线性代数之第5章.特征值和特征向量_矩阵的对角化
北京工业大学线性代数第五章第三节 矩阵的对角化.ppt

l1 l2 L lr 0,
从而 1,2 ,L ,s , 1, 2 ,L , r 线性无关.
8
对于A的不同的特征值的个数作归纳,可得到 定理3:设 1,2 ,L , m 是数域P上n 阶矩阵A 的 不同的特征值, j1, j2 ,L , jrj 是A的属于 j 的 线性无关的特征向量,j 1, 2,L , m, 则向量组
以上两式相减得
k1(1 2 )1 k2 (1 2 )2 L ks (1 2 )s ,
由于1 2,因此由上式得
k11 k22 L kss ,
7
由于 1,2 ,L ,s 线性无关,
则
k1 k2 L ks 0,
代入①式得
l11 l22 L lr r
由于 1, 2 ,L , s 线性无关,
解:Q A1 21 , A2 22 , 1 2, 2 2 是A的两个不同的特征值, 1 ,2 线性无关。令
P (1,2)
1 1
1 1
,
1
P 1
2 1
1 2 1
,
2 2
22
则
P 1 AP =
2 0
0 2
,
因此
A P
2 0
0 2
P 1
所以
A10 P
2 0
0 2
10
P 1
6
k1 A1 k2 A2 L ks As l1 A1 l2 A2 L lr Ar
从而有
k111 k212 L ks1s l121 l222 L lr2r ,
①式两边乘以 2 得
k121 k222 L ks2s l121 l222 L lr2r ,
12
例1 已知
A
3 5
矩阵的特征值和特征向量

矩阵的特征值和特征向量文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第五章矩阵的特征值和特征向量来源:线性代数精品课程组作者:线性代数精品课程组1.教学目的和要求:(1)理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.(2)了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.(3)了解实对称矩阵的特征值和特征向量的性质.2.教学重点:(1)会求矩阵的特征值与特征向量.(2)会将矩阵化为相似对角矩阵.3.教学难点:将矩阵化为相似对角矩阵.4.教学内容:本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题.§1矩阵的特征值和特征向量定义1设是一个阶方阵,是一个数,如果方程(1)存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.(1)式也可写成,(2)这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式, (3)即上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.===显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明(ⅰ)(ⅱ)若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数).例1 求的特征值和特征向量.解的特征多项式为=所以的特征值为当=2时,解齐次线性方程组得解得令=1,则其基础解系为:=因此,属于=2的全部特征向量为:.当=4时,解齐次线性方程组得令=1,则其基础解系为:因此的属于=4的全部特征向量为[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.例2求矩阵的特征值和特征向量.解的特征多项式为==,所以的特征值为==2(二重根),.对于==2,解齐次线性方程组.由,得基础解系为:因此,属于==2的全部特征向量为:不同时为零.对于,解齐次线性方程组.