光传递函数的测量
光学传递函数测量仪原理

光学传递函数测量仪原理光学传递函数测量仪是一种用于评估光学系统性能的仪器。
它通过测量光学系统中的传递函数来分析系统的成像质量。
光学传递函数是描述光学系统传递性能的数学函数,它可以用来计算系统对输入光信号的响应。
光学传递函数测量仪通常由一个光源、一个透镜和一个光敏探测器组成。
光源发出一束光线,经过透镜后形成一个像。
光敏探测器会收集到透过光学系统的光信号,并将其转换为电信号。
测量仪会记录下输入和输出信号之间的关系,进而计算出光学传递函数。
在测量过程中,光源的特性对测量结果有着重要的影响。
光源应尽量稳定且光强均匀,以确保测量的准确性。
透镜的选择也非常重要,应根据所需的测量精度和波长范围来选择合适的透镜。
测量仪的核心是光敏探测器。
常见的光敏探测器有光电二极管和光电倍增管。
光电二极管是一种能将光信号转化为电信号的半导体器件,它的输出电流与输入光强成正比。
光电倍增管则是一种能够将光信号放大的器件,它通过光电效应将光子转化为电子,并经过倍增过程放大电信号。
在进行测量时,测量仪会将输入信号和输出信号进行频谱分析。
通过测量不同频率下的输入输出信号之间的相位差和幅度差,可以计算出光学传递函数。
光学传递函数通常用复数表示,其中包括幅度传递函数和相位传递函数。
幅度传递函数描述了系统对不同频率的光强的衰减情况,而相位传递函数描述了系统对不同频率的光信号的相位延迟情况。
光学传递函数测量仪广泛应用于光学系统的研究和开发。
通过测量光学系统的传递函数,可以评估系统的成像质量和分辨率。
同时,光学传递函数测量仪还可以用于光学系统的校准和调试,以提高系统的性能。
总结一下,光学传递函数测量仪是一种用于评估光学系统性能的仪器。
它通过测量光学系统的传递函数来分析系统的成像质量。
光学传递函数是描述光学系统传递性能的数学函数,它可以计算系统对输入光信号的响应。
测量仪通常由光源、透镜和光敏探测器组成,通过测量不同频率下的输入输出信号之间的相位差和幅度差来计算传递函数。
光学系统调制传递函数MTF测试方法

光学系统调制传递函数MTF测试方法MTF(Modulation Transfer Function)是一种测量光学系统性能的重要方法。
MTF描述了光学系统在传递信号时如何保持空间频率的细节。
通过测量MTF,我们可以了解光学系统对不同频率的图像细节的保持程度,从而评估其分辨力和图像质量,为光学系统的设计和优化提供有价值的指导。
光学系统的MTF可以通过以下几种方法进行测试:1. 黑白条纹法(Knife-edge method):这是一种最常用、最简单的MTF测试方法。
它通过在光学系统的成像平面上投射一组黑白条纹,然后使用一个细微的刀片移动在图像平面上,测量从刀片通过时图像的对比度变化。
根据对比度的变化,可以计算得到系统在不同空间频率上的MTF。
2. 周期矩激光干涉法(Phase-shifting interferometry):这是一种基于干涉原理的MTF测试方法。
它使用一个周期性的光源和一个位相变换器(例如空间光调制器),通过在特定位置引入相位差,使干涉图样中出现明暗条纹。
通过分析这些条纹的强度变化,可以得到光学系统的MTF。
3. 横向极限法(Slanted-edge method):这种方法使用一个斜线或倾斜边缘来评估系统的MTF。
首先在光学系统的成像平面上放置具有已知倾斜角度的边缘,并采集成像结果。
然后,通过分析相邻像素之间的亮度变化,可以计算得到MTF。
这种方法相对于其他方法更容易实施,因为它不需要周期性结构。
4. 直接测量法(Direct measurement method):这种方法是通过测量在系统的输入和输出之间传递的信号幅度来计算MTF。
首先,利用一组测试信号源输入系统,并记录输入和输出信号的能量。
然后,通过计算输入和输出信号的功率谱密度比,可以得到系统的MTF。
这个方法需要高精度的测量设备和复杂的信号分析技术。
这些方法中的选择取决于光学系统的具体要求和测试条件。
对于一些应用而言,可能需要结合使用多种方法以获得更准确和全面的MTF测试结果。
