第3章 整流电路的有源逆变

合集下载

电力电子技术课件-第3章 整流电路

电力电子技术课件-第3章 整流电路

Rid
2U2 sinwt
(3-2)
b)
图3-3 b) VT处于导通状态
在VT导通时刻,有wt=a,id=0,这是式(3-2)的初 始条件。求解式(3-2)并将初始条件代入可得
id
2U 2
sin(a
R (wta )
)e wL
Z
2U2 sin(wt ) (3-3)
Z
式中,Z
R2
(wL)2,
u
d
变且波形近似为一条水平线。
O i
d
iO
VT 1,4
I
d
wt
☞u2过零变负时,由于电感
I
d
的作用VT1、VT4仍有电流id,并
w t 不关断。
i
O
VT
2,3
I
d
wt
☞wt=p+a时刻,触发VT2和
O i
2
I
d
w t VT3,VT2和VT3导通,VT1和
O
I
u
d
VT 1,4
w t VT4承受反压关断,流过VT1和
二. 阻感负载
3、基本数量关系
√流过晶闸管的电流平均值IdT和有效值IT分别为:
I dT
p a 2p
Id
(3-5)
IT
1
2p
p a
I
2 d
d
(wt
)
p a 2p
Id
(3-6)
√续流二极管的电流平均p 值 aIdDR和有效值IDR分别为
I dDR 2p I d
(3-7)
I DR
1
2p
2p a p
pa R
R
1 sin 2a p a

第三章_电力电子技术—整流电路_li(第一次课)

第三章_电力电子技术—整流电路_li(第一次课)

变压器二次侧电流有效值i2与输出电流有效值i相等
I I2 1



(
2U 2 U sin t )2 d( t ) 2 R R
1 I 2
1 sin 2 2
I dVT
VT可能承受的最大正向电压为 VT可能承受的最大反向电压为
2 U2 2 2U 2
3.1单相可控整流电路
相控方式——通过控制触发脉冲的相位来控制直流输出 电压大小的方式
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
阻感负载的特点:
电感对电流变化有抗拒作用,使得流过 电感的电流不能发生突变,因此负载的电流 波形与电压波形不相同。
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
ud O i1 O

t
t
b)
3.1单相可控整流电路
3.1.3 单相全波可控整流电路
单相全波与单相桥式全控比较
单相全波只用2个VT,比单相全控桥少2个,相应地, 门极驱动电路也少2个 单相全波导电回路只含1个VT,比单相桥少1个,因而 管压降也少1个 VT承受最大正向电压 2U2,最大反向电压为 2 2U 2 , 是单相全控桥的2倍 单相全波中变压器结构较复杂,材料的消耗多
结构简单,但输出脉动大,变压器二次侧电
流中含直流分量,造成变压器铁芯直流磁化
实际上很少应用此种电路
分析该电路的主要目的在于利用其简单易学
的特点,建立起整流电路的基本概念
3.1单相可控整流电路
3.1.2 单相桥式全控整流电路——电阻负载
电路结构 VT1和VT4组成一对桥臂 VT2和VT3组成另一对桥臂

第3章 整流电路part1

第3章 整流电路part1

可得到 I S
PAC PAC VS PF VS cos1
8
《电力电子技术》
第3章 整流电路
3.1 单相可控整流电路
3.1.1单相半波可控整流电路 3.1.2单相桥式全控整流电路
3.1.3单相全波可控整流电路
3.1.4单相桥式半控整流电路
9
《电力电子技术》
第3章 整流电路
3.1.1 单相半波可控整流电路
《电力电子技术》
第3章 整流电路
第3章
整流电路
3.1 单相可控整流电路
3.2三相可控整流电路
3.3 变压器漏感对整流电路的影响
3.4 电容滤波的不可控整流电路
3.5 整流电路的谐波和功率因数
3.6大功率可控整流电路
3.7整流电路的有源逆变工作状态 3.8整流电路相位控制的实现
1
《电力电子技术》
第3章 整流电路
wt
wt
e)
晶闸管的电流有效值IVT
I VT 1 p 2 p a I a I d d (wt ) 2p 2p d
O i VD f) O u VT g) O
R
wt
wt
wt
20
《电力电子技术》
u2
第3章 整流电路
(3)续流二极管的电流平均值 IdVDR与续流二极管的 电流有效值IVDR w w
22
《电力电子技术》
第3章 整流电路
3.1.2 单相桥式全控整流电路
单相桥式全控整流电路(Single Phase
Bridge Contrelled Rectifier)
1) 带电阻负载的工作情况
电路结构
a)
晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对 桥臂。在实际的电路中,一般都采用这种标注方法,即 上面为1、3,下面为2、4。请同学们注意。

电力电子复习资料

电力电子复习资料

湖北理工学院电气学院电力电子复习课第一章绪论BY 12自动化张一鸣1、电力电子技术的概念定义:电力电子技术——应用于电力领域的电子技术,使用电力电子器件对电能进行变换和控制的技术.电力电子技术主要用于电力变换。