由,得基础解系为:因此,属于的全部特征向量为:由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:定理1 属于不同特征值的特征向量一定线性无关.证明设是矩阵的不同特征值,而分别是属于的特征向量,要证是线性无关的.我们对特征值的个数作数学归纳法证明.当时,由于特征向量不为零,所以结论显然成立.当>1时,假设时结论成立.由于是的不同特征值,而是属于的特征向量,因此如果存在一组实数使(3)则上式两边乘以得(4)另一方面,,即(5)(4)-(5)有由归纳假设,线性无关,因此而互不相同,所以.于是(3)式变为.因,于是.可见线性无关.课后作业:习题五5-12§2相似矩阵定义2设、都是阶方阵,若存在满秩矩阵,使得则称与相似,记作,且满秩矩阵称为将变为的相似变换矩阵.“相似”是矩阵间的一种关系,这种关系具有如下性质:⑴反身性:~;⑵对称性:若~,则~;⑶传递性:若~,~,则~.相似矩阵还具有下列性质:定理2相似矩阵有相同的特征多项式,因而有相同的特征值.证明设~,则存在满秩矩阵,使于是推论若阶矩阵与对角矩阵相似,则即是的个特征值.定理3设是矩阵的属于特征值的特征向量,且~,即存在满秩矩阵使,则是矩阵的属于的特征向量.证明因是矩阵的属于特征值的特征向量,则有于是所以是矩阵的属于的特征向量.下面我们要讨论的主要问题是:对阶矩阵,寻求相似变换矩阵,使为对角矩阵,这就称为把方阵对角化.定理4阶矩阵与对角矩阵相似的充分必要条件是:矩阵有个线性无关的分别属于特征值的特征向量(中可以有相同的值).证明必要性设与对角矩阵相似,则存在满秩矩阵,使=设则由上式得即,因此所以是的特征值,是的属于的特征向量,又因是满秩的,故线性无关.充分性如果有个线性无关的分别属于特征值的特征向量,则有设则是满秩的,于是,即=[注]:由定理4,一个阶方阵能否与一个阶对角矩阵相似,关键在于它是否有个线性无关的特征向量.(1)如果一个阶方阵有个不同的特征值,则由定理1可知,它一定有个线性无关的特征向量,因此该矩阵一定相似于一个对角矩阵..(2)如果一个阶方阵有个特征值(其中有重复的),则我们可分别求出属于每个特征值的基础解系,如果每个重特征值的基础解系含有个线性无关的特征向量,则该矩阵与一个对角矩阵相似.否则该矩阵不与一个对角矩阵相似.可见,如果一个阶方阵有个线性无关的特征向量,则该矩阵与一个阶对角矩阵相似,并且以这个线性无关的特征向量作为列向量构成的满秩矩阵,使为对角矩阵,而对角线上的元素就是这些特征向量顺序对应的特征值.例3 设矩阵,求一个满秩矩阵,使为对角矩阵.解的特征多项式为所以的特征值为.对于解齐次线性方程组,得基础解系,即为的两个特征向量对于=2,解齐次线性方程组,得基础解系,即为的一个特征向量.显然是线性无关的,取,即有.例4设,考虑是否相似于对角矩阵.解所以的特征值为.对于解齐次线性方程组,得基础解系即为一个特征向量,对于,解齐次线性方程组,得基础解系,即为的另一个特征向量.由于只有两个线性无关的特征向量,因此不能相似于一个对角矩阵.课后作业:习题五13-16§3向量组的正交性在解析几何中,二维、三维向量的长度以及夹角等度量性质都可以用向量的内积来表示,现在我们把内积推广到维向量中.定义3设有维向量,,令=,则称为向量和的内积.[注]:内积是向量的一种运算,若用矩阵形式表示,当和是行向量时,=,当和都是列向量时,=.内积具有下列性质(其中为维向量,为常数):(1)=;(2)=;(3)=+;(4),当且仅当=0时等号成立.定义4令||=称||为维向量的模(或长度).向量的模具有如下性质:(1)当≠0时,||>0;当=0时,||=0;(2)||=|| ||,(为实数);(3)||≤||||;(4)|≤||+||;特别地,当||=1时,称为单位向量.如果||≠0,由性质(2),向量是一个单位向量.可见,用向量的模去除向量,可得到一个与同向的单位向量,我们称这一运算为向量的单位化,或标准化.