九年级上学期数学第二次月考试卷新版

合集下载

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。

人教版九年级(上第二次月考数学试卷(解析版)

人教版九年级(上第二次月考数学试卷(解析版)

人教版九年级(上)第二次月考数学试卷一、选择题(每小题3分,共36分)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=32.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,103.已知,则的值是()A.B.C.D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.156.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠18.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:912.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共12分)13.若(b+d+f≠0),则=.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是.三、解答题(共72分)17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是;(2)△A1B1C1的面积是平方单位.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=,BQ=.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.参考答案与试题解析一.选择题(共12小题)1.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4B.6,5,10,15C.3,2,6,4D.15,3,4,10【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选:C.3.已知,则的值是()A.B.C.D.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.5.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值,从而得出答案.【解答】解:设袋子中红球有x个,根据题意,得:=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.6.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A.∠ACP=∠B B.∠APC=∠ACB C.D.【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【解答】解:A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选:C.7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.8.如图,在四边形ABCD中,顺次连接各边上的中点,得到四边形EFGH.要使得四边形EFGH为矩形,对角线AC、BD要满足()A.AC=BD B.AC=BD或AC⊥BDC.AC⊥BD D.AC和BD相互平分【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH =90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:C.9.放假了,小明与小颖两家准备从红荷湿地、台儿庄古城、莲青山中选择一景点游玩,小明与小颖通过抽签方式确定景点,则两家抽到同一景点的概率是()A.B.C.D.【分析】首先用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,然后画出树状图,再由树状图求得所有等可能的结果与两家抽到同一景点的情况,继而求得答案.【解答】解:用A,B,C分别表示红荷湿地、台儿庄古城、莲青山,画树状图得:∵共有9种等可能的结果,两家抽到同一景点的有3种情况,∴两家抽到同一景点的概率是:=.故选:A.10.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A.B.C.D.【分析】根据平行线分线段成比例定理得到==3,则BC=3CE,然后利用BC+CE=BE=10可计算出CE的长.【解答】解:∵AB∥CD∥EF,∴==3,∴BC=3CE,∵BC+CE=BE,∴3CE+CE=10,∴CE=.故选:C.11.△ABC中,DE∥BC,且AD:DB=2:3,那么S△ADE:S四边形DBCE等于()A.2:3B.4:21C.2:5D.4:9【分析】根据相似三角形的判定和性质定理即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2,∵AD:DB=2:3,∴S△ADE:S△ABC=()2=,∴S△ADE:S四边形DBCE=,故选:B.12.如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是()A.1B.2C.3D.4【分析】①先证明△ABF≌△ECF,得AB=EC,再得四边形ABEC为平行四边形,进而由∠BAC=90°,得四边形ABCD是正方形,便可判断正误;②由△OCF∽△OAD,得OC:OA=1:2,进而得OC:BE的值,便可判断正误;③根据BC=AB,DE=2AB进行推理说明便可;④由△OCF与△OAD的面积关系和△OCF与△AOF的面积关系,便可得四边形OCEF的面积与△AOD的面积关系.【解答】解:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵CF∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.故选:D.二.填空题(共4小题)13.若(b+d+f≠0),则=.【分析】直接根据等比性质求解.【解答】解:∵,故答案为.14.已知线段AB=10,C为AB的黄金分割点(AC>BC),则AC=5﹣5.【分析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.【解答】解:由于C为线段AB=10的黄金分割点,且AC>BC,AC为较长线段;则AC=10×=5﹣5.15.在一次会议上,每两人都只握一次手,如果一共握手55次,则参加会议的人数为11.【分析】设参加会议有x人,每个人都与其他(x﹣1)人握手,共握手次数为x(x﹣1),根据题意列方程即可.【解答】解:设参加会议有x人,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得x1=11,x2=﹣10,(舍去),答:参加这次会议的有11人.故答案为:11.16.如图,平面直角坐标系中A(4,0),B(0,3),C是AB的中点,M在折线AOB上,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).【分析】根据勾股定理求出AB,分点M在OB上、点M在OA上两种情况,根据相似三角形的性质计算,得到答案.【解答】解:∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB==5,当点M在OB上,△BMC∽△BOA时,=,∵C是AB的中点,∴OM=OB﹣BM=,∴点M的坐标为(0,);当点M在OA上,△AM′C∽△AOB时,==,∴AM′=2,∴OM′=OA﹣AM′=2,∴点M的坐标为(2,0);当点M在OA上,△AM′′C∽△ABO时,=,即=,解得,AM′′=,∴OM′′=4﹣=,∴点M的坐标为(,0);综上所述,直线CM截三角形与三角形ABO相似,M的坐标是(0,)或(2,0)或(,0).三.解答题17.已知:如图,△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B为位似中心,在网格内画出△A1B1C1,使△A1B1C1与△ABC位似,且位似比为2:1,点C1的坐标是(1,0);(2)△A1B1C1的面积是10平方单位.(2)利用梯形面积减去周围三角形面积求出△A1B1C1的面积.【解答】解:(1)如图所示:△A1B1C1即为所求,点C1的坐标是(1,0);故答案为:(1,0);(2))△A1B1C1的面积是:(2+4)×6﹣×2×4﹣×2×4=10.故答案为:10.18.解下列方程:(1)2x2+5x=7(公式法);(2)2x2+6x+3=0(配方法).【分析】(1)方程利用公式法求出解即可;(2)方程利用配方法求出解即可.【解答】解:(1)方程整理得:2x2+5x﹣7=0,这里a=2,b=5,c=﹣7,∵△=b2﹣4ac=25+56=81>0,∴x==,即x1=1,x2=﹣;(2)方程整理得:x2+3x=﹣,配方得:x2+3x+=,即(x+)2=,开方得:x+=±,解得:x1=﹣+,x2=﹣﹣.19.求证:不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.0即可.【解答】证明:∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.20.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.【分析】延长DH交BC于点M,延长AD交BC于N,构造相似三角形,利用相似三角形对应边成比例求解.【解答】解:延长DH交BC于点M,延长AD交BC于N.∴BM=3.4,DM=0.9.由,可得MN=1.2.∴BN=3.4+1.2=4.6.由,可得AB=3.45.所以,大树的高度为3.45米.21.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,求EC的长.【分析】根据平行线和角平分线,可以证明△CDE∽△CAB,DE=BE,根据相似三角形的对应边的比相等,就可以求出EC的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC.∵DE∥AB,∴∠ABD=∠BDE,∴∠DBC=∠BDE,∴DE=BE=3cm.∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得EC=4.5cm.22.已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC即AB∥DF,∴∠1=∠2,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.【分析】(1)先证明△AEF≌△DEB(AAS),得AF=DB,根据一组对边平行且相等可得四边形ADCF是平行四边形,由直角三角形斜边中线的性质得:AD=CD,根据菱形的判定即可证明四边形ADCF是菱形;(2)先根据菱形和三角形的面积可得:菱形ADCF的面积=直角三角形ABC的面积,即可解答.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【分析】根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:∵四边形EGHF为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=xmm,AK=(80﹣x)mm,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.25.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?【分析】(1)分别表示出增加的件数和盈利的金额即可;(2)日盈利=每件商品盈利的钱数×(原来每天销售的商品件数30+2×降价的钱数),把相关数值代入求解即可.【解答】解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;26.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800(人);答:大约有800人最认可“微信”这一新生事物.(4)列表如下:共有12种等可能情况,这两位同学最认可的新生事物不一样的有10种;所以这两位同学最认可的新生事物不一样的概率为P==.27.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.28.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)根据题意知:BP=5tcm,BQ=(8﹣4t)cm.(用含t的代数式表示)(2)运动几秒时,△BPQ与△ABC相似?(3)连接AQ、CP,若AQ⊥CP,求t的值.【分析】(1)根据题意列式即可;(2)根据勾股定理即可得到结论;分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA 时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(3)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:(1)根据题意知:BP=5tcm,BQ=8﹣4tcm,故答案为:5tcm,(8﹣4t)cm;(2)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm);分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴=,解得,t=;∴t=1或时,△BPQ∽△BCA;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示,则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴=,∴=,解得t=.。