分为信息电子技术(信息处理)和电力电子技术(电力变换)。

2、电力变换通常可分为哪四大类?电力变换通常可分为四大类:交流变直流(整流)、直流变交流(逆变)、交流变交流(变频、变压)、直流变直流(斩波)。

第2章电力电子器件1、电力电子器件的概念电力电子器件:是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。

2、电力电子器件的分类按照电力电子器件能够被控制电路信号所控制的程度分类:1.半控型器件,例如晶闸管;2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管);3.不可控器件,例如电力二极管;按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类:1.电压驱动型器件,例如IGBT、MOSFET、SIT(静电感应晶闸管);2.电流驱动型器件,例如晶闸管、GTO、GTR;根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类:1.脉冲触发型,例如晶闸管、GTO;2.电子控制型,例如GTR、MOSFET、IGBT;按照电力电子器件内部电子和空穴两种载流子参及导电的情况分类:1.单极型器件,例如电力二极管、晶闸管、GTO、GTR;2.双极型器件,例如MOSFET、IGBT;3.复合型器件,例如MCT(MOS控制晶闸管);3、晶闸管的导通条件、关断条件、维持导通条件使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:uAK>0且uGK>0。

使导通了的晶闸管关断的条件是使流过晶闸管的电流减小至一个小的数值,即维持电流IH一下。

维持晶闸管导通的条件是,晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

电力电子技术课后答案

电力电子技术课后答案

电力电子技术课后答案第2章 电力电子器件1. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:u AK >0且u GK >0。

2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。

要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。

3. 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 、I 、I 。

π4π4π25π4a)b)c)图1-431图1-43 晶闸管导电波形解:a)I d1=π21⎰ππωω4)(sin t td I m=π2mI (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m=2mIπ2143+≈0.4767 I m b) I d2=π1⎰ππωω4)(sin t td I m=πmI (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t Im =22m I π2143+≈0.6741I mc) I d3=π21⎰20)(πωt d I m =41 I mI 3 =⎰22)(21πωπt d I m=21 I m4. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35, I d1≈0.2717 I m1≈89.48b) I m2≈6741.0I≈232.90, I d2≈0.5434 I m2≈126.56c) I m3=2 I = 314,I d3=41I m3=78.59. 试说明IGBT、GTR、GTO和电力MOSFET各自的优缺点。

有源逆变概念及工作原理

有源逆变概念及工作原理

有源逆变一、单相有源逆变电路逆变电路的分类整流是把交流电变换成直流电供应负载,则,能不能反过来,利用相控整流电路把直流电变为交流电呢?完全可以。

我们把这种整流的逆过程称为逆变。

在许多场合,同一套晶闸管或其它可控电力电子变流电路既可作逆变,这种装置称为变流装置或变流器。

根据逆变输出交流电能去向的不同,所有逆变电路又分为有源逆变和无源逆变两种。

前者以电网为负载,即逆变输出的交流电能回送到电网,后者则以用电器为负载,如交流电机、电炉等。

变流器的两种工作状态用单相桥式可控整流电路能替代发电机给直流电动机供电,为使电流连续而平稳,在回路中串接大电感Ld称为平波电抗器。

这样,一个由单相桥式可控整流电路供电的晶闸管-直流电动机系统就形成了。

在正常情况下,它有两种工作状态,其电压电流波形分别示于图3-1、图3-2中。

1.变流器工作于整流状态〔0<a<p /2〕在图3-1中,设变流器工作于整流状态。

由单相全控整流电路的分析可知,大电感负载在整流状态时U d=0.9U2cosa,控制角的移相围为0~90 ° ,U d为正值,P点电位高于N点电位,并且U d应大于电动机的反电势E,才能使变流器输出电能供应电动机作电机运行。

此时,电能由交流电网流向直流电源〔即直流电动机M的反电势E〕。

图3-12.变流器工作与逆变状态〔p /2<a<p 〕在图3-2中,设电机M作发电机运行〔再生制动〕,但由于晶闸管元件的单向导电性,回路电流不能反向,欲改变电能的传送方向,只有改变电机输出电压的极性。

在图3-2中,反电势E的极性已反了过来,为了实现电动机的再生制动运行,整流电路必须吸收电能反应回电网,也就是说,整流电路直流侧电压平均值U d也必须反过来,即U d为负值,P点电位低于N点电位且电机电势E应大于U d。