如果、都为非零向量,由性质(3)≤1,于是有下述定义:定义5当||≠0,||≠0时称为维向量、的夹角.特别地:当=0时,,因此有定义当=0时,称向量与正交.(显然,若=0,则与任何向量都正交).向量的正交性可推广到多个向量的情形.定义6已知个非零向量,若=0,则称为正交向量组.定义7若向量组为正交向量组,且||=1,则称为标准正交向量组.例如,维单位向量组=,,是正交向量组.正交向量组有下述重要性质:定理5正交向量组是线性无关的向量组.定理的逆命题一般不成立,但是任一线性无关的向量组总可以通过如下所述的正交化过程,构成正交化向量组,进而通过单位化,构成标准正交向量组.定理6 设向量组线性无关,由此可作出含有个向量的正交向量组,其中,,,…….再取则为标准正交向量组.上述从线性无关向量组导出正交向量组的过程称为施密特(Schimidt)正交化过程.它不仅满足与等价,还满足:对任何,向量组与等价.例5把向量组=(1,1,0,0),=(1,0,1,0),=(-1,0,0,1)化为标准正交向量组.解容易验证,,是线性无关的.将,,正交化,令=,=,再把单位化,则即为所求的标准正交向量组.定理7若是维正交向量组,,则必有维非零向量,使,成为正交向量组.推论含有个()向量的维正交(或标准正交)向量组,总可以添加个维非零向量,构成含有个向量的维正交向量组.例6已知,求一组非零向量,使,,成为正交向量组.解应满足方程=0,即.它的基础解系为把基础解系正交化,即为所求.亦即取其中于是得定义8如果阶矩阵满足(即),那么称为正交矩阵.正交矩阵具有如下性质:(1)矩阵为正交矩阵的充分必要条件是;(2)正交矩阵的逆矩阵是正交矩阵;(3)两个正交矩阵的乘积仍是正交矩阵;(4)正交矩阵是满秩的,且|=1或.由等式可知,正交矩阵的元素满足关系式(其中)可见正交矩阵任意不同两行(列)对应元素乘积之和为0,同一行(列)元素的平方和为1,因此正交矩阵的行(列)所构成的向量组为标准正交向量组,反之亦然.于是有定理8一个阶矩阵为正交矩阵的充分必要条件是它的行(或列)向量组是一个标准正交向量组.课后作业:习题五1-4§4实对称矩阵的相似对角化在§2中,我们讨论了相似矩阵的概念和性质以及一般的阶矩阵与对角矩阵相似的问题.本节将进一步讨论用正交变换化实对称矩阵为对角矩阵的问题.为此首先给出下面几个定理.定理9 实对称矩阵的特征值恒为实数.从而它的特征向量都可取为实向量.定理10 实对称矩阵的不同特征值的特征向量是正交的.证明设是实对称矩阵的两个不同的特征值,即.是分别属于的特征向量,则,根据内积的性质有,又所以,因,故,即与正交.定理11 设为阶对称矩阵,是的特征方程的重根,则矩阵的秩从而对应特征值恰有个线性无关的特征向量.定理12 设为阶对称矩阵,则必有正交矩阵,使,其中是以的个特征值为对角元素的对角矩阵.例7设求一个正交矩阵,使为对角矩阵.解,所以的特征值,.对于,解齐次线性方程组,得基础解系,因此属于的标准特征向量为.对于,解齐次线性方程组,得基础解系这两个向量恰好正交,将其单位化即得两个属于的标准正交向量,.于是得正交矩阵易验证.课后作业:习题五17。
人民大2024赵树嫄《线性代数(第六版)》PPT第四章 特征值问题和矩阵的对角化

1
本章介绍矩阵的特征值、特征向量以及矩阵对 角化的问题。
2
第一节 矩阵的特征值与特征向量
(一) 矩阵的特征值 定义 设 A 是一个 n 阶方阵,如果存在一个数 , 以及一个非零 n 维列向量 ,使得
A
则称 为矩阵 A 的特征值,而 称为矩阵 A 的属于 特征值 的特征向量。
说明: 1、特征值问题是针对方阵而言的; 2、特征向量必须是非零向量; 3、特征向量既依赖于矩阵A,又依赖于特征值λ。
的特征向量。
证 (2) A 0 A( A ) A(0 ) 0 ( A ) 0(0 ) ,
即 A2 20 ,
重复这个过程, 可得 A3 30 , , Am 0m .
