未来十年高分子材料重点发展领域及需求分析
高分子材料的发展历程及未来发展趋势

高分子材料的发展历程及未来发展趋势1. 引言高分子材料是一类由大量重复单元组成的化合物,具有独特的物理和化学性质,广泛应用于各个领域。
本文将探讨高分子材料的发展历程以及未来的发展趋势。
2. 发展历程2.1 初始阶段高分子材料的发展可以追溯到20世纪初。
当时,人们开始研究合成具有高分子结构的化合物,并发现了一些基础的高分子材料,如橡胶和塑料。
这些材料具有良好的柔韧性和耐用性,为后续的研究奠定了基础。
2.2 高分子合成技术的突破随着科学技术的进步,人们开始发展各种高分子合成技术,如聚合反应和共聚反应。
这些技术使得高分子材料的合成更加简便和高效,为高分子材料的广泛应用打下了基础。
2.3 新型高分子材料的涌现在过去几十年里,许多新型高分子材料相继涌现。
例如,聚合物复合材料具有优异的力学性能和耐腐蚀性能,被广泛应用于航空航天和汽车工业。
另外,生物可降解高分子材料的研究也取得了重要进展,为环境友好型材料的发展提供了新的方向。
3. 当前发展趋势3.1 功能性高分子材料的研究随着科技的发展,人们对高分子材料的功能性要求越来越高。
例如,具有自修复功能的高分子材料可以在受损后自动修复,延长材料的使用寿命。
另外,具有传感功能的高分子材料可以实时监测环境变化,并做出相应的反应。
功能性高分子材料的研究将会成为未来的重要发展方向。
3.2 可持续发展的高分子材料在当前环保意识日益增强的背景下,可持续发展的高分子材料备受关注。
例如,生物可降解高分子材料可以在使用寿命结束后被自然分解,减少对环境的影响。
另外,可回收利用的高分子材料也是未来的发展方向之一,通过回收和再利用,减少对资源的消耗。
3.3 高分子材料与纳米技术的结合纳米技术的兴起为高分子材料的发展带来了新的机遇。
通过将纳米颗粒引入高分子材料中,可以改善材料的性能,并赋予其新的功能。
例如,纳米复合材料具有优异的力学性能和导电性能,被广泛应用于电子和光电领域。
4. 未来展望高分子材料作为一种重要的材料类别,将在未来继续发挥重要作用。
功能高分子材料发展现状及展望

功能高分子材料发展现状及展望一、引言功能高分子材料是指具有特殊性能的高分子材料,如导电、阻燃、自修复等。
随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
本文将从功能高分子材料的定义、发展历程、应用领域以及未来展望等方面进行探讨。
二、功能高分子材料的定义功能高分子材料是指在普通高分子材料中加入一些特殊成分或经过改性后,使其具有某种特殊性能的新型高分子材料。
这些特殊性能可以是导电、阻燃、自修复、形状记忆等。
这些新型高分子材料不仅具有传统高分子材料的优点,如重量轻、耐腐蚀等,还具有更多的优势。
三、功能高分子材料的发展历程1. 20世纪50年代至60年代初期:以聚氯乙烯为主要原料生产出各种塑胶制品。
2. 60年代中期至70年代初期:出现了聚碳酸酯、聚酰亚胺等新型高分子材料。
3. 70年代中期至80年代初期:出现了聚苯乙烯、聚苯乙烯共聚物等新型高分子材料。
4. 80年代中期至90年代初期:出现了聚丙烯、聚乙烯等新型高分子材料。
5. 21世纪以来:功能高分子材料得到了广泛应用,如导电高分子材料、阻燃高分子材料、自修复高分子材料等。
四、功能高分子材料的应用领域1. 导电高分子材料:主要应用于电池、太阳能电池板等领域。
2. 阻燃高分子材料:主要应用于建筑材料、电器设备等领域。
3. 自修复高分子材料:主要应用于汽车制造、飞机制造等领域。