人教版九年级上册数学第二次月考试卷及答案

人教版九年级上册数学第二次月考试卷及答案

人教版九年级上册数学第二次月考试题一、单选题1.下面的图形中,是中心对称图形的是( )A .B .C .D . 2.方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .6、2、5 B .2、﹣6、5 C .2、﹣6、﹣5 D .﹣2、6、5 3.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是( ) A .2x =- B .0x = C .1x = D .3x = 4.二次函数2231y x x =-+图象一定过点( )A .()1,1-B .(),215-C .()0,1-D .()3,7 5.如图,OAB 绕点O 逆时针旋转80︒到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .35︒B .40︒C .45︒D .55︒ 6.若1x 、2x 是一元二次方程2280x x --=的两个根,则1212x x x x +-的值是( ) A .10 B .8- C .6- D .27.平面直角坐标系中,点(1,3)P -绕原点顺时针旋转90︒得到点P '的坐标是( ) A .(3,1)-- B .(-3,1) C .(-1,-3) D .(3,1) 8.有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x 个人,列出的方程是( )A .(1)64x x +=B .(1)64x x -=C .2(1)64x +=D .(12)64x +=9.若二次函数26y x x c =-+的图象经过()11,A y -,()22,B y ,()35,C y 三点,则1y ,2y ,3y 的大小关系正确的是( )A .123y y y >>B .132y y y >>C .213y y y >>D .312y y y >> 10.如图,当ab >0时,函数y =ax 2与函数y =bx +a 的图象大致是( )A .B .C .D .二、填空题11.一元二次方程290x 的解是__.12.若点A (a ,1)与点B (﹣5,b )是关于原点O 的对称点,则a+b =_____. 13.当x =___________时,二次函数256y x x =-+取最小值.14.若关于x 的一元二次方程2420x x m -+=有两个不相等的实数根,则m 的取值范围是________.15.若二次函数y=mx 2﹣3x+2m ﹣m 2的图象经过原点,则m=________.16.如图,直线y mx n =+与抛物线2y ax bx c =++交于A (-1,p ),B (4,q )两点,则关于x 的不等式2mx n ax bx c +<++的解集是____________.17.如图所示,在四边形ABCD 中,∠ABC=30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB=6,BC=8,则BD=_____________.三、解答题18.解方程:(1)22410x x --=(配方法)(2)2(1)66x x +=+19.如图,在平面直角坐标系中,ABC 的三个顶点坐标为(3,4)A -,(4,2)B -,(2,1)C -,ABC 绕原点逆时针旋转90︒,得到111A B C △,111A B C △向右平移6个单位,再向上平移2个单位得到222A B C △.(1)画出111A B C △和222A B C △;(2)(,)P a b 是ABC 的AC 边上一点,ABC 经旋转、平移后点P 的对应点分别为1P 、2P ,请写出点1P 、2P 的坐标.20.已知抛物线223y x x =--.(1)求抛物线与两坐标轴的交点坐标;(2)求它的顶点坐标,21.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.22.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元,求出y与x之间的函数关系式,并当x取何值时,商场获利润最大?23.将一条长为40cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.52cm,那么这段铁丝剪成两段后的长度分别是多(1)要使这两个正方形的面积之和等于2少?45cm吗?若能,求出两段铁丝的长度;若不能,请(2)两个正方形的面积之和可能等于2说明理由.24.如图①,在ABC 中,90,ACB AC BC ∠=︒=,以C 为顶点作45DCE ∠=︒,且CD CE 、分别与AB 相交于D E 、两点,将ACD △绕点C 逆时针旋转90︒得到BCF △.(1)若64AD EB ==,,求DE 的长;(2)若将DCA ∠绕点C 逆时针旋转使CD 与AB 相交于点D ,边CE 与AB 的延长线相交于点E ,而其他条件不变,如图②所示,猜想DE 与AD EB 、之间有何数量关系?证明你的猜想.25.如图,抛物线212y x bx c =-++与x 轴交于A B ,两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0),(0,2)A C -.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,求CBF 的最大面积及此时点E 的坐标.参考答案1.D2.C3.B4.B5.A6.A7.A8.C9.B10.C11.x 1=3,x 2=﹣3.12.413.5214.m <215.216.14x -<<17.1018.(1)11x =,21x =+;(2)11x =-,25x =. 19.(1)见解析;(2)1(,)P b a -,2(6,2)Pb a -++ 20.(1)(-1,0),(3,0);(2)(1,-4)21.解:(1)90°;(2)22.(1)2000元;(2)2101002000y x x =-++,当5x =时,商店所获利润最大为2250元.23.(1)16cm 24cm 、;(2)不能,理由见解析.24.(1)DE =(2)222DE AD BE =+,证明见解析.25.(1)213222y x x =-++;(2)存在,P 35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭或3,42⎛⎫ ⎪⎝⎭;(3)CBF 的最大面积为4,此时E 点坐标为(2,1).。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)

人教版(五四学制)2022-2023学年九年级数学上册第二次月考测试题(附答案) (2)