27
性质2 设 0 是矩阵 A 的特征值, 是相应的特征向量,则
(1) k0 是kA 的特征值(k 是任意常数);
26
性质2 设 0 是矩阵 A 的特征值, 是相应的特征向量,则
(1) k0 是kA 的特征值(k 是任意常数);
(2) m0 是 Am 的特征值(m 是正整数);
(3) 当 A 可逆时,0 0 ,且01 是A1 的特征值.
且 仍然是矩阵kA 、Am 、A1 的相应于特征值k0 、m0 、
1 0
2 1 1 解 | E A | 0 2 0
4 1 3
( 2)2( 1) 0 ,
所以A的特征值为 1 2(二重根), 2 1 .
21
2 1 1 | E A | 0 2 0 , 1 2(二重根), 2 1 .
4 1 3
4
对
1
2 ,2 E
A
0
1 0
1 4 0 0
3
特征值与特征向量的计算方法:
【学习】线性代数学习指导第五章矩阵的特征值与特征向量

【关键字】学习第五章矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设是数域P上的n阶矩阵,若对于数域P中的数,存在数域P上的非零n维列向量X,使得则称为矩阵A的特征值,称X为矩阵A属于(或对应于)特征值的特征向量注意:1)是方阵;2)特征向量X 是非零列向量;3)方阵与特征值对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A的特征值与特征向量的步骤为:(1)计算n阶矩阵A的特征多项式|E-A|;(2)求出特征方程|E-A|=0的全部根,它们就是矩阵A的全部特征值;(3)设1 ,2 ,… ,s 是A的全部互异特征值。
对于每一个i,解齐次线性方程组0,求出它的一个根底解系,该根底解系的向量就是A属于特征值i的线性无关的特征向量,方程组的全体非零解向量就是A属于特征值i的全体特征向量.3.特征值和特征向量的性质性质1 (1)若X是矩阵A属于特征值的特征向量,则kX()也是A属于的特征向量;(2)若是矩阵A属于特征值的特征向量,则它们的非零线性组合也是A属于的特征向量;(3)若A是可逆矩阵,是A的一个特征值,则是A—1的一个特征值,是A*的一个特征值;(4)设是n阶矩阵A的一个特征值,f(x)= amxm + am-1xm-1 + … + a1x + a0为一个多项式,则是f(A)的一个特征值。
性质2(1)(2)性质3 n阶矩阵A和它的转置矩阵有相同的特征值性质4 n阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A、B为n阶矩阵,若存在可逆矩阵P,使得B=P―1AP则称A与B相似。
记作A∽B. 并称P为相似变换矩阵.矩阵的相似关系是等价关系,满足:1°反身性:A∽A.2°对称性:若A∽B,则B∽A.3°传递性:若A∽B,B∽C则A∽C.5.矩阵相似的性质:设A、B为n阶矩阵,若A∽B,则(1) ; (2) ;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,∽;(5)设f (x )= amxm + am-1xm-1 + … + a1x + a0 为一个多项式,则 f (A )∽ f (B ) ; 6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。
线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量矩阵的特征值和特征向量是线性代数中非常重要的概念,具有广泛的应用。
在此,我们将详细介绍特征值和特征向量的定义、性质和计算方法。
希望能对读者理解这两个概念有所帮助。
1.特征值和特征向量的定义在线性代数中,对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,则称λ是矩阵A的特征值,x是对应于特征值λ的特征向量。
2.特征值和特征向量的性质(1)对于任意矩阵A和非零向量x,如果Ax=λx,则(x,λ)是(A-λI)的一个特征对,其中I是单位矩阵。
(2)对于任意非零常数k,kλ和kx也是特征值λ和特征向量x的特征对。
