如何提高压铸模寿命

合集下载

如何提高压铸模的使用寿命

如何提高压铸模的使用寿命

在加工过程中, 较厚的模板不能用叠加的方法 模具在试 模后 , 无论试模合格与否 , 均应在曲变形量减少 倍 8%,叠层只能起叠加作用。厚度与单板相同的 2 5 块板弯曲变形量是单板的 4 另外在加工冷却水 倍。 道时 , 两面加工中应特别注意保证同心度。如果头 部拐角 , 又不相互同心 , 那么在使用过程中, 连接的 拐角处就会开裂。冷却系统的表面应 当 光滑 , 最好
不留机加工痕迹。
具使用 500 00 模次后,可每2o0 oo 5o o0 模次进
电火花加工在模具型腔加工中应用越来越广 行—次保养。采用 匕 述方法, 可明显减缓由于热应 泛, 但加工后的型腔表面留有淬硬层。这是由于加 力导致龟裂的 产生速度和时间。 工中, 模具表面 自 行渗碳淬火造成的。淬硬层厚度 在冲蚀和龟裂较严重的情况下 , 可对模具表面 由加工时电流强度和频率决定, 粗加工时较深 , 精 进行渗氮处理 ,以提高模具表面的硬度和耐磨性。 加工时较浅。 无论深浅, 模具表面均有极大应力。 若 但渗氮基体的硬度应在 3- 3 R ,低于 3 H C 54H C 5 R 不清除淬硬层或消除应力 , 在使用过程 中, 模具表 时氮化层不能牢 固与基体结合。 使用—段时间后会 面就会产生龟裂、 点蚀和开裂。消除淬硬层或去应 大片脱落 : 4 H C则易引起型腔表面凸起部 高于 3 R . 力可用 : ①用油石或研磨去除淬硬层; ②在不降低 位的断裂。渗氮时, 渗氮层厚度不应超过 05 m .m 。 1 硬度的情况下 , 低于回火温度下去应力 , 这样可大 幅度降低模腔表面应力。 3热 处理 模具在使用过程中 应严格控制铸造工艺流程。 在工艺许可范围内,尽量降低铝液的浇铸温度, 压 射速度 , 提高模具预热温度。铝压铸模的预热温度 由 101O 0-3℃提高至 1020 ,模具寿命可大幅 8 0 ̄ - C 度提高。 焊接修复是摸具修复中一种常用手段。 在焊接 前, 应先掌握所焊模具钢型号 , 用机械加工或磨削 消除表面缺陷,焊接表面必须是干净和经烘干的。 所用焊条应同模具钢成分一致 , 也必须是干净和经 烘干的。模具与焊条一起预热 1 为 4 00 待表 3 5z , 面与心部温度一致后 , 在保护气下焊接修复。在焊 接过程中, 当温度低于 2 O 6℃时, 要重新加热 。焊接 后 ,当模具冷却至手可触摸 , 再加热至 4 5 按 7 ℃, 2 nn 保温 。 5u / h 最后于静止的空气中完全冷却 , 再进 行型腔的修整和精加工。模具焊后进行加热 回 , 火 是焊接修复中重要 的一环 , 即消除焊接应力以及对

压铸模具的失效形式及提高其使用寿命的途径

压铸模具的失效形式及提高其使用寿命的途径

压铸模具的失效形式及提高其使用寿命的途径近年来压铸生产的迅速发展,为汽车、摩托车的大量零部件提供了一种经济、高效的生产方式。

如何提高压铸模的使用寿命,历来是人们所关心的问题。

压铸模寿命短不但增加产品的成本,而且严重影响生产,成为生产上急待解决的关键问题。

2 压铸压铸模的失效形式2.1 热疲劳裂纹热疲劳裂纹是压铸压铸模最常见的失效形式,占压铸模失效的60%~70%。

由于压铸过程中压铸模反复经受急冷、急热所造成的热应力,导致在压铸模型腔表面或内部热应力集中处逐渐产生微裂纹,其形貌多数呈现网状,又称龟裂,也有呈放射状。

这些在压铸模表面浅层中的微裂纹,一般可以修复掉,如果热疲劳裂纹深入基体内部,修模会导致压铸模尺寸超差,或者由于压铸过程中循环次数的增加,热应力使热疲劳裂纹继续扩展成宏观裂纹,从而导致压铸模的失效。