此时电路电能的流向与整流时相反,电动机输出电功率,为发电机工作状态,电位则作为负载吸收电功率,实现了有源逆变。

第三章 有源逆变电路

第三章 有源逆变电路
当晶闸管桥路工作在整流状态,接触器KM1触点闭合时电动机正转;KM1断 开KM2闭合时则电动机反转。当电动机从正转到反转时,为了实现快速制动与反转、缩短
过渡过程时间以及限制过大的反接制动电
流,可将桥路触发脉冲移到α>900,即工作在逆变状态。在初始阶段KM1尚未
断开,在电抗器中的感应电动势作用下,电路进入有源逆变状态,将电抗器中的能量逆变 为交流能量返送电网。
第二十三页,共48页。
二、采用两组变流桥的可逆电路 常用的反并联电路。
第二十四页,共48页。
第二十五页,共48页。
反并联可逆电路常用的有:逻辑无环流、有环流以及错位无环流三种工作方式, 现分别叙述如下: (一)逻辑控制无环流可逆电路的基本原理
当电动机磁场方向不变时,正转时由Ⅰ组桥供电;反转时由Ⅱ组桥供电, 采用反并联供电可使直流电动机在四个象限内运行。
1) 逆变失败的原因
触发电路工作不可靠,不能适时、准确地给各晶闸管分配脉冲, 如脉冲丢失、脉冲延时等,致使晶闸管不能正常换相。
晶闸管发生故障,该断时不断,或该通时不通。 交流电源缺相或突然消失。
换相的裕量角不足,引起换相失败。
第十七页,共48页。
现以三相半波电路为例,见下图,当A相晶闸管VT1导通到ωt4时,在正常情况下Ug2触发 VT2管换到B相导通。现由于Ug2丢失或VT2管损坏或B相快速熔断器烧断或B相缺相供 电等原因,VT2管无法导通,VT1管不受反压无法关断,使VT1管沿着A相电压波形 继续导通到正半周,如图中剖面线所示,使电源瞬时电压与E顺极性串联,出现很大的短 路电流流过晶闸管与负载,这称为逆变失败或逆变颠覆。
PdRId 2EMId
(2-107)
当逆变工作时,由于EM为负值,故Pd一般为负值,表示 功率由直流电源输送到交流电源。

实验三、三相桥式全控整流及有源逆变电路实验

实验三、三相桥式全控整流及有源逆变电路实验

实验三、三相桥式全控整流及有源逆变电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。

(3)了解KC系列集成触发器的调整方法和各点的波形。

二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。

脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。

主要分I组桥和Ⅱ组桥分别指示。

晶闸管电路装有12只晶闸管、6只整流二极管。

12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。

所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。

电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。

续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。

(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。

面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。

三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ud
ua
ub
uc
ua
ub
O
p
wt

id O iVT
2
b g b >g
3
b g b <g
iVT
2
iVT
iVT
1
iVT
3
wt
图3-49 交流侧电抗对逆 变换相过程的影响
3.7.3 逆变失败与最小逆变角的限制
■确定最小逆变角bmin的依据 ◆逆变时允许采用的最小逆变角b应等于 b min g '
3.7.2 三相桥整流电路的有源逆变工作状 态
■基本的数量关系 ◆三相桥式电路的输出电压 Ud=-2.34U2cosb=-1.35U2lLcosb
◆输出直流电流的平均值
(3-105)
I
◆流过晶闸管的电流有效值
d
Ud
R
EM

I
VT

I
d
3
0.577 I d
(3-106)
◆从交流电源送到直流侧负载的有功功率为
3.7.1 逆变的概念
■逆变产生的条件 ◆以单相全波电路代替上述发 电机来分析 ☞电动机M作电动机运行, 全波电路应工作在整流状态, 的范围在0~/2间,直流侧输出 Ud为正值,并且Ud>EM,交流电 网输出电功率,电动机则输入电 功率。 ☞电动机M作发电回馈制动 运行,由于晶闸管器件的单向导 电性,电路内Id的方向依然不变, 而M轴上输入的机械能转变为电 能反送给G,只能改变EM的极性, 为了避免两电动势顺向串联,Ud 的极性也必须反过来,故的范 围在/2~,且|EM|>|Ud|。
3.7.3 逆变失败与最小逆变角的限制
◆考虑变压器漏抗引起重叠角对 逆变电路换相的影响 ☞以VT3和VT1的换相过程来分析, 在b>g时,经过换相过程后,a相电 压ua仍高于c相电压uc,所以换相结 束时,能使VT3承受反压而关断。 ☞当b<g时,换相尚未结束,电路 的工作状态到达自然换相点p点之后, uc将高于ua,晶闸管VT1承受反压而 重新关断,使得应该关断的VT3不能 关断却继续导通,且c相电压随着时 间的推迟愈来愈高,电动势顺向串 联导致逆变失败。 ☞为了防止逆变失败,不仅逆变 角b不能等于零,而且不能太小,必 须限制在某一允许的最小角度内。
3.7.1 逆变的概念
◆产生逆变的条件 ☞要有直流电动势,其极性须和晶闸管的导通方 向一致,其值应大于变流器直流侧的平均电压。 ☞要求晶闸管的控制角>/2,使Ud为负值。 ☞两者必须同时具备才能实现有源逆变。 ◆半控桥或有续流二极管的电路,因其整流电压ud 不能出现负值,也不允许直流侧出现负极性的电 动势,故不能实现有源逆变,欲实现有源逆变, 只能采用全控电路。
3.7.1 逆变的概念
图3-46 直流发电机—电动机之间电能的流转 a)两电动势同极性EG>EM b)两电动势同极性EM>EG c)两电动势反极性,形成短路
■直流发电机—电动机系统电能的流转 ◆M作电动运转,EG>EM,电流Id从G流向M,电能由G流向M,转变为M 轴上输出的机械能。 