(3)如果矩阵A的特征向量x1和x2对应于不同的特征值λ1和λ2,则x1和x2线性无关。
(4)若矩阵A的特征值都不相同,则它一定能够对角化。
3.特征值和特征向量的计算(以2阶矩阵为例)对于一个2阶矩阵A,我们可以通过以下步骤来计算其特征值和特征向量:(1)解特征方程det(A-λI)=0,其中I是单位矩阵。
(2)将特征值代入(A-λI)x=0,求解x的向量,即为对应于特征值的特征向量。
4.实对称矩阵的特征值和特征向量对于实对称矩阵,其特征值一定是实数且存在线性无关的特征向量。
具体计算方法为:(1)求解特征方程det(A-λI)=0,得到特征值λ1, λ2, ..., λn。
(2)将特征值代入(A-λI)x=0,解出x的向量,即为对应于特征值的特征向量。
5.正交矩阵的特征值和特征向量对于正交矩阵,其特征值的模一定是1,且特征向量是两两正交的。
具体计算方法同样为求解特征方程和特征向量方程。
6.特征值和特征向量的应用特征值和特征向量有广泛的应用,例如:(1)主成分分析(PCA):利用特征值和特征向量可以找到数据的主要特征方向,用于数据降维和分析。
(2)图像处理:利用特征值和特征向量可以进行图像压缩、增强和分析。
(3)物理学中的量子力学:波函数的特征值和特征向量对应着物理量的测量结果和对应的本征态。
第五章 特征值与特征向量(0808)

2019/3/31
10
对于 2 3 2而言,求解齐次线性方程组 (2 E A) X 0 即
1 1 1 x1 (2 E A) X 1 1 1 x2 0 1 1 1 x 3
T T
2 3 3
2 A 123 1 ( 3) 2 3
2019/3/31 21
三、特征值与特征向量的性质
m 1 定理5.2 设n阶方阵A有特征值 ,则 kA, A , A , A A m 1 分别有特征值: k , , , ,其中m为正整
A 数, 是A的伴随矩阵。
证明:因为:
E AT E T AT ( E A)T E A
则A与 AT有相同的特征多项式
2019/3/31
15
例4 设n阶方阵A满足 AT A E(为正交矩阵),
则的特征值必为1或 -1 证明:设 为的特征值,且 A ( 0) 对上式两边左乘 AT
这样,寻找F的极值点问题就转化为寻找方程组 (5.1)或(5.2)的非零解的问题。能使方程组 (5.1)或(5.2)有非零的数及相关的非零解, 就是下面要引入的方阵的特征值与特征向量。
定义5.1 设n阶方阵 A (aij )nn (1) E A 称为A的特征矩阵; a11 a12 (2)称 E A
12
n A
(5.7)
2019/3/31
18
证明:注意到A的特征多项式为:
a11 E A
a21 a n1
a12 a22 an 2
a1n a2 n
ann
易知特征多项式中 n与 n1 两项只可能出现在主对 角线的乘积项中,
《线性代数及其应用》第五章 特征值与特征向量

5 2 6 1
例 3:求 A 0
3
8
0
的特征方程。
0 0 5 4
0 0 0 1
解:
5 2 6 1
det( A I ) det
0
3
8
0
0 0 5 4 0 Nhomakorabea0
0 1
(5 )(3 )(5 )(1 )
特征方程
(5 )2 (3 )(1 ) 0,
求得方程的根
1.92 0.08 1或0.92。
2
对应=1的特征向量是方程( A I )x 0的非平凡解。
0.05 0.03 0.05 0.03 0 (2)(1) 0.05 0.03 0
A I 0.05 0.03 , 0.05 0.03 0 : 0
0 0
从而特征向量v1
3 5
定理 1: 三角矩阵的主对角线的元素是其特征值。
3 6 8 4 0 0
例 5:设 A 0 0
6
,
B
2
1
0,A的特征值为 3,0,2。
0 0 2 5 3 4
B 的特征值是 4 和 1。
注:
矩阵 A 有零特征值 Ax 0有非平凡解
A 是不可逆的
定理 1 证明: 为简单起见,考虑3 3的情形。
。
对应=0.92的特征向量是方程( A 0.92I )x 0的非平凡解。
A
I
0.03 0.05
0.03 0.03 0.05, 0.05
0.03 0.05