4. 形状记忆高分子材料:主要应用于医学器械、智能纺织品等领域。
五、功能高分子材料的未来展望1. 研发更多的功能性高分子材料,满足不同领域的需求。
2. 提高功能高分子材料的性能,使其更加适合实际应用。
3. 推广功能高分子材料的应用,促进产业升级和经济发展。
4. 加强对功能高分子材料的研究和开发,为未来的科技进步提供支持。
六、结论随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。
未来,随着技术的不断提升和需求的不断增加,功能高分子材料将会有更广阔的发展前景。
高分子材料的应用前景与挑战

高分子材料的应用前景与挑战高分子材料是一种具有重要应用价值的工程材料,在包装、建筑、医疗、汽车、电子等领域都有着广泛的应用。
高分子材料由于其材料成分和特性的不同,其应用范围也不尽相同。
目前,随着工业化和全球化的快速发展,高分子材料技术的应用前景越来越广阔,同时也面临着一些新的挑战。
一、高分子材料的应用前景1. 在环保领域近年来,随着环境问题的日渐严重,环保已成为各国政府和社会的共同关切。
高分子材料因其良好的可塑性、重量轻、性能稳定等特点,在环保领域有着广泛的应用。
例如,生态袋、再生塑料等环保产品的开发,可以有效减少生活垃圾对环境的污染。
2. 在医疗领域高分子材料在医疗、生命科学领域的应用正日益扩大。
其具有生物相容性高、重量轻、易加工成型等特点,常用于人工关节、假肢、戴眼镜、牙齿修复等医疗领域。
同时,高分子材料的应用还可以有效地提高医疗设备的可靠性和性能。
3. 在新能源领域高分子材料在新能源领域中的应用是未来的发展趋势。
目前,各国正在加大对新能源领域的投入,且对材料技术的要求越来越高。
高分子材料因其体积小、重量轻、保温性能好等特点,可以应用于太阳能电池板、风能发电叶片、氢能储存等领域,具有良好的应用前景。
4. 在工业领域高分子材料的应用在各领域中,工业领域占据了重要地位。
例如,塑料、橡胶、纤维等材料,是工业生产中不可或缺的原材料。
高分子材料因其低成本、易加工转化等优点,在工业生产中有着广泛的应用。
未来,高分子材料的应用将覆盖更广泛的工业领域。
二、高分子材料的挑战1. 资源稀缺高分子材料的生产大量耗费化石能源和化学原料等资源,而化石能源的储量日益减少。
因此,高分子材料产业必须积极探索优化生产工艺、提高资源利用率等方面的方法。
2. 环境污染生产过程中,高分子材料的废气、废水和废弃物等会严重污染环境,特别是在塑料生产中。
这对环境造成了不可估量的负面影响,需要通过创新技术、严格监管等方法来减少污染。
3. 功能性能限制高分子材料在应用领域中,难免会遇到一些使用限制的问题。
2024年有机高分子材料市场分析现状

2024年有机高分子材料市场分析现状引言有机高分子材料是一类使用有机化合物为原料合成的高分子化合物,广泛应用于电子、医药、电力等领域。
本文将对有机高分子材料市场的现状进行分析。
市场规模分析有机高分子材料市场的规模在过去几年中呈现稳定增长的趋势。
根据市场研究机构的数据,截至2020年,全球有机高分子材料市场规模超过1000亿美元。
预计未来几年,随着技术的发展和应用领域的拓展,市场规模将进一步扩大。
市场应用领域分析电子行业有机高分子材料在电子行业中有广泛的应用,如半导体材料、光电材料、传感器等。
随着电子消费品市场的增长,对有机高分子材料的需求也在不断增加。
医药行业有机高分子材料在医药行业中的应用不断扩大,主要用于药物的控释系统、医疗器械的材料等。
随着人口老龄化的趋势,医药行业对有机高分子材料的需求将持续增长。
电力行业有机高分子材料在电力行业中主要应用于绝缘材料、电缆等领域。