光学传递函数的测量和评价

光学传递函数的测量和评价光学传递函数(Optical Transfer Function,OTF)是光学系统的重要性能参数之一,用于描述系统对特定频率和振幅的光信号的传递特性。
在光学系统中,由于各种因素的影响,例如像差、散射、衍射等,导致成像质量的下降。
通过测量和评价光学传递函数,可以定量地衡量光学系统的成像能力,并用于优化系统设计以及改进图像质量。
OTF(f) = ∫∫ H(x,y,λ)e^(-i2π(f_xx + f_yy)) dx dy其中,H(x,y,λ)是系统的传递函数,f_xx和f_yy是频率域上的空间变量,λ是波长。
测量光学传递函数需要使用相应的设备和方法。
其中最常见的方法是利用干涉仪和特定的测试物体来进行。
干涉仪可以提供高精度的相位测量,并通过引入加权函数来计算光学传递函数。
测试物体可以是周期性或随机的,用于激发系统的不同频率响应。
通过改变空间频率和振幅,可以获得系统在不同条件下的传递函数。
评价光学传递函数的常见方法包括一下几种:1. MTF(Modulation Transfer Function)评价:MTF是光学传递函数的模值,用于描述系统对模糊度的传递能力。
MTF以频率为横轴,传递函数的大小为纵轴,可以绘制成曲线,从而直观地表示系统对不同频率的描述能力。
一个好的系统应该在低频段具有高的传递能力,从而保证清晰度。
2. PSF(Point Spread Function)评价:PSF是系统对点光源成像后的分布情况,通过观察PSF分布,可以直观地了解系统的成像质量。
PSF的形状和大小与系统的光学传递函数密切相关。
理想情况下,PSF应该是一个尖峰,表示系统对目标的清晰成像。
3. RES(Resolution)评价:分辨率是评价系统成像能力的重要参数之一,描述了系统在成像过程中能够分辨的最小细节大小。
通过评估系统对不同空间频率的响应能力,可以获得系统的分辨率。
对于不同的应用,分辨率的要求也不同,例如在医学影像中,高分辨率是非常重要的。
MTF检测机应用及原理[技巧]
![MTF检测机应用及原理[技巧]](https://img.taocdn.com/s3/m/c279fca164ce0508763231126edb6f1aff007147.png)
MTF检测机原理与应用目的:空间频率,由光电转换成MTF的测量仪.1.光学传递函数(MTF)检测光学组件与系统在许多领域中被广泛使用,在这些使用光学的系统中,光学成象的好坏对系统整体的质量与可靠性往往造成重大的影响.因此对于所使用的光学系统或次系统, 寻求一符合实际测试条件可定量地(quantitatively)评估其性能的方法益形重要.MTF(Modulation Transfer Function)检测可以提供光学系统整体影像质量或对比度之定量分析,且拜科技进步之踢,近年来已经发展出靠方便操作的自动化量测仪器,以及量测标准的建立.MTF检测技术已经成为国际公认评估光学组件质量与光学系统性能的标准.2.检测仪器2.1仪器原理:光学系统的MTF为该待测系统线扩散函数的传利叶转换,因此量测MTF直接的方法就是利用MTF检测机测量待测系统的线扩散函数,然后计算其传利叶转换,即可获得MTF曲线.MTF检测机是由灯管照明的CHART光线经过待测镜头成像,置于焦平面的线性CCD则用以量测像的强度分布,即线扩散函数.2.2MTF计算:代表线扩散函数的强度分怖讯号由CCD以电子方式扫瞄后,经由模拟/数字讯号转换器输入计算机由软件进一步运算处理.3.检测实务LAT镜头自动检验机(Lens Automatic Tester)也就是MTF检测机较为普遍的一种类型,3.1:镜头自动检验机用来量测扫描仪镜头的检验仪器.3.2:量测镜头所需的data:a.扫描仪参数如分辨率,扫描物宽.b.物像距(TT).c.后焦距.d.放大倍率.光电厂要生产分辨率600dpi的扫描仪.适用扫描A4文件.线性CCDpixel size是5.25u,物像距250mm.