0 0.03 (2)5/3(1) 0 : 0
0.03 0
0 0
从而特征向量v2
线性代数中的特征值与特征向量

线性代数中的特征值与特征向量特征值和特征向量是线性代数中的重要概念,广泛应用于物理、经济、计算机科学等领域。
本文将介绍特征值和特征向量的定义、性质以及其在矩阵对角化和特征分解中的应用。
一、特征值与特征向量的定义在线性代数中,给定一个 n×n 的矩阵 A,我们称零向量v≠0 是矩阵A 的特征向量,如果存在一个实数λ,使得Av=λv。
特征值λ 是使得上述等式成立的实数。
特征向量与特征值是成对出现的,每个特征向量都有一个对应的特征值。
二、特征值与特征向量的性质1. 特征值与特征向量的数目相等对于一个 n×n 的矩阵 A,它最多能有 n 个线性无关的特征向量。
而特征值也最多有n 个。
一个特征值可以对应多个线性无关的特征向量。
2. 特征向量的积性质如果 v 是 A 的特征向量,那么对于任意实数 c,cv 也是 A 的特征向量,且特征值保持不变。
3. 特征向量的加性质如果 v1 和 v2 是 A 的特征向量,对应相同的特征值λ,那么 v1+v2也是 A 的特征向量,对应特征值λ。
三、特征值与特征向量的计算要计算一个矩阵的特征值和特征向量,我们需要求解方程Av=λv。
1. 寻找特征值对于一个 n×n 的矩阵 A,我们需要求解行列式 |A-λI|=0 的根,其中I 是 n 阶单位矩阵。
这样可以得到 A 的特征值。
2. 寻找特征向量对于每个特征值λ,我们需要求解方程组 (A-λI)v=0,其中 v 是特征向量。
解这个齐次方程组可以得到 A 的特征向量。
四、特征值与特征向量的应用1. 矩阵对角化如果一个 n×n 的矩阵 A 有 n 个线性无关的特征向量,那么可以找到对角矩阵 D 和可逆矩阵 P,使得 P^{-1}AP=D。
对角矩阵 D 中的对角元素就是特征值,P 中的列向量就是对应的特征向量。
2. 特征分解对于一个对称矩阵 A(A=A^T),可以进行特征分解,表示为A=QΛQ^T,其中 Q 是由 A 的特征向量组成的正交矩阵,Λ 是对角矩阵,其对角元素是 A 的特征值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 特征值问题是对方阵而言的,本章的矩阵如不加说明, 都是方阵。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量 根据定义,n阶矩阵A的特征值,就是使齐次线性方程 组 (λI-A)x=0 有非零解的λ值,即满足方程 det(λI-A)=0 的λ都是矩阵A的特征值。因此,特征值是λ的多项式 det(λI-A)的根。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例 例1:求矩阵
5 A 3 4
的特征值和特征向量。
1 1 2
1 1 1
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例 解:矩阵A的特征方程为
5
d e t IA 3 4
证明过程见课本用*标注的部分。
i 1
5.1 矩阵的特征值和特征向量、相似矩阵
特征值和特征向量的性质 由前面定理的第2项可知:当detA≠0(即A为可逆矩阵) 时,其特征值全为非零数;反之,奇异矩阵A至少有相似矩阵
特征值和特征向量的性质 矩阵的特征向量总是相对于矩阵的特征值而言的。一个 特征向量不能属于不同的特征值,这是因为,如果x同 时是A的属于特征值λ1,λ2(λ1≠λ2)的特征向量,即有: Ax=λ1x 且 Ax=λ2x 则:λ1x=λ2x 即(λ1-λ2) x=0。由于λ1-λ2 ≠0,则x=0,这 与x≠0矛盾。 矩阵的特征值和特征向量还有以下性质:
得其基础解系为x2=(1,1,2)T,因此,k2x2(k2为非零任意 常数)是A的对应于λ2=2的全部特征向量。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例 例2:主对角元为a11, a22, …, ann的对角矩阵A或上(下) 三角矩阵B的特征多项式是: |λI-A|= |λI-B|=(λ-a11)(λ-a22)… (λ-ann) 故A,B的n个特征值就是n个主对角元。