随着电力工程的发展和电力设备的更新换代,对有机高分子材料的需求也在不断增加。
市场竞争分析有机高分子材料市场竞争激烈,主要厂商包括公司A、公司B和公司C等。
这些公司在产品质量、技术创新以及市场渠道方面竞争激烈。
为了提高市场竞争力,这些公司不断加大研发投入,提高产品质量,并积极开拓新的市场。
市场发展趋势分析随着技术的进步和市场需求的增长,有机高分子材料市场将呈现以下发展趋势:1.新材料的研发和应用:随着科技的进步,新型的有机高分子材料将不断被开发,并应用于更多的领域,带来更多的商机。
2.创新技术的推动:新的制备和加工技术的引入,将提高有机高分子材料的性能和品质,推动市场的发展。
3.环境友好型材料的需求增长:环保意识的提高将推动对环境友好型有机高分子材料的需求增长。
4.医药领域市场潜力巨大:随着人口老龄化的加剧,医药领域对高分子材料的需求将持续快速增长。
总结有机高分子材料市场在全球范围内呈现稳定增长的态势。
随着技术的进步和市场需求的增长,市场规模将持续扩大。
智能高分子材料的未来发展趋势分析

智能高分子材料的未来发展趋势分析
随着科技的不断进步和人类对材料性能需求的不断提高,智能高分子材料作为
一种具有潜力的新型材料,正逐渐引起人们的关注。
智能高分子材料是指在外部刺激下能够产生智能响应的高分子材料,具有形状记忆、自修复、自感知等特性,被广泛应用于航天航空、医疗保健、智能生活等领域。
在未来的发展中,智能高分子材料将会呈现出以下几个趋势:
1. 多功能化
未来的智能高分子材料将更加注重多功能化的发展,不仅可以实现形状记忆功能,还可以具备自修复、自感知、自组装等多种功能。
这种多功能化的智能材料将能够更好地满足不同领域的需求,应用范围将更加广泛。
2. 环境友好
随着人们对环境保护意识的增强,未来的智能高分子材料将更加注重环保性能。
研究人员将致力于开发生产过程更加环保、可降解材料,并通过技术手段实现高效回收再利用,从而减少对环境的影响。
3. 自适应性
未来的智能高分子材料将具备更强的自适应性能,能够根据外部环境变化自动
调整材料性能,以实现更好的适应性和稳定性。
这种自适应性将大大提高材料在复杂环境下的应用效果,为各行业带来更大的便利。
4. 高性能
随着材料科学、纳米技术等领域的不断发展,未来的智能高分子材料将呈现出
更高的性能表现。
这包括更高的强度、耐磨性、耐温性等,使智能高分子材料在极端环境下也能够表现出色,为相关行业提供更可靠的材料支持。
综合来看,未来智能高分子材料的发展将更加注重多功能化、环境友好、自适
应性和高性能等方面。
这将为人类社会带来更多的科技创新和应用领域拓展,推动智能高分子材料行业持续快速发展,为人类生活和产业发展带来更多可能性。
2024年高分子材料市场环境分析

2024年高分子材料市场环境分析1. 引言高分子材料是一类具有重要应用前景的工程材料,广泛应用于各个领域,包括汽车、电子、建筑等。
随着社会经济的快速发展和科技进步,高分子材料市场的竞争变得日益激烈。
本文将对高分子材料市场的环境进行分析,以揭示目前市场的状况和未来的发展趋势。
2. 高分子材料市场规模与发展态势高分子材料市场在过去几年中保持了稳定增长的态势。
根据市场研究机构的数据,在20XX年,全球高分子材料市场规模达到XX亿美元,预计到20XX年将达到XX亿美元。
这显示了高分子材料市场的广阔发展空间。
在高分子材料市场中,塑料是最主要的产品类型。
塑料在包装、建筑、汽车等领域的广泛应用推动了市场的增长。
此外,高性能塑料和特种聚合物也受到了市场的重视,因其在特定领域具有独特的性能优势。