光学厂设计并制造出扫描仪镜头,TT=250mm,M=0.123826,F/N=6.5.检测程序:1.CHART的选用a.量测的频率:物面通常使用半频.600dpi/2,选用300dpi的CHART,高频线条Hi=0.09mm.低频Low=0.36mm.Total=7.2. b物宽:A4(297*210mm)文件,选用doc=190mm.2.架设机台的输入参数:a.standard lp/mm=l/(Hi*M*2),1/(0.09*0.123826)=44.871p/mm.b.物宽=doc+Total=197.2mm.c.像宽=物宽*放大率=(doc+Total)*M=197.2*0.123826=24.42mm.d.后焦(BKL)=23.69mm. 3.测试步骤:a镜头量测EFL.b.放置正确测试标准板(CHART).c设定物像距(CCD至CHART距离)d.放置正确治具及镜组.e.校准镜组.4.测试说明:a.量测的光源:RGB及白光.b.量测的位置:0(中心)+/-0.7(field)+/-0.9(field). cMTF:R.G..B的S&T方向各十点位置.d.M(放大率)值:实测的CCDpixel。
光学函数传递实验报告总结

光学函数传递实验报告总结传递函数是描述光学系统的关键参数,通过测量和分析光学函数传递实验,可以更深入地了解光学系统的性能和特性。
本报告总结了光学函数传递实验的目的、过程和结果,以及对实验结果的分析和讨论。
实验目的:1.了解光学函数传递的概念和原理;2.学习使用光学函数传递实验仪器和设备;3.通过实验,测量和分析光学系统的传递函数;4.分析和讨论实验结果,探讨光学系统的性能和特性。
实验过程:1.实验仪器和设备准备:根据实验要求,准备好光学函数传递实验所需的仪器和设备,如光源、透镜、光束分离器、光电二极管等。
2.实验样品准备:根据实验要求,选择测试样品,如光学元件、光学系统等,并确保其表面清洁和平整。
3.实验设置和测量:将测试样品安装到实验设备中,调整实验参数,如入射角度、光强度等,并开始测量光学函数传递曲线。
4.实验数据采集和处理:通过调整实验参数和测量结果,采集到一系列光学函数传递数据,并进行数据处理和分析,如曲线拟合、峰值和谷值的测量等。
5.实验结果分析:根据实验数据和分析结果,分析和讨论光学系统的传递函数特性,并与理论预测进行比较。
实验结果:根据实验数据和分析结果,得到了光学系统的传递函数特性曲线。
通过分析曲线,可以得出以下结论:1.光学系统的传递函数在特定频率范围内具有峰值和谷值,这些峰值和谷值可以表示光学系统的频率响应特性。
2.峰值和谷值的位置和幅度与光学元件的特性和参数有关,如折射率、材料吸收等。
3.光学函数传递曲线的斜率可以表示光学系统的衰减特性,也可以表示信号传输的带宽限制。
4.光学函数传递曲线的形状和特性可以用于评估光学系统的性能和优化设计。
实验分析和讨论:通过实验结果的分析和讨论,可以得出以下结论和讨论:1.光学函数传递实验是研究光学系统性能和特性的重要手段,可以揭示光学系统的频率响应、衰减特性和带宽限制等。
2.实验结果与理论预测的一致性较好,说明实验方法的可靠性和有效性。
3.光学系统的传递函数特性受到光学元件和光学系统结构的影响,因此在光学系统设计和优化中应考虑这些因素。
光学传递函数及像质评价实验

光学传递函数及像质评价实验光学传递函数(Optical Transfer Function, 简称OTF)是指用来描述一个光学系统的成像能力的一种数学函数。
它能够展示光学系统对不同空间频率的光信号的传递特性,即光学系统对图像的细节的保持能力。
在实际应用中,我们可以通过实验来测量光学传递函数,并利用光学传递函数来评价光学系统的像质。
下面是进行光学传递函数及像质评价实验的步骤和方法:1.实验原理首先,我们需要了解光学传递函数的定义。
光学传递函数是光学系统的输入和输出之间的傅里叶变换的模值平方。
在实验中,我们可以使用一系列不同空间频率的测试样品,通过测量系统对这些测试样品的成像质量,来获取光学传递函数。
2.实验仪器进行光学传递函数实验需要一些必要的仪器和设备。