2022-2023学年九年级数学上册第二次月考测试题(附答案)一、选择题:(共30分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.下列运算正确的是()A.(a2)3=a5B.a+a=a2C.a2•a3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图所示的几何体是由7个大小相同的小正方体组合而成的立体图形,则它的主视图是()A.B.C.D.5.如图,圆O中,弦AB、CD互相垂直且相交于点P,∠A=35°,则∠B的大小是()A.35°B.55°C.65°D.70°6.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()A.k>2B.k≥2C.k≤2D.k<27.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.8.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x分钟,船舱内积水量为y吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y与x的函数关系.下列说法中正确的是()A.修船共用了38分钟时间B.修船过程中进水速度是排水速度的3倍C.修船完工后的排水速度是抢修过程中排水速度的3倍D.最初的仅进水速度和最后的仅排水速度相同二、填空题:(共30分)11.在“百度”搜索引擎中输入“二十大”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.计算2的结果是.14.把多项式a2b﹣6ab2+9b3分解因式的结果是.15.不等式组的解集是.16.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为.17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.18.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.19.已知△ABC是以AB为一腰的等腰三角形,AB=5,tan∠BAC=,则△ABC的底边长为.20.如图,在△ABC中,AD平分∠CAB交BC于点D,∠CDA=45°,∠B=30°,DE⊥AB于点E,若AC=5,DE=2,则CB的长为.三、解答题:(共计60分)21.先化简,再求值:(+)÷,其中a=2sin60°+tan45°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在图①中,作以AB为底的等腰△ABC,点C在小正方形的顶点上.(2)在图②中,作以AB为一边的平行四边形ABDE,点D、E在小正方形的顶点上,且满足平行四边形ABDE的面积为8,则tan∠E=.23.为了加强语文课外阅读,某年级积极组织学生参加课外阅读读书分享会活动,从年级推荐的四种读物A:《水浒传》、B:《骆驼祥子》、C:《昆虫记》、D:《朝花夕拾》中选择一本读物每周一与班级同学分享读书体会.读书分享会活动组随机抽取本年级的部分学生,调查他们这四本读物中最喜爱一本读物,并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该年级有1200名学生,估计全年级最喜爱《水浒传》的学生有多少人?24.如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,试直接写出图中除△ABE、△ADC以外的等腰三角形.25.松立商店准备从永波机械厂购进甲、乙两种零件进行销售,若甲种零件的进价是乙种零件进价的,用1600元单独购进一种零件时,购进甲种零件的数量比乙种零件多4件.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)松立商店购进甲、乙两种零件共102个,准备将零件批发给零售商.甲种零件的批发价是100元,乙种零件的批发价是130元,松立商店计划从零售商处的获利超过2284元,通过计算求出松立商店最多给零售商批发多少个甲种零件?26.如图,⊙O是△ABC的外接圆,∠BAC的平分线AO交BC于点D.(1)如图1,求证:AB=AC;(2)如图2,点E、F在弧AB上,连接BF、CF、BE、BO,若∠BCF+∠F=2∠EBO,求证:∠BCF=2∠ABE;(3)如图3,CF交AB于点K,连接AE,AE=BK,若CK:AC=13:24,BF=,求⊙O的半径.27.如图,直线y=kx+(k≠0)交x轴于点A,交y轴于点B,点C在x轴正半轴,连接BC,且AB=AC=m.(1)若△ABC的面积为S,求用含m的式子表示△ABC的面积;(2)如图2,点D在线段AB上,将线段DB绕点D顺时针旋转60°至DG,连接BG,点E在x轴负半轴上,且AE=BD,连接CG,求凹四边形ACGB的周长与四边形ACGD 的周长之差与△DBG的周长的比值;(3)在(2)的条件下,延长DG交x轴于点F,∠BAC=2∠CGF,若BG﹣GF=1,△ADF的周长为15,求直线AB的解析式.