3. 高分子材料市场竞争格局高分子材料市场存在着激烈的竞争。
主要的竞争者包括国内外企业,其中一些是全球知名的化工巨头。
这些企业在生产技术、产品质量、市场渠道等方面具有明显的优势。
面对激烈的竞争,企业应注重技术创新和产品升级,以提高产品的附加值。
此外,拓展市场渠道和建立合作伙伴关系也是企业成功的关键。
4. 高分子材料市场的发展机遇与挑战高分子材料市场发展面临着机遇与挑战。
机遇方面,随着科技进步和新兴产业的快速发展,对高分子材料的需求将持续增加。
例如,新能源汽车、智能手机等高科技产品对高性能塑料的需求将不断增长。
然而,高分子材料市场也面临着挑战。
环保问题是一个重要的挑战,尤其是塑料产品的可持续性问题。
政府和消费者对环保产品的需求增加,这将对传统塑料产品带来一定压力。
5. 高分子材料市场未来发展趋势高分子材料市场的未来发展趋势主要包括以下几个方面:1.技术创新:新材料的研发和应用将推动市场的发展,例如生物可降解材料、高温耐磨塑料等。
2.环保可持续性:企业将注重环保可持续性,在产品设计和生产过程中采取环保措施,满足市场需求。
3.国际市场拓展:随着全球市场的一体化,企业将积极拓展海外市场,寻找新的增长点。
高分子材料发展趋势

高分子材料发展趋势高分子材料是指由大量分子单元组成的材料。
它们通常具有较高的强度、体积稳定性及化学稳定性,同时也具有优异的电学、热学、光学等特性,被广泛应用于工业、医疗、电子、航空航天等领域。
然而,随着市场需求的演变和科技革新的推动,高分子材料的研发与应用也在持续发展。
1. 生物可降解高分子材料随着环保意识的不断提高,生物可降解高分子材料被广泛关注。
这种材料能够在自然环境中分解、吸收或降解,避免对环境造成污染。
生物可降解高分子材料可以应用于各种领域,如医疗、包装、农业、纺织以及环保等。
生物可降解高分子材料的开发和应用有望成为未来高分子材料领域的重要发展趋势。
2. 高性能技术高性能技术是目前高分子材料研发的热点领域之一。
高分子材料的许多特性如强度、硬度、抗氧化性、抗腐蚀性等都能够通过加入特殊的功能性成分来提高,如纳米材料、碳纤维、金属纳米颗粒、量子点等。
这些材料的加入可以使高分子材料具备更加独特的性能,如耐高温、超强韧性、抗医用酸碱、耐腐蚀等。
高性能技术的研究和应用将推动高分子材料的发展,拓宽其应用范围。
3. 功能性高分子材料功能性高分子材料是指在高分子材料中加入功能性物质,从而使材料具备更加广泛的应用功能。
已经涌现出很多新的应用,如可扩展和自修复材料、电磁屏蔽材料、传感器、药物控制释放材料等等。
功能性高分子材料的研究与应用,将适应未来多样化、个性化、环保化的社会需求。
4. 可塑性材料可塑性材料是广泛应用于现代工业的一类高分子材料。
这种材料具有可加工性强、成本低等特点。
随着3D打印、热塑成型等新技术的发展,可塑性材料的研究和应用也在不断拓展。
可塑性材料的研究和应用将带来更多的经济效益和社会效益,并推动高分子材料领域的发展。
总之,高分子材料的研发和应用正朝着多样化、环保化、智能化等方向发展。
未来的高分子材料将更加符合人们对环保、健康与高品质生活所需。
同时,高分子材料的开发也将带来更多的经济效益和社会效益。
高分子材料技术的发展现状与未来趋势

高分子材料技术的发展现状与未来趋势近年来,高分子材料技术在科技领域取得了巨大的发展和突破,它不仅改变了人们的生活方式,还推动了工业的革命。
本文将探讨高分子材料技术的发展现状以及未来的趋势。
首先,让我们来了解高分子材料的定义和特点。
高分子材料是由大量分子通过共价键连接而形成的聚合物,如塑料和橡胶。