常见的实验设备包括透射式光学显微镜、图像分析软件和精确的测试样品。
3.测试样品为了评价光学系统的成像能力,我们可以选择一些有规律的测试样品。
例如,分辨率测试样片(Resolution Test Target)提供了不同空间频率的线条和图案供系统成像。
此外,可以选择一些具有不同细节和纹理特征的目标,来评价光学系统对于复杂场景的成像质量。
4.实验步骤a)准备一系列测试样品,包括不同空间频率的目标。
b)将测试样品放置在光学系统的成像平面上,并进行成像。
c)使用光学显微镜或相机等设备,获取成像结果的图像。
d)使用图像分析软件对成像结果进行分析。
可以计算系统的MTF曲线,并绘制出光学传递函数图像。
e)分析光学传递函数图像,评价光学系统在不同空间频率下的成像能力和像质。
5.像质评价利用光学传递函数图像,我们可以对光学系统的像质进行评价。
a)直观评价:观察光学传递函数图像的形状和幅度,判断光学系统对不同空间频率图像的成像效果。
b)MTF曲线分析:通过分析光学传递函数图像的峰值和半周期点等参数,计算光学系统在不同空间频率下的成像能力。
c)分辨力评价:根据测试样品上最细微细节的可分辨度,评价光学系统的分辨力。
MTF检测机应用及原理

MTF检测机原理与应用目的:空间频率,由光电转换成MTF的测量仪.1.光学传递函数(MTF)检测光学组件与系统在许多领域中被广泛使用,在这些使用光学的系统中,光学成象的好坏对系统整体的质量与可靠性往往造成重大的影响.因此对于所使用的光学系统或次系统, 寻求一符合实际测试条件可定量地(quantitatively)评估其性能的方法益形重要.MTF(Modulation Transfer Function)检测可以提供光学系统整体影像质量或对比度之定量分析,且拜科技进步之踢,近年来已经发展出靠方便操作的自动化量测仪器,以及量测标准的建立.MTF检测技术已经成为国际公认评估光学组件质量与光学系统性能的标准.2.检测仪器2.1仪器原理:光学系统的MTF为该待测系统线扩散函数的传利叶转换,因此量测MTF直接的方法就是利用MTF检测机测量待测系统的线扩散函数,然后计算其传利叶转换,即可获得MTF曲线.MTF检测机是由灯管照明的CHART光线经过待测镜头成像,置于焦平面的线性CCD则用以量测像的强度分布,即线扩散函数.2.2MTF计算:代表线扩散函数的强度分怖讯号由CCD以电子方式扫瞄后,经由模拟/数字讯号转换器输入计算机由软件进一步运算处理.3.检测实务LAT镜头自动检验机(Lens Automatic Tester)也就是MTF检测机较为普遍的一种类型,3.1:镜头自动检验机用来量测扫描仪镜头的检验仪器.3.2:量测镜头所需的data:a.扫描仪参数如分辨率,扫描物宽.b.物像距(TT).c.后焦距.d.放大倍率.光电厂要生产分辨率600dpi的扫描仪.适用扫描A4文件.线性CCDpixel size是5.25u,物像距250mm.光学厂设计并制造出扫描仪镜头,TT=250mm,M=0.123826,F/N=6.5. 检测程序:1.CHART的选用a.量测的频率:物面通常使用半频.600dpi/2,选用300dpi的CHART,高频线条Hi=0.09mm.低频Low=0.36mm.Total=7.2. b物宽:A4(297*210mm)文件,选用doc=190mm.2.架设机台的输入参数:a.standard lp/mm=l/(Hi*M*2),1/(0.09*0.123826)=44.871p/mm.b.物宽=doc+Total=197.2mm.c.像宽=物宽*放大率=(doc+Total)*M=197.2*0.123826=24.42mm.d.后焦(BKL)=23.69mm. 3.测试步骤:a镜头量测EFL.b.放置正确测试标准板(CHART).c设定物像距(CCD至CHART距离)d.放置正确治具及镜组.e.校准镜组.4.测试说明:a.量测的光源:RGB及白光.b.