热疲劳裂纹是热循环应力、拉伸应力和塑性应变共同作用而产生的。

塑性应变促进裂纹的形成,拉伸应力促进裂纹的扩展与延伸。

因此降低温度循环幅、增加压铸模材料强韧性、形成表面压应力,均可推迟或延缓热疲劳裂纹的形成及扩展,从微观分析,热疲劳裂纹往往在晶界碳化物、夹杂物集中区萌生,因此钢质洁净、显微组织均匀的优质热作模具钢有较高的热疲劳抗力。

2.2 整体脆性开裂整体脆性开裂是由于偶然的机械过载或热过载而导致压铸模灾难性断裂。

材料断裂时所达到的应力值一般都远低于材料的理论强度,由于微裂纹的存在,受力后将引起应力集中,使裂纹尖端处的应力比平均应力高得多。

压铸模脆性开裂引起的原因很多,诸如压铸操作失常引起的机械过载、热冲击,压铸模设计不合理产生应力集中等等。

材料的塑韧性是与此现象相对应的最重要的力学性能。

模具钢中夹杂物的减少,韧性将明显提高。

在实际生产中,整体脆断的情况较少发生。

2.3 溶蚀或冲蚀熔融的金属液以高压、高速进入型腔,对压铸模成形零件的表面产生激烈的冲击和冲刷,造成型腔表面的机械冲蚀,高温使压铸模硬度下降,导致型腔软化,产生塑性变形和早期磨损。

提高压铸模具寿命—细节决定成败

提高压铸模具寿命—细节决定成败

提高压铸模具寿命—细节决定成败一胜百模具技术(宁波)有限公司薛慧庆提高压铸模具的寿命,是压铸行业一直的追求。

产品生产者通常要求模具生产者提供寿命保证。

模具生产商通常把模具寿命保证的希望寄托在模具材料上,希望优质的模具材料能解决一切问题!优质的模具材料能解决一切问题吗?答案显然不那么肯定!只有系统地考虑模具设计、制造、服役、维护等各个方面的问题,遵循科学规律,才能真正在保障压铸产品质量的前提下,尽可能地提高压铸模具的寿命。

模具设计通常在模具设计阶段,建议注意以下几点:1:选择合适的R角。

R角开裂在压铸模具早期失效中经常发生,实验证明R角小于1mm时,材料的抗开裂的能力下降(图1),通常在压铸模具中有机械应力和热应力存在,热应力和温度变化和模具使用温度相关。

因此,参考各类模具的使用温度,一般建议锌压铸R角>0.5mm,铝压铸R角>1.0mm,铜压铸R角>1.5mm。

图1 冲击韧性和R角的关系(H13材料,硬度46-47HRC)2:要绝对保证模具的强度和刚度,防止模具使用过程中变形,降低模具寿命,因此,模壁要留有足够的厚度,通常建议:型腔到外表面的距离>50mm;型腔深度与模具厚度的比<1:3;浇口与型腔壁距离>50。

另外,优化模架结构,也非常重要。

在各个设计规范中对模架的设计都有表述,需要提到一点,对于长寿命模具,使用预硬钢(如ASTM 4140、4340(对应GB 42CrMo、40CrNiMoA),ASSAB 718 )能有效提高模架的抗压塌性能。

3:采用镶件,对于易损坏或强度较少的部分分开成为下镶块,并且对于长寿模具建议推杆孔采用镶套。

4:浇口要远离型腔壁,型芯,镶块。

5:要在型腔面和冷却水道之间留有足够的距离,较短的距离会加大由于温度剧烈变化导致的热应力,过大的距离则没有冷却效果(参见图二)。

水孔壁离型腔一般建议为25mm,浇口处为28mm;角部型腔面距冷却水道的距离>50mm。

压铸模的保养对提高模具使用寿命的影响

压铸模的保养对提高模具使用寿命的影响

压铸模的保养对提高模具使用寿命的影响0引言随着我国经济的快速发展,对于模具的质量水平和精度要求都提出了极高的要求,模具企业如果想实现可持续性发展,那么就应该有效地适应市场经济的发展,不断提高模具使用寿命。

压铸模由于造价较高、制造精度高、投资大、生产周期长,所以各个模具使用企业都希望压铸模具有较高的使用寿命。

本文就压铸模的保养对提高模具使用寿命的影响就行探讨。

1 压铸模保养的必要性压铸模具由于长时间使用和压射速度过高,在使用一段时间之后,在压铸模具的型芯和型腔上都会或多或少有沉积物。

这些沉积物与型芯和型腔表面粘附牢固,硬度相当高,很难加以清除。

这些沉积物是在高温高压下,由少量压铸金属、冷却液和脱模剂的杂质来进行结合而成。

我们在清除这些沉积物的过程中,应采用机械方法或研磨方式去除,而不可以采用喷灯来进行加热清除,这样做的后果是很容易成为热裂的发源地,导致模具表面产生脱碳点或者局部热点,但是值得注意的是,在清除的过程中不可以伤及到压铸模具的其它型面,避免出现尺寸变化的问题。