它具有轻质、高强度、耐腐蚀、绝缘性能好、生物相容性高等特点,被广泛应用于各个领域。
目前,高分子材料技术已经渗透到生活的方方面面。
在汽车制造业中,高分子材料被广泛应用于车身结构和内饰件的制造,使车辆更轻、更安全。
在电子产品中,高分子材料的应用使得可穿戴设备如智能手表和智能眼镜变得更加舒适轻便。
此外,高分子材料还广泛应用于医疗器械、航空航天等领域。
然而,高分子材料技术仍然面临一些挑战和限制。
首先,高分子材料的可持续性仍然是一个问题。
塑料制品的大量使用导致了环境污染和资源浪费。
因此,寻找可替代塑料的生物可降解材料成为了一个研究热点。
其次,高分子材料的力学性能和耐久性仍然有待提高。
高分子材料在高温、高压、紫外线等极端环境下的稳定性问题需要更多的研究。
未来,高分子材料技术有很大的发展潜力。
一方面,随着环保意识的增强,研究人员将更加注重开发可持续性的高分子材料。
生物可降解材料、可回收材料和可再生材料将成为新的研究方向。
另一方面,高分子材料的性能将进一步提高。
纳米材料技术的发展使得高分子材料具有了更好的强度、导电性和稳定性。
此外,3D打印技术的出现也为高分子材料的应用带来了新的机遇。
通过3D打印,可以制造出更复杂的结构和形状的高分子材料制品。
此外,高分子材料技术还将与其他领域的技术相结合,产生更多的创新。
例如,将高分子材料与生物技术相结合,可以开发出更适合人体生物医学应用的材料。
将高分子材料与纳米技术相结合,可以制造出更小尺寸、更高性能的材料。
综上所述,高分子材料技术的发展现状非常迅速,它已经在各个领域产生了巨大的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
未来十年高分子材料重点发展领域及需求分析未来十年高分子材料重点发展领域及需求分析《中国制造2025》围绕经济社会发展和国家安全重大需求,选择10大优势和战略产业作为突破点,力争到2025年达到国际领先地位或国际先进水平。
十大重点领域是:新一代信息技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械。
图表高分子材料十大重点发展领域数据来源:产研智库为指明十大重点领域的发展趋势、发展重点,引导企业的创新活动,国家制造强国建设战略咨询委员会特组织编制了《中国制造2025》重点领域技术路线图,其中提到与高分子材料直接相关的项目如下:1、降低船体摩擦阻力涂料重点突破新型高性能降阻涂料技术、船底空气润滑降阻技术等。
2、低温材料与防寒设备重点开展适用于极地航行船舶的低温材料、泵、阀件等核心液压元件低温启动和密封技术研发。
3、轻量化车身实现复合材料/混合材料技术突破,降低成本,在新能源汽车上的应用率达到30%,自主率超过50%。
4、高性能聚烯烃材料突破高熔融指数聚丙烯、超高分子量聚乙烯、发泡聚丙烯、聚丁烯-1(PB )等工业化生产技术,实现规模应用。
5、聚氨酯树脂重点发展环保型聚氨脂材料如水性聚氨酯材料,加快发展脂肪族异氰酸酯等原料。
6、氟硅树脂重点发展聚偏氟乙烯、PET 、其它氟树脂以及硅树脂、硅油等。
7、特种合成橡胶重点发展异戊橡胶并配套发展异丁烯合成异戊二烯;发展硅橡胶、溶聚丁苯橡胶和稀土顺丁橡胶;发展卤化丁基、氢华丁腈等具有特殊性能的橡胶等。
8、生物基合成材料重点突破生物基橡胶合成技术,生物基芳烃合成技术,生物基尼龙制备关键技术,新型生物基增塑剂合成及应用关键技术,生物基聚氨酯制备关键技术,生物基聚酯制备关键技术,生物法制备基础化工原料关键基础技术等。
9、生物基轻工材料重点发展聚乳酸(PLA )、聚丁二酸丁二酯(PBS )、聚对苯二甲酸二元醇酯(PET 、PTT) 、聚羟基烷酸(PHA) 、聚酰胺(PA) 等产品。