量测的位置:0(中心)+/-0.7(field)+/-0.9(field).cMTF:R.G..B的S&T方向各十点位置.d.M(放大率)值:实测的CCDpixel 数*4u/像宽.e.I值:为目前量测的像宽值与标准的像宽值的比值(I=M量测-M规格*100%). 5.架设时的修正事项:a.TT方面:若在光学系统中放入折射n为厚度d之玻璃,则光程须再增加(n-1)*d/n,在光学Layout 图中.常常有一块3mm玻璃板,而玻璃厚度通常只有1.90mm,故玻璃厚度大约减少1.10mm,故TT减少1.1/3=0.363mm.b.B.F.L修正:B.F.L为最后一片镜片至成像点的距离即最后镜面至CCD:motor移动到最顶端后,Adapter底端toCCD 感应面的距离在相关设定有二:b.1:Adapter to CCD:motor移动到最顶端后,Adapter底端toCCD感应面的距离,此值随每台LAT机台不同而有不同,在同一机台中无论测试的镜头为何比相同.b.2:Lens to Adapter:Adapter 底端到最后一片镜面之距离.其值等于镜头最后一片镜面到Barrel底端的距离加上Holder的高度.镜头最后一片镜面到Barrel底端的距离可由Layout图中算出.。
光学传递函数的测量和评价解读

光学传递函数的测量和评价引言光学传递函数是表征光学系统对不同空间频率的目标函数的传递性能,是评价光学系统的指标之一。
它将傅里叶变换这种数学工具引入应用光学领域,从而使像质评价有了数学依据。
由此人们可以把物体成像看作光能量在像平面上的再分配,也可以把光学系统看成对空间频率的低通滤波器,并通过频谱分析对光学系统的成像质量进行评价。
到现在为止,光学传递函数成为了像质评价的一种主要方法。
一、实验目的了解光学镜头传递函数的基本测量原理,掌握传递函数测量和成像品质评价的近似方法,学习抽样、平均和统计算法,熟悉光学软件的应用。
二、基本原理光学系统在一定条件下可以近似看作线性空间中的不变系统,因此我们可以在空间频率域来讨论光学系统的响应特性。
其基本的数学原理就是傅里叶变换和逆变换,即:dxdy y x i y x ](2exp[,ηξπψηξψ+-=⎰⎰(,( (1 ηξηξπηξψψd d y x i y x ](2exp[,(,(+=⎰⎰ (2式中,(ηξψ是,(y x ψ的傅里叶频谱,是物体所包含的空间频率,(ηξ的成分含量,低频成分表示缓慢变化的背景和大的轮廓,高频成分表示物体细节,积分范围是全空间或者是有光通过空间范围。
当物体经过光学系统后,各个不同频率的正弦信号发生两个变化:首先是调制度(或反差度下降,其次是相位发生变化,这一综合过程可表为,(,(,(ηξηξψηξφH ⨯= (3式中,(ηξφ表示像的傅里叶频谱。
,(ηξH 成为光学传递函数,是一个复函数,它的模为调制度传递函数(modulation transfer function, MTF ,相位部分则为相位传递函数(phase transfer function, PTF 。
显然,当H =1时,表示象和物完全一致,即成象过程完全保真,象包含了物的全部信息,没有失真,光学系统成完善象。
由于光波在光学系统孔径光栏上的衍射以及象差(包括设计中的余留象差及加工、装调中的误差,信息在传递过程中不可避免要出现失真,总的来讲,空间频率越高,传递性能越差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离轴抛物面镜
被测镜头
显微物镜
镜筒透镜
转台 CCD
像分析器 平移导轨 针孔 滤光片 聚光镜 光源 目标发生器部件
显微物镜
测量方法--扫描法
测量过程(星点像→线扩散函数→调制传递函数)
左图是CCD拍摄到的星点像的数字图像 中图是由星点图像计算出的线扩散函数曲线 右图是最终计算得到的调制传递函数曲线
测量方法--扫描法
3.刀口测量法
测量方法--全息干涉法
测量方法--全息干涉法
测量方法--全息干涉法
测量方法--四步相移法
测量方法--四步相移法
测量方法--功率谱法
测量方法--功率谱法
发展现状