参考答案一、选择题:(共30分)1.解:﹣的相反数是,故选:B.2.解:A、(a2)3=a6,故原题计算错误;B、a+a=2a,故原题计算错误;C、a2•a3=a5,故原题计算正确;D、a2(a+1)=a3+a2,故原题计算错误;故选:C.3.解:A.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;B.该图形既不是轴对称图形,也不中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.4.解:该几何体的主视图是故选:A.5.解:由题意可知:∠DP A=90°,∵∠A=35°,∴由三角形的内角和定理可知:∠D=55°,由圆周角定理可知:∠B=∠D=55°,故选:B.6.解:∵y=的图象位于第一、第三象限,∴k﹣2>0,k>2.故选:A.7.解:共有6种可能,而有1种结果都是蓝色的,所以都是蓝色的概率概率为.8.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.9.解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.10.解:由图可得,修船共用了26﹣10=16(分钟),故A错误;修船过程中进水速度为:40÷10=4(吨/分钟),排水速度是4﹣(88﹣40)÷(26﹣10)=1(吨/分钟),故修船过程中进水速度是排水速度的4倍,故B错误;修船完工后的排水速度是88÷(48﹣26)=4(吨/分钟),故修船完工后的排水速度是抢修过程中排水速度的4倍,故C错误;由上可得,最初的仅进水速度和最后的仅排水速度相同,故D正确,故选:D.二、填空题:(共30分)11.解:100000000=1×108.故答案为:1×108.12.解:根据题意得:2x+7≠0,故答案为:x≠﹣3.5.13.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣.14.解:原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)2.15.解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.16.解:设平均每次降价的百分率为x,根据题意得:640(1﹣x)2=360,解得:x=25%或x=1.75(舍去),故答案是:25%.17.解:根据l===11π,解得:n=110,故答案为:110.18.解:过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2﹣1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中由勾股定理得:OD==,故答案为:.19.解:①如图,当AC为腰时,过点B作BD⊥AC,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=(舍去负值),∴AD=4,BD=3,∴CD=AC﹣AD=1,∴BC=;②当BC为腰时,过点B作BD⊥AC,如图,∵tan∠BAC=,∴,设BD=3x,AD=4x,在Rt△ABD中,AD2+BD2=AB2,即(4x)2+(3x)2=52,解得:x=1(舍去负值),∴AD=4,∴AC=2AD=8.综上所述,△ABC的底边长为或8.故答案为:或8.20.解:作DF⊥AC,交AC的延长线与点F,∵∠CDA=45°,∠B=30°,∴∠DAE=15°,∵AD平分∠CAB交BC于点D,∴∠CAB=2∠DAE=30°,∵DE⊥AB,DF⊥AC,DE=2,∴DF=DE=2,在Rt△DEB中,∵∠B=30°,∴DB=2DE=4,∵∠DCF=∠B+∠CAB=60°,∴∠FDC=30°,在Rt△CDF中,设CF=x,则CD=2x,∵CF2+DF2=CD2,∴x2+4=4x2,∴或x=﹣(舍去),∵CD=,∴BC=CD+BD=.故答案为:.三、解答题:(共计60分)21.解:原式=[+]•=•=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)如图①,等腰△ABC即为所求;(2)如图②,作AF⊥DE于点F,∵平行四边形ABDE的面积为8,AE=DE==∴DE•AF=8,∴AF==,∴EF===,∴tan∠E==×=.故答案为:.23.解:(1)被调查的学生人数为:12÷20%=60(人);则被调查的学生人数有60人;(2)喜欢B读物的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)估计全年级最喜爱《水浒传》的学生有:1200×=480(人),则估计全年级最喜爱《水浒传》的学生有480人.24.