PLA 关键单体L-乳酸和D-乳酸的光学纯度达99.9%以上,成本下降20%;PBS 关键单体生物基丁二酸、1,4-丁二醇提高生物转化率达5-10%;PTT 关键单体1,3-丙二醇以木薯淀粉、甘油等非粮原料发酵生产,PTT 纤维聚合纺丝实现产业化;PA 关键单体戊二胺硫酸盐成品纯度高于99%,成本下降20%。
10、特种工程塑料重点发展基于热塑性聚酰亚胺(PI )工程塑料树脂、杂萘联苯型聚醚砜酮共聚树脂(PPESK )、高端氟塑料的加工成型的特种纤维、过滤材料、耐高温功能膜、高性能树脂基复合材料、耐高温绝缘材料、耐高温功能涂料、耐高温特种胶粘剂。
热塑性聚酰亚胺工程塑料树脂,粘度0.38dL/g,Tg=230-310℃,Td5%>500℃,拉伸强度>100MPa,弯曲强度>150MP,成本道用PVDF 树脂要求密度1.75-1.77g/cm3,熔指0.5-2.0g/10min,熔点156-165℃,热分解温度≥390℃,含水率≤0.10%,玻璃化温度≤-35℃,脆化温度≤-62℃。
11、先进纺织材料(1)高端产业用纺织品2020年实现可吸收缝合线、血液透析材料的自主产业化,部分替代国外进口产品;满足热、生化、静电、辐射等功能防护要求;高温过滤、水过滤产品性能满足各应用领域要求;土工材料满足复杂地质环境施工要求。
2025年,满足多功能复合防护要求,同时实现轻质、舒适和部分智能化,过滤产品寿命和稳定性进一步提升,实现低成本应用和智能化监测预警等功能结合。
(2)功能纺织新材料2020年,阻燃极限氧指数﹥32,无熔滴,滴水扩散时间﹤1s ,能耗降低20%。
2025年高端产品基本实现自给。
(3)生物基化学纤维2020年PTT 纤维原料1,3-丙二醇纯度大于99.5%,成本控制在1.5万元/吨以下;聚乳酸耐热温度≥110℃,单体纯度≥99.9%,PLA 纤维断裂强度大于3.5g/d,断裂伸长30%-35%。
2025年PLA 纤维生产成本接近PET 生产成本。
12、高性能分离膜材料(1)海水淡化反渗透膜产品脱盐率大于99.8%,水通量提高30%,海水淡化工程达到200万吨/日,装备国产化率大于80%。
(2)陶瓷膜产品装填密度超过300m2/m3,成本下降20%,需求量达到20万m2,突破低温共烧结技术,形成气升式膜分离装备,能耗下降30%。
(3)离子交换膜产品膜性能提高20%,氯碱工业应用超过1000万吨规模,突破全膜法氯碱生产新技术和成套装置。
(4)中空纤维膜产品在自来水生产、污水处理等领域应用超过1000万吨/日,膜面积超过2000万m2。
(5)渗透汽化膜产品渗透通量提高20%,膜面积达到10万m2,突破大型膜组器和膜集成应用技术,推广应用规模超过百万吨溶剂脱水和回收,节能30%以上。
13、高性能纤维及复合材料(1)高性能碳纤维及其复合材料2020年国产高强碳纤维及其复合材料技术成熟度达到9级,实现在汽车、高技术轮船等领域的规模应用;2025年,国产高强中模、高模高强碳纤维及其复合材料技术成熟度达到9级;力争在2025年前,结合国产大飞机的研发进程,航空用碳纤维复合材料部分关键部件取得CAAC/FAA/EASA等适航认证。
碳纤维(T800级)拉伸强度≥5.8GPa ,CV ≤4%,拉伸模量294GPa ,CV ≤4%。
(2)高性能对位芳纶纤维及其复合材料2025年国产对位芳纶纤维及其复合材料技术成熟度达到9级。
建立统一标准的高性能纤维材料技术体系,攻克系列化高性能纤维高效制备产业化技术,开展与国产高性能纤维相匹配的复合材料基体材料、设计技术、成型工艺、性能表征、应用验证及回收再利用等研究,确保重大装备需求。