德国TRIOPTIC公司生产的MTF test station由目标发生器,光学导轨, 离轴抛物面镜(平行光管),折光镜,标准镜,图像采集工作台,旋转 臂,去准直镜,探测器,信号处理器,运动和控制机构,操作测量软件 和计算机组成。其测量精度达到±0.02,重复性为±0.01,空间频率范围 为0—1000 线对/mm, 频谱范围为350—1100nm。
测量方法
测量方法--对比法
测量方法--对比法
测量方法--扫描法
扫描法是目前使用最多的方法,因为其原理简单,测量方便,主要分为 点光源测量法,狭缝测量法,刀口测量法,但都只能测量MTF。 1.点光源测量法
测量方法--扫描法
2.狭缝测量法
测量方法--扫描法
测量方法--扫描法
点光源测量法光路图
2008年,中国科学院长春光学精密机械与物理研究所的金辉,张晓辉 等人实现了刀口边缘扫描测量红外光学系统MTF方法,波长范围8~12μm, 衍射极限为1459lp/mm。
未来趋势
目前研制OTF/MTF仪器的理论基础已经相当成熟了,主要的设计重点 都放在了如何更好的与日益发展的计算机技术的结合 ,并结合不断发展的 光电转换传感器件和图像采集器件 ,以及相应的图像处理技术使得测量的 图像数据更完整地被处理分析,更准确迅速地显示出来,以及如何使装 置更加精巧,测量范围更加广泛,达到更高的精度。
用光学传递函数评价光学系统的优点
光传递函数既与光学系统的像差有关 ,又与系统的衍射效果有关 ,并且 以一个函数的形式定量地表示星点所提供的大量像质信息,同时也包括 了鉴别率所表示的像质信息。 用OTF评价光学系统时,其可靠性仅仅依赖于光学系统对线性叠加和 空间不变性的满足程度 OTF与物体的实际形式无关 可以用不同方位的一维光学传递函数来分析处理二维光学系统,简化 二维处理方法。 光学传递函数可由设计参数直接算出,也可对实际光学系统进行测量, 方便成像系统的设计和检验
浙江大学的林逸群等人在 90 年代初设计了一种 OTF 测试仪。该仪器 以星孔为目标物,经计算机控制的‘刀口’切割由被测物镜所形成的星 点像而获得刃边扩展函数( ESF ) , 通过计算机对其进行微分得到一维 LSF,再对LSF进行离散傅里叶变换而获得表征被测物镜成像质量的 MTF 和PTF。该仪器在0—300 线对/mm范围内的测试精度小于±0.02和重复 性小于±0.01。
调制度传递函数(Modulation Transfer Function, MTF)用以描 述对各种空间频率对比度的传递能力。
所谓相位的移动,是指选定了参考坐标后,实际正弦像的位置不在理想 位置上,而是延正弦像伸展方向有了一个位移。
在光学传递函数中,相位传递函数不影响像的清晰度,因而在相差较小 的情况下,人们对它的关心不多,一般情况下用的较多的是调制传递函 数。
光传递函数的测量 (OTF)
目录
测量光学传递函数的目的
用光学传递函数评价光学系统的优点
测量方法 发展现状 未来趋势
测量光学传递函数的目的
光学系统成像质量的评价,一直是应用光学领域中众所瞩目的问题。所谓成像 质量,主要是像与物之间在不考虑放大率情况下的强度和色度的空间分布的一致性。 早期的星点法,通过观察点光源的像的强度分布(即对点扩展函数的形状观 察), 来评价光学系统的质量。这种方法虽然直观,但是带有主观性,不能定量 评价。 近代光学理论的发展 , 证明了光学系统可以近似地看作一个线性空不变系统 , 所以它的成像特性和像质评价则可以用物像之间的频谱之比来表示,这个对比特性 就是光学传递函数(OTF)。 光传递函数是一个复函数,它的模为调制传递函数(MTF),相位部分为相位 传递函数(PTF)。
图形、图像,具有颜色和亮度两个重要的参数。限于考虑二维的非相干单色光平面图像,则图像的光 强分布就成为描绘、规定该图像的主要参数。一幅单色光图像总是由缓慢变化的背景、粗大的物体和急剧变 化的边缘、局部细节构成。傅里叶光学中用空间频率来描述光强空间变化的快慢程度,把图像中缓慢变化的 成分看作图像的“低频”,而把急剧变化的成分看作图像的“高频”,单位是“1/毫米”,即每毫米中光强 变化的周期数。(对比度表示明暗差异程度,空间频率表示细节清晰程度)