周期性地保养压铸模具能够使压铸模具处于一个非常良好的使用状态。

一个新的压铸模具在进行试模之后,无论试模结果与否合格,都应该及时进行去应力回火(一定要在模具未冷却至室温的时候)。

在进行压铸模10 000模次之后,就应该消除型腔表面中的轻微裂纹和残余内应力,对模架和模具型腔进行回火、氮化、抛光,温度设置在450℃~480℃。

同样保养应该在以后压铸模每进行12 000~15 000模次后进行。

如果压铸模具在使用50 000模次之后,可以延长保养时间,可以在每25 000~30 000模次进行一次。

总之,压铸模保养十分必要,能够有效减缓模具龟裂的产生时间和延伸速度,提高模具使用寿命。

2 如何加强压铸模的保养来提高模具使用寿命2.1建立模具档案,做好准备第一,给每一套模具在入厂时建立一套完整的使用记录,这是保证以后保养和维护的一个重要依据,每一条都要做得细致,清晰,包括每日的生产模次在内;第二,作为一名模具管理人员,模具自入厂以后,模具每一部分的结构配件必须要详细记入模具档案里,并且要根据需要,把模具内的易损部分列出,提前准备配件,比如顶杆,型芯等。

怎样延长铸造模具的使用寿命

怎样延长铸造模具的使用寿命

怎样延长铸造模具的使用寿命铸造模具是在金属铸造中使用的重要工具,但长期使用后,模具很可能会损坏或磨损。

因此,保护铸造模具并延长其使用寿命非常重要。

以下是一些延长铸造模具使用寿命的方法:定期清洁模具铸造模具需要经常清洁和维护。

模具在使用一段时间后会积累金属残留物和杂质,这些残留物会导致模具表面磨损和损坏。

定期清洗和维护模具,可以有效地去除这些积累的物质,保护模具免受损坏。

使用合适的铸造材料我们应该使用合适的铸造材料,以保护模具。

不同的铸造材料具有不同的性质和特点,因此我们应该选择最适合使用环境的材料以减少磨损和损坏。

例如,在高温或高压环境下,合适的材料应该具有高温强度和抗压能力。

进行加工后热处理通过热处理可以增加模具的硬度,同时保持其韧性和抗磨损性,进而延长使用寿命。

许多模具可以通过火热或冷却处理等方法进行加工后热处理,以获得更好的效果。

使用润滑剂使用润滑剂是保护铸造模具并延长其使用寿命的一种简单有效的方法。

润滑剂可以减少摩擦和磨损,从而降低磨损的风险。

润滑剂应该应用到需要保护的各个表面上,以确保完全的覆盖和保护。

进行定期检查和更换模具使用寿命过长后不可避免会出现损坏或磨损。

因此,模具的定期检查和更换是很重要的。

当模具出现严重损坏或磨损时,必须及时更换,以保护工作场所的效率和安全。

如果一个模具无法正常工作,则容易引起其他机器的故障并且会影响生产效率。

结论保护铸造模具并延长其使用寿命有助于提高生产效率和效益。

使用合适的材料和润滑剂,进行加工后热处理,定期清洁和维护,并定期检查和更换模具,可以有效地延长铸造模具的使用寿命。

为了确保安全和高产率,负责任的工程设计师和管理人员应该把铸造模具的保护和保养纳入到他们的工作中去,以确保高质量的生产。

压铸模具失效形式以及如何提高寿命

压铸模具失效形式以及如何提高寿命

压铸模具失效形式以及如何提高寿命压铸模具是压铸生产中最重要的零部件之一,它承担着压铸工艺中的成型和冷却功能,是压铸产品质量和产量的关键因素之一。

然而,由于压铸模具在工作过程中受到高温高压的影响,加之工作频次高,很容易出现失效现象。

本文将探讨常见的压铸模具失效形式以及如何提高其寿命。

一、压铸模具失效形式1. 疲劳失效。

由于模具在压铸生产中的高频使用,反复受力反复工作,易产生疲劳失效。

疲劳失效分为低应力疲劳和高应力疲劳,低应力疲劳主要表现为模具表面开裂、裂纹扩展;高应力疲劳主要表现为模具出现断裂现象。