对位芳纶断裂强度20-22cN/dtex,断裂伸长率-4%;聚酰亚胺纤维单丝纤度为2.0dTex ,强度>4cN/dTex,极限氧指数为38%。
(3)其他高性能纤维及其复合材料重点发展金属基、陶瓷基先进复合材料、构件及相关工艺装备;聚酰亚胺纤维单丝纤度为2.0dTex ,强度>4cN/dTex,极限氧指数为38%;超高分子量聚乙烯纤维、玄武岩纤维、聚苯硫醚纤维、高强度高模量聚乙烯醇缩甲醛纤维、聚四氟乙烯纤维、碳化硅纤维等重要品种;开发高性能PBO 纤维,拉伸强度5.8GPa, 模量270GPa ,极限氧指数为68%。
14、新一代生物医用材料(1)再生医学产品研制出5-10种应用于骨、皮肤、神经等组织再生修复的生物活性材料,高端再生医学产品年产规模50亿元。
(2)功能性植/介入产品开发出5-10项应用于心血管、人工关节、种植牙、视觉恢复等临床治疗的生物医用材料,高端功能性植/介入产品年产规模30亿元。
(3)医用原材料实现重要原材料的国产化,支撑量大面广的医用耗材、渗透膜、可降解器械等产品,实现年产规模30亿元。
15、3D 打印用材料(1)其它3D 打印特种材料突破适用于3D 打印材料的产业化制备技术,建立相关材料产品标准体系。
(2)医用增材制造技术(3D 打印技术)适于3D 打印技术的可植入材料及修饰技术,碳纳米与石墨烯医用材料技术、用于个性化制造的全面解决方案,包括检测、计算机辅助设计与制造技术等。
16、智能仿生与超材料(1)可控超材料与装备实现特定频段内电磁波从吸波与透波的可控转换,或者将特定频段内的吸波或透波转换为辐射电磁波。
(2)仿生生物粘附调控与分离材料实现长效抗海洋生物粘附(3年,低于5%),环境无毒害;实现高效的粘附调控富集分离99%以上;获得2-3种长效仿生抗海洋生物粘附的涂层材料及仿生高效分离技术与装备。
(3)柔性智能材料与可穿戴设备实现柔性仿生智能材料“卷对卷”的生产,实现电磁可调、智能传感、0-360度任意弯曲、与人体兼容。
整体突破仿生生物粘附调控与分离材料的大面积制备与涂层黏合技术;智能材料的柔性化、大面积的制备和生物兼容技术;具有智能化和仿生特性的自适应可控式超材料的联合设计技术。
17、石墨烯材料(1)电动汽车锂电池用石墨烯基电极材料较现有材料充电时间缩短1倍以上,续航里程提高1倍以上。
(2)海洋工程等用石墨烯基防腐蚀涂料较传统防腐蚀涂料寿命提高1倍以上。
(3)柔性电子用石墨烯薄膜性价比超过ITO ,且具有优异柔性,可广泛应用于柔性电子领域。
(4)光/电领域用石墨烯基高性能热界面材料石墨烯基散热材料较现有产品性能提高2倍以上。
整体突破石墨烯的规模制备技术,石墨烯粉体的分散技术,石墨烯基电极材料的复合技术。
18、医疗器械先进治疗设备(1)大型重离子/质子肿瘤治疗设备、图像引导放疗设备、高清电子内窥镜、高分辨共聚焦内窥镜、数字化微创及植介入手术系统、手术机器人、麻醉机工作站、自适应模式呼吸机、电外科器械、术中影像设备、脑起搏器与迷走神经刺激器等神经调控系列产品、数字一体化手术室、可降解血管支架、骨科及口腔材料植入物、可折叠人工晶体等。
(2)关键零部件大热容量X 射线管(8MHU 以上)、新型X 射线光子探测器、超声诊断单晶探头、面阵探头(2000阵元以上)、微型高频超声探头(血管或内窥镜检测),3T 以上高场强超导磁体、MRI 用多通道谱仪(64通道以上)、CT 探测器、PET 探测器(基于硅光电倍增管)、可降解血管支架材料、透析材料、医用级高分子材料、植入电极、临床检验质控用标准物质等核心部件。