证明:(1)如图1,∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ACD与△ABE中,,∴△ACD≌△ABE,∴∠ACD=∠ABC,∵∠BAC+∠ABC+∠ACB=180°,∠ECD+∠ACD+∠ACB=180°,∵AB=AC,∴∠ABC=∠ACB,∴∠BAC+2∠ACB=180°,∠ECD+2∠ACB=180°,∴∠BAC=∠ECD;(2)解:如图2,①∵∠BAE=∠CAD=30°,∴∠ABC=∠ACB=∠AED=∠ADE=75°,由(1)得:∠ACD=∠ABC=75°,∠DCE=∠BAC=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFC=180°﹣30°﹣75°=75°,∴∠ACF=∠AFC,∴△ACF是等腰三角形,②∵∠BCG=∠DCE=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形,③∠EDF=75°﹣45°=30°,∴∠DEF=∠DFE=75°,∴△DEF是等腰直角三角形;④∵∠ECD=∠EDC=30°,∴△ECD是等腰三角形.25.解:设每个乙种零件的进价分别为x元,每个甲种零件的进价为x元,由题意可得:=4,解得:x=100,经检验:x=100是原方程的根,∴x=80(元),答:每个甲种零件的进价为80元,每个乙种零件的进价为100元;(2)设松立商店给零售商批发a个甲种零件,由题意可得:(100﹣80)a+(130﹣100)×(102﹣a)>2284,解得:a<77.6,∴a的最大整数为77,∴松立商店最多给零售商批发77个甲种零件.26.(1)证明:如图1,延长AD交⊙O于点G,连接BG、CG,∵AG是⊙O的直径,∴∠ABG=∠ACG=90°,∴∠AGB+∠BAG=90°,∠AGC+∠CAG=90°,∵AG平分∠BAC,∴∠BAG=∠CAG,∴∠AGB=∠AGC,∴AB=AC;(2)证明:如图2,连接OE,∵=,∴∠AOE=2∠ABE,∵=,∴∠F=∠BAC,由(1)知:AG平分∠BAC,∴∠BAC=2∠BAO,∵OA=OB,∴∠BAO=∠ABO,∴∠BOD=∠BAO+∠ABO=2∠BAO,∴∠BOD=∠BAC,∵OB=OE,∴∠BEO=∠EBO,∵∠BEO+∠EBO+∠BOE=180°,∠AOE+∠BOD+∠BOE=180°,∴2∠EBO=∠AOE+∠BOD=2∠ABE+∠F,∵∠BCF+∠F=2∠EBO,∴∠BCF+∠F=2∠ABE+∠F,∴∠BCF=2∠ABE;(3)解:如图3,延长BE至M,使EM=BC,连接AM,连接FO并延长交⊙O于点N,连接BN,作线段AB的垂直平分线交AB于R,交BE于L,过点A作AT⊥BM于T,∵AB=AC,∴∠ACB=∠ABC,∵四边形ACBE是⊙O的内接四边形,∴∠ACB+∠AEB=180°,∵∠AEM+∠AEB=180°,∴∠AEM=∠ABC,即∠AEM=∠KBC,在△EMA和△BCK中,,∴△EMA≌△BCK(SAS),∴AM=CK,∠M=∠BCF,∵CK:AC=13:24,∴设CK=13a,AC=24a,则AM=13a,AB=AC=24a,由(2)知:∠BCF=2∠ABE,设∠ABE=β,则∠M=∠BCF=∠BNF=2β,∵LR垂直平分AB,∴AR=BR=12a,AL=BL,∴∠BAL=∠ABE=β,∴∠ALM=∠BAL+∠ABE=2β=∠M,∴AL=AM=BL=13a,∴LR===5a,∵sin∠ABE==,即sinβ==,∴AT=a,∴sin2β===,∵FN是直径,∴∠FBN=90°,∴=sin∠BNF=sin2β=,∴FN=BF=×=13,∴圆的半径为FN=.27.解:(1)令x=0,则y=,∴B(0,),∴OB=,∴S=•OB•AC=••m=m;(2)由题意可知,△DBG是等边三角形,∴BD=BG=DG,∵AB=AC,BD=AE,∴AD=EC.∴凹四边形ACGB的周长=AC+CG+GB+AB,四边形ACGD的周长=AC+CG+GB+DA,∴凹四边形ACGB的周长与四边形ACGD的周长之差=AB﹣DA=BD,∵△BBG的周长=3BD,∴凹四边形ACGB的周长与四边形ACGD的周长之差与△DBG的周长的比值为=.(3)如图,在点F的右侧取点K,使FK=GF,则∠FKG=FGK,设∠CGF=α,则∠BAC=2α,∴∠ABC=∠ACB=90°﹣α,由(2)知,△BDG是等边三角形,∴∠BDG=∠BGD=60°,∴∠CFG=60°﹣2α,∠CBG=30°﹣α,∠BGF=120°,∴∠CKG=∠FGK=30°﹣α,∠BGC=120°+α,∴∠CKG=∠CBG,在△GCF中,由三角形内角和可知,∠GCK=120°+α,∴∠BGC=∠GCK,∵GC=CG,∴△BCG≌△KGC(AAS),∴BG=KC,∵BG﹣GF=1,∴CK﹣FK=1,即CF=1,设FK=a,则CK=a+1,∴BD=DG=BG=AE=a+1,∵△ADF的周长为15,∴AD=EC=6﹣a,∴DF=2a+1,AF=8﹣a,过点F作FM⊥AB于点M,∴DM=DF=a+,FM=DM=(a+),∴AM=6﹣a,在Rt△AFM中,由勾股定理可得,AM2+FM2=AF2,∴(6﹣a)2+[(a+)]2=(8﹣a)2,解得a=2或a=﹣(舍).∴AB=6﹣a+a+1=6,∴AO=,∴A(﹣,0),将点A的坐标代入y=kx+,解得k=.∴直线AB的解析式为:y=x+.。