2. 磨损失效。

在模具定向移动过程中,会磨损模具表面,削减模具尺寸精度,造成松动和失效。

磨损失效分为粘着磨损、磨粒磨损、抛光磨损等。

3. 腐蚀失效。

模具在高温高压下与铝合金反应,会导致腐蚀失效。

大量的铝合金氧化物和废气产生,这些氧化物会在模具表面附着、腐蚀,严重影响模具的使用寿命。

4. 热疲劳失效。

在模具与铝合金摩擦过程中,会产生大量的热量,造成热膨胀和收缩,导致热疲劳失效。

热疲劳失效不可逆,一旦发生,模具寿命会大幅缩短。

二、提高压铸模具寿命的方法1. 优化模具设计。

在模具设计阶段,可以采用耐热合金、表面渗碳处理等技术和材料,以提高模具的耐热性、耐腐蚀性和耐磨损性。

2. 加强模具维护。

定期对模具进行清洁和润滑,对磨损严重的模具进行翻新和更新,是提高压铸模具寿命的必要手段。

维护模具还可以准确的检测模具工作情况,及时调整和修复模具。

3. 优化压铸工艺。

优化压铸工艺,可以减少模具的应力和疲劳程度。

通过优化压铸工艺可以选择合适的铝合金材料和合理的工艺参数,具有重要的提高模具使用寿命和生产效率的作用。

4. 加强模具管理。

科学的模具管理,可以提高压铸模具的使用效率和寿命。

包括模具存储、模具抽检、模具保养四个方面。

结论:压铸模具是压铸产品质量的关键环节,模具失效会影响生产效率和生产成本,甚至还会产生质量问题。

因此,提高压铸模具的寿命是非常重要的。

提升模具加工质量来提高压铸模的使用寿命有什么方法?

提升模具加工质量来提高压铸模的使用寿命有什么方法?

提升模具加工质量来提高压铸模的使用寿命有什么方法?模具失效是指模具工作部分发生严重磨损或损坏而不能用一般修复方法使其重新使用的现象。

模具的失效分偶然失效(因设计错误、使用不当引起模具的过早破坏)和工作失效(因正常破损而结束模具使用寿命)两类。

压铸模的失效形式主要有侵蚀、磨损、变形、冷热疲劳和开裂五种。

锌合金的浇注温度很低,压铸模的失效形式主要是侵蚀和磨损;铝合金、铜合金压铸模的失效形式主要是热疲劳,但侵蚀,也不能忽视。

铝合金压铸模,特别是大型压铸模有时出现开裂。

压铸模的型腔表面,除受到高压高速熔融合金的冲刷外,还吸,收熔融合金在凝固过程中释放的热量,使表面层的温度剧烈上升,与其内部产生很大的温差,表面层产生压应力。

当开模后,型腔表面与空气接触,受到压缩空气和涂料的激冷而产生拉应力。

于是,型腔表面层受到交变应力作用,超过模具材料的疲劳极限时,产生塑性变形,在晶界处产生裂纹,这种失效称为热疲劳失效。

另外,熔融合金中含有氢、氧等活性气体,使模具表面被氢化、氧化。

又由于摩擦和液压冲击产生的热冲蚀磨损,加剧了热应力状态,从而产生黏附。

推出铸件时,模具受到机械载荷的作用,都会导致模具的失效。

总之,模具失效的主要原因有以下三点:①热交变应力引起的热疲劳。

②熔融合金对模具材料的化学—物理作用。

③压铸件脱模时,模具产生的局部应力。

影响压铸模使用寿命的主要原因有:模具的工作和设备条件,使用过程中的维护和保养,压铸件的材质、壁厚、尺寸和形状的影响,以及模具的材质、模具设计与制造工艺和质量等。

提高模具的使用寿命,应从以下几个方面加以考虑:①采用先进合理的毛坯锻造工艺,使碳化物分布均匀,形成合理的金属流线,提高耐磨性和各向同性以及抗胶合能力。

②严格控制机加工质量,特别是模具工作零件的磨削加工对模具使用寿命的影响最大,主要表现在磨削时工件表面出现的磨削应力和磨削裂纹、磨削热降低了零件的耐疲劳(热疲劳和冷疲劳)能力及耐蚀能力。

第10章压铸模的失效形式和提高压铸模寿命的措施.

第10章压铸模的失效形式和提高压铸模寿命的措施.

