bx -=(1)当2b-≥2,b ≤-4时,f(x)在[-1,2]上为减函数∴ 7b 2)2(f ))x (f (min +== ∴ 2b+7=1∴ b=3(舍)(2)当∈-2b(-1,2),-4<b<2时34b )2b (f ))x (f (2min +-=-=∴ 134b 2=+-∴ 22b ±=(舍负)(3)当2b-≤-1,b ≥2时,f(x)在[-1,2]上为增函数 ∴ (f(x)min =f(1)=4-b ∴ 4-b=1 ∴ b=3∴ 3x 2x )x (f 2+-=,或3x 3x )x (f 3++=评注:二次函数在闭区间上的最值通常对对称轴与区间的位置关系进行讨论,是求值域的基本题型之一。
在已知最值结果的条件下,仍需讨论何时取得最小值。
例4、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
分析:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1令a=x ,b=-x 则f(0)=f(x)f(-x) ∴ )x (f 1)x (f =- 由已知x>0时,f(x)>1>0 当x<0时,-x>0,f(-x)>0 ∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0 ∴ 对任意x ∈R ,f(x)>0 (2)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(3)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3评注:根据f(a+b)=f(a)·f(b)是恒等式的特点,对a 、b 适当赋值。
利用单调性的性质去掉符号“f ”得到关于x 的代数不等式,是处理抽象函数不等式的典型方法。
例5、已知lgx+lgy=2lg(x-2y),求yxlog2的值。
分析:在化对数式为代数式过程中,全面挖掘x 、y 满足的条件由已知得⎪⎩⎪⎨⎧-=>->>2)y 2x (xy 0y 2x 0y ,0x ∴ x=4y ,4y x =∴ 44log yxlog22==例6、某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y 与月份数x 的关系,模拟函数可选用y=ab x+c (其中a ,b ,c 为常数)或二次函数,已知4月份该产品的产量为1.37万件,请问用哪个函数作为模拟函数较好?并说明理由。
分析:设f(x)=px 2+qx+r (p ≠0)则 ⎪⎩⎪⎨⎧=++==++==++=3.1r q 3p 9)3(f 1r q 2p 4)2(f 1r q p )1(f ∴ ⎪⎩⎪⎨⎧===7.0r 35.0q 05.0p∴ f(4)=-0.05×42+0.35×4+0.7=1.3设g(x)=ab x+c 则 ⎪⎩⎪⎨⎧=+==+==+=3.1c ab )3(g 2.1c ab )2(g 1c ab )1(g 32∴⎪⎩⎪⎨⎧==-=4.1c 5.0b 8.0a ∴ g(4)=-0.8×0.54+1.4=1.35∵ |1.35-1.37|<|1.3-1.37|∴ 选用y=-0.8×(0.5)x+1.4作为模拟函数较好。
巩固练习(一) 选择题1、定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,设a=f(3),b=f(2),c=f(2),则a ,b ,c 大小关系是A 、a>b>cB 、a>c>bC 、b>c>aD 、c>b>a 2、方程x )2x (log a -=+(a>0且a ≠1)的实数解的个数是 A 、0 B 、1 C 、2 D 、33、|x 1|)31(y -=的单调减区间是A 、(-∞,1)B 、(1,+∞)C 、(-∞,-1)∪(1,+∞)D 、(-∞,+∞) 3、函数)12x 4x (log y 221+-=的值域为A 、 (-∞,3]B 、(-∞,-3]C 、(-3,+∞)D 、(3,+∞) 4、函数y=log 2|ax-1|(a ≠b )的图象的对称轴是直线x=2,则a 等于A 、 21B 、21- C 、2 D 、-26、有长度为24的材料用一矩形场地,中间加两隔墙,要使矩形的面积最大,则隔壁的长度为A 、 3B 、4C 、6D 、12 (二) 填空题7、已知定义在R 的奇函数f(x)满足f(x+2)=-f(x),且当0≤x ≤1时,f(x)=x ,则)215(f =__________。