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

河北省邯郸市第二十五中学2024届九年级上学期第二次月考数学试卷(含解析)

邯郸市第二十五中学2023—2024学年九年级第一学期阶段测试(二)数学试卷一、选择题(本大题共16小题,共38分.1—6小题各3分,7—16小题各2分.在每小题给出的选项中,只有一项是符合题目要求的)1. 下列我国著名企业商标图案中,是中心对称图形的是( )A. B. C. D.【答案】B解析:A.不是中心对称图形,故此选项错误B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误D.不是中心对称图形,故此选项错误;故选B2. 函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y=﹣2(x﹣1)2+2B. y=﹣2(x﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2【答案】B解析:解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.3. 已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C解析:解:∵d=3<半径=4,∴直线与圆相交,∴直线m与⊙O公共点个数为2个,故选C.4. 如图,直角坐标系中一条圆弧经过格点,,,其中点坐标为,则该圆弧所在圆的圆心坐标为()A. B. C. D.【答案】A解析:解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦和的垂直平分线,交点即为圆心.如图所示,则圆心是.故选:A.5. 如图,在中,,,则的度数是()A. B. C. D.【答案】A详解】解:连接,∵在中,,∴,则,∵,∴,故选:A.6. 如图,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转,得到△ADE,点D恰好落在直线BC上,则旋转角的度数为( )A. 70°B. 80°C. 90°D. 100°【答案】D解析:∵将△ABC绕点A逆时针旋转,得到△ADE∴△ABC≌△ADE∴AB=AD∴∠ADB=∠B=40°∵∠ADB+∠B+∠BAD=180°∴∠BAD=180°-40°-40°=100°故选D7. 如图,⊙O是∆ABC的外接圆,半径为,若,则的度数为()A. 30°B. 25°C. 15°D. 10°【答案】A解析:解:连接OB和OC,∵圆O半径为2,BC=2,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=30°,故选A.8. 如图,是的直径,若,∠D=60°,则长等于( )A. 4B. 5C.D. 【答案】D解析:解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,故选:D .9. 已知,,是抛物线上的点.则、、的大小关系是()A. B.C. D.【答案】B 解析:解:∵,∴对称轴是:,则关于直线对称的点为,∵,∴当时,随的增大而增大,∵,∴;即:,故选:B .10. 某同学将如图所示的三条水平直线,,的其中一条记为x 轴(向右为正方向),三条竖直直线,,的其中一条记为y 轴(向上为正方向),并在此坐标平面内画出了二次函数的图象,那么她所选择的x 轴和y 轴分别为直线( )A. B. C. D.【答案】D解析:解:∵,∴顶点坐标为,∵,∴抛物线与的交点为顶点,∴为y轴,∵二次函数与y轴的交点为,且,∴为x轴,故答案为:D.11. 根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A. B.C. D.【答案】C【解析】解析:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C.12. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【答案】D解析:如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选:D.13. 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD=BC【答案】C解析:根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,AB=BD,则△ABD为等边三角形,即AD=AB=BD,∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以∠ADB=∠CBD,∴AD∥BC.故选C.14. 如图,已知的弦,以为一边作正方形,切点为E,则的半径为( )A. 4B. 3C. 6D. 5【答案】D解析:解:连接并延长,交于F,连接,设的半径为r,则,边与相切,,四边形为正方形,,,在中,,即,解得:,的半径为5,故选:D.15. 已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论正确的是( )A. 抛物线的开口向下B. 抛物线的对称轴为直线x=2C. 当0≤x≤4时,y≥0D. 若A(x 1,2),B(x2,3)是抛物线上两点,则x1x2【答案】B解析:解:由表格可得,该抛物线的对称轴为直线x==2,故选项B正确;当x<2 时,y随x的增大而减小,当x>2时,y随x的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x≤4时,y≤0,故选项C错误;由二次函数图象具有对称性可知,若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2或x2<x1,故选项D 错误;故选:B.16. 有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”,下列判断正确的是()A. 淇淇说的对,且的另一个值是115°B. 淇淇说的不对,就得65°C. 嘉嘉求的结果不对,应得50°D. 两人都不对,应有3个不同值【答案】A解析:解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故选:A.二、填空题(本大题共3小题,共10分.17小题2分,18—19小题各4分,每空2分)17. 二次函数的最小值是_________.【答案】3解析:解:∵a=1>0,∴当x=2时,y有最小值3.故答案为:3.18. 如图,在平面直角坐标系中,已知,以点为圆心的圆与轴相切.点、在轴上,且.点为上的动点,,则长度的最大值为__________,此时长度为__________.【答案】①. 8 ②. 16解析:解:连接,,∵已知,∴,又∵以点为圆心的圆与轴相切,∴得半径为3,则,由三角形三边关系可知:,当点在射线上时取最大值,如图,即:长度的最大值为8,又∵,,则点为斜边的中点,∴,∴当长度为最大值时,,故答案为:①8,②16.19. 如图,中,,.为中点,将绕着点逆时针旋转至.(1)当时,__________;(2)当恰为等腰三角形时,的值为__________.【答案】①. ②. 或或解析:解:(1)∵为中点,∴,∵将绕着点逆时针旋转至,∴,∴,∴,∵,即:∴,∵,∴,故答案为:;(2)如图1,连接,∵为中点,,∴,∴,而,∴,∴;当时,∴,∴,∴,∴,又∵,∴,∴,∴,即;当时,如图2,连接并延长交于,∵,∴垂直平分,∴,∵,为中点,∴,∴,∴,∴,∴,即;当时,如图3,连接并延长交于,连接,∵,为斜边中点,∴,∴垂直平分,∴,∵,∴,即;综上所述:当为等腰三角形时,的值为或或,故答案为:或或.三、解答题(本大题共7个小题,共72分.解答应等出文字说明、证明过程或演算步骤)20. 