5.1 矩阵的特征值和特征向量、相似矩阵
特征值和特征向量的性质 需要注意的是,n阶矩阵的特征值可能是复数,所以特 征子空间一般是n维复向量空间Cn(见附录)的子空间。 例1中矩阵A的两个特征子空间为:
V k x| x 1 ,1 ,2 C , k
V k x| x 1 ,1 ,1 C , k 1
5.1 矩阵的特征值和特征向量、相似矩阵
特征值和特征向量的性质 在(λ0I-A)x=0的解空间中,除零向量以外的全体解向 量就是A的属于特征值λ的全体特征向量,因此(λI- A)x=0的解空间也称为矩阵A关于特征值λ的特征子空间, 记作Vλ。n阶矩阵A的特征子空间是n维向量空间的子空 间,它的维数为: dimVλ=n-r(λI-A)
5.1 矩阵的特征值和特征向量、相似矩阵
特征值和特征向量的性质 定理:若x1和x2都是A的属于特征值λ0的特征向量,则 k1x1+ k2x2也是A的属于λ0的特征向量(其中k1,k2是任意 常数,但k1x1+ k2x2≠0)。
证:由于x1,x2是齐次线性方程组(λ0I-A)x=0的解,因 此k1x1+ k2x2也是上式的解,故当k1x1+ k2x2≠0时,是A的 属于λ0的特征向量。
第5章 特征值和特征向量、 矩阵的对角化
第5章 特征值和特征向量、 矩阵的对角化
矩阵的特征值和特征向量、相似矩阵 矩阵可对角化的条件 实对称矩阵的对角化
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量
定义:设A为复数C上的n阶矩阵,如果存在数λ∈C和非 零的n维向量x,使得Ax=λx,就称λ是矩阵A的特征值,x 是A的属于(或对应于)特征值λ的特征向量。 注意: 1) 特征向量x≠0;
2
1 1
1
0 1
2
故A的特征值为λ1=3,λ2=2(二重特征值)。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例 当λ1=3时,由(λ1I-A)x=0,即:
2 1 1 x1 0 3 2 1 x 0 2 4 2 2 x3 0
T T
2
5.1 矩阵的特征值和特征向量、相似矩阵
特征值和特征向量的性质 定理:设n阶矩阵A=(aij)的n个特征值为λ1, λ2, …,λn,则:
1 )
a
i 1 n i i 1 i 1
n
n
ii
2 ) e tA i d
n
其 中 a A 的 主 对 角 元 之 和 , 称 为 矩 阵 A 的 迹 , 记 作 tr(A ) 。 ii是
得其基础解系为x1=(1,1,1)T,因此,k1x1(k1为非零任意 常数)是A的对应于λ1=3的全部特征向量。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例 当λ2=2时,由(λ2I-A)x=0,即:
3 1 1 x1 0 3 1 1 x 0 2 4 2 1 x3 0
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量 显然,n阶矩阵A的特征多项式是λ的n次多项式。特征多 项式的k重根也称为k重特征值。当n≥5时,特征多项式 没有一般的求根公式,即使是三阶矩阵的特征多项式, 一般也难以求根,所以求矩阵的特征值一般要采用近似 计算的方法,它是计算方法课中的一个专题。
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量 定义:设n阶矩阵A=(aij),则:
a 1 1
f d e t I A a 2 1 a n 1
a 1 2 a 2 2 a n 2
a 1 n a 2 n
a n n
称为矩阵A的特征多项式,λI-A称为A的特征矩阵, det(λI-A)=0称为A的特征方程。
1
1 1 0
1
2
1
该特征矩阵的行列式的每行之和均为λ-3,将各列加到 第1列,并将第1行乘-1加到第2、3行得:
5.1 矩阵的特征值和特征向量、相似矩阵
矩阵的特征值和特征向量举例
d e t I A 30 2 0 3 2 0