• 归纳起来,导致压铸模失效的主要原因有三种: 1)在每次压铸作业过程中,因热交换面引起的热-机械交变 应力而使模具失效。 2)压铸作业时,金属液对模具材料的化学-物理作用而使模 具失效。 3)在脱模时所产生的局部应力使模具失效。
§2 提高压铸模寿命的措施
• 影响压铸模寿命的因素很多。
• 内部因素
本章 完
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
第十章 压铸模的失效形式和提高压 铸模寿命的措施
§1 压铸模的失效形式
• 压铸模的失效形式主要有:侵蚀,热疲劳,磨损,变形, 开裂。
• 锌合金的熔化温度较低,其压铸模的失效形式主要是:侵 蚀,磨损。
• 铝合金和铜合金的熔化温度较高,其压铸模的失效形式主 要是:热疲劳(龟裂)。
• 金属液填充型腔时,型腔表层首先达到高温面膨胀,但内 层模温较低,相对的膨胀较小,使表面层产生压应力。当 开模后型腔表面与空气接触,受到压缩空气及涂料的激冷 面产生拉应力。这种交变应力随着压铸次数的增加面增大, 当它超过模具材料的疲劳极限时,表面层即产生塑性变形, 并在晶界处产生裂纹。这种失效形式称为热疲劳失效。
压铸模的材质,设Leabharlann 制造方案和质量等• 外部因素
压铸模的工作环境
• 采取的措施: 1、精心设计压铸件、压铸模。
2、保证模具的加工质量。 3、采用优质钢材。
4、采用先进的毛坯锻造工艺。 5、采用合理的热处理规范。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何提高壓鑄模壽命 (学员自学)
压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。

但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。

压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。

造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。

1、材料自身存在的缺陷
众所周知,压铸模的使用条件极为恶劣。

以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。

在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。

开模顶件时,型腔表面承受极大的压应力。

数千次的压铸后,模具表面便产生龟裂等缺陷。

由此可知,压铸使用条件属急热急冷。

模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。

H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8V工艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。

马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。

钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。

因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。

制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。

因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。

常用检查手段有宏观腐蚀检查、金相检查、超声波检查。

(1) 宏观腐蚀检查。

主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。

(2) 金相检查。

主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。

(3) 超声波检查。

主要检查材料内部的缺陷和大小。

2、压铸模的加工、使用、维修和保养
模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不
超过100m/S。

速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。

因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。

在加工过程中,较厚的模板不能用叠加的方法保证其厚度。

因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。

厚度与单板相同的2块板弯曲变形量是单板的4倍。

另外在加工冷却水道时,两面加工中应特别注意保证同心度。

如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。

冷却系统的表面应当光滑,最好不留机加工痕迹。

电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。

这是由于加工中,模具表面自行渗碳淬火造成的。

淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。

无论深浅,模具表面均有极大应力。

若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。

消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。

模具在使用过程中应严格控制铸造工艺流程。

在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。

铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。

焊接修复是模具修复中一种常用手段。

在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。

所用焊条应同模具钢成分一致,也必须是干净和经烘干的。

模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。

在焊接过程中,当温度低于260℃时,要重新加热。

焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。

最后于静止的空气中完全冷却,再进行型腔的修整和精加工。

模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。

模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。

这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。

这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。

在清除沉积物时,不能用喷灯加热清除,这可能导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。

应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。

经常保养可以使模具保持良好的使用状态。

新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。

当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450~480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。

以后每12000~15000模次进行同样保养。

当模具使用50000模次后,可每25000~30000模次进行一次保养。

采用上述方法,可明显
减缓由于热应力导致龟裂的产生速度和时间。

在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。

但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。

渗氮时,渗氮层厚度不应超过0.15mm,过厚会于分型面和尖锐边角处发生脱落。

3、热处理
热处理的正确与否直接关系到模具使用寿命。

由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。

压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。

如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失大。

因此,在热处理时应注意以下几点:
(1) 锻件在未冷至室温时,进行球化退火。

(2) 粗加工后、精加工前,增设调质处理。

为防止硬度过高,造成加工困难,硬度限制在25-32HRC,并于精加工前,安排去应力回火。

(3) 淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。

回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。

(4) 热处理时应注意型腔表面的脱碳与增碳。

脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。

(5) 氮化时,应注意氮化表面不应有油污。

经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。

(6) 两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。

4、压铸模常见故障原因及排除
压铸模常见故障原因及排除方法参见下表。

压铸模常见故障原因及排除方法。

相关文档
最新文档