解方程:(1);(2)【答案】(1),(2)【小问1详解】由题意得,,则,∴,即,;【小问2详解】∴,因式分解为,∴,∴21. 如图,在平面直角坐标系中,的三个顶点坐标都在格点上,且与关于原点成中心对称.(1)画出;并写出各点坐标.(2)是的边上一点.将平移后点的对应点,请画出平移后的;(3)若和关于某一点成中心对称,则对称中心的坐标为__________.【答案】(1)作图见解析,,,(2)见解析(3)【小问1详解】解:∵,,,∴,,;∴即为所求;【小问2详解】∵,平移后点的对应点,∴先向右平移2个单位长度,再向下平移6个单位长度,即:如图所示;【小问3详解】连接,相交于点,则为对称中心,即:为的中点,∵,∴,又∵,∴,即,故答案为:.22. 如图,AB是的直径,弦于点M,连结CO,CB.(1)若,,求CD的长度;(2)若平分,求证:.【答案】(1)8;(2)证明见详解解析:解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,Rt△OCM中,OM2+CM2=OC2,∴CM4,∴CD=8;(2)过点O作ON⊥BC,垂足N,∵CO平分∠DCB,∴OM=ON,∵CO=CO∴Rt△COM≌Rt△CON∴CM=CN∴CB=CD.23. 如图,,,直线经过点.设,于点,将射线绕点按逆时针方向旋转,与直线交于点.(1)判断:__________;(2)若,求的长;(3)若的外心在三角形内部(不包括边上),直接写出的取值范围.【答案】(1)(2)(3)【小问1详解】解:∵,,∴,在四边形中,,故答案是:;【小问2详解】由旋转可知,,又∵,∴,,∴.由(1)知,而,∴.又∵,∴,∴.又∵,则是等腰直角三角形,∴;【小问3详解】由(2)可知,当时,则为直角三角形,外心在其斜边上,当时,则为钝角三角形,外心在其外部,当时,∵,,,∴,则,∴,,则为锐角三角形,外心在其内部,故:.24. 随着城市的块速发展,人们的环保意识逐渐增强,对花木的需求量也逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图1所示;种植花卉的利润与投资量成二次函数关系,如图2所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户计划以10万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【答案】(1),(2)他至少获得18万元利润,他能获取的最大利润是50万元【小问1详解】设,由图1所示,函数图象过,∴∴;∵该抛物线的顶点是原点∴设,由图2所示,函数的图象过∴,则,∴;【小问2详解】设这位专业户投入种植花卉万元,则投入种植树木万元,他获得的利润是万元,根据题意得:,∴当时,的最小值是18∵,∴当时,的最大值是50.∴他至少获得18万元利润,他能获取的最大利润是50万元.25. 如图,AB是的直径,点D、E在上,连接AE、ED、DA,连接BD并延长至点C,使得.(1)求证:AC是的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②若的半径为3,BF=2,求AC的长.【答案】(1)见解析;(2)①见解析;②8解析:(1)∵AB是的直径,∴∠ADB=90°,∴∠DBA+∠DAB=90°,∵∠DEA=∠DBA,∠DAC=∠DEA,∴∠DBA=∠DAC,∴∠BAC=∠DAC+∠DAB=90°,∵AB是的直径,∠BAC=90°,∴AC是的切线;(2)①∵点E是的中点,∴∠BAE=∠DAE,∵∠CFA=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,∴∠CFA=∠CAF,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵的半径为3,∴AB=6,在Rt△ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.26. 如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为解析:解:(1)将A(﹣1,0),B(0,2)代入y=﹣x2+bx+c,得:,解得:b=1,c=2∴抛物线的解析式为y=﹣x2+x+2.(2)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(2,0),∴0<m<2.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+m+2),点E的坐标为(m,m+3),∴PE=﹣m2+m+2﹣(m+3)=﹣m2+m+3=﹣(m﹣)2+.∵﹣1<0,0<<2,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期数学第二次月考试卷新版
一、单选题 (共12题;共24分)
1. (2分)关于x2=-2的说法,正确的是()
A . 由于x2≥0,故x2不可能等于-2,因此这不是一个方程
B . x2=-2是一个方程,但它没有一次项,因此不是一元二次方程
C . x2=-2是一个一元二次方程
D . x2=-2是一个一元二次方程,但不能解
2. (2分)下面的图形中对称轴最多的()
A . 长方形
B . 平行四边形
C . 圆
D . 半圆
3. (2分)点M(1,-2)关于原点对称的点的坐标是()
A . (-1,-2)
B . (1,2)
C . (-1,2)
D . (-2,1)
4. (2分)已知x=2是一元二次方程x²-mx+2=0的一个解,则m的值为()
A . -3
B . 3
C . 0
D . 0或3
5. (2分) (2019九上·云安期末) 抛物线y=(x-1)2+2的顶点坐标是()
A . (1,2)
B . (-1,2)
C . (1,-2)
D . (-1,-2)
6. (2分)(2019·宁波模拟) 如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG, 的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=20,则AB的长是()
A . 9
B .
C . 13
D . 16
7. (2分)(2019·乐山) 如图,直线∥ ,点在上,且 .若
,那么等于()
A .
B .
C .
D .
8. (2分)(2018·北海模拟) 一元二次方程x2﹣3x+1=0的根的情况()
A . 有两个相等的实数根
B . 有两个不相等的实数根
C . 没有实数根
D . 以上答案都不对
9. (2分) (2019九下·深圳月考) 函数 y=﹣2x2先向右平移 3个单位,再向下平移5个单位,所得函数解析式是()
A . y=﹣2(x﹣3)2+5
B . y=﹣2(x﹣3)2﹣5
C . y=﹣2(x+3)2+5
D . y=﹣2(x+3)2﹣5
10. (2分) (2017八上·鞍山期末) 已知△ABC,
①如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+ ∠A;
②如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;
③如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.
上述说法正确的个数是()
A . 3个
B . 2个
C . 1个
D . 0个
11. (2分)(2019·北部湾模拟) 某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为x,则可列方程为()
A . 300(1+x)2=507
B . 300(1-x)2=507
C . 300(1+2x)=507
D . 300(1+x2)=507
12. (2分) (2018九上·鄞州期中) 如图,已知二次函数
的图像如图所示,有下列5个结论:① ,② ,③ ,④
⑤ 。

其中正确的结论有()
A . ①②③
B . ①③ ④
C . ③④⑤
D . ②③⑤
二、填空题 (共6题;共8分)
13. (1分) (2016九上·大石桥期中) 一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=________.
14. (1分)已知抛物线y=x2+bx+c经过点A(0,5)、B(4,5),那么此抛物线的对称轴是________.
15. (2分) (2019八上·重庆期末) 如图,P是等边三角形ABC内一点,将线段AP 绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=________°.
16. (1分) (2019九上·兴化月考) 如图,四边形ABCD内接于⊙O,若∠ADC=60°则∠ABC=________°.
17. (2分)(2017·安陆模拟) 如图所示,正六边形ABCDEF内接于⊙O,则∠ADF的度数为________.
18. (1分)(2019·淮安) 一个圆锥的侧面积为,母线长为5,则此圆锥的底面半径为________.
三、解答题 (共8题;共67分)
19. (5分) (2019九上·泰州月考) 解方程:
(1)
(2)
20. (5分) (2019九上·长葛开学考) 解下列方程
(1)
(2) x2﹣4x﹣396=0
(3) 2x2﹣2=3x
(4) 2(2x-3)=3x(2x-3)
21. (10分) (2019九上·荔湾期末) 如图,在Rt△ABC中,∠ABC=90°,BC=1,
AC=.
(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;
(2)求点A和点A′之间的距离.
22. (10分) (2019九上·射阳期末) 如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是_;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
23. (5分) (2017九上·平桥期中) 如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=2.Rt△AB′C′可以看作是由Rt△ABC绕A点逆时针方向旋转60°得到的,求线段B′C 的长.
24. (15分)(2018·汕头模拟) 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?
(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?
(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
25. (2分) (2019七下·监利期末) 如图,是一块破损的木板.
(1)请你设计一种方案,检验木板的两条直线边缘AB、CD是否平行;
(2)若AB∥CD,连接BC,过点A作AM⊥BC于M,垂足为M,画出图形,并写出∠BCD 与∠BAM的数量关系.
26. (15分) (2017八下·西华期中) 如图,每个小正方形的边长都是1,
(1)求四边形ABCD的周长和面积;(2)∠BCD是直角吗?
参考答案
一、单选题 (共12题;共24分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
11、答案:略
12、答案:略
二、填空题 (共6题;共8分)
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共67分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略
第11 页共11 页。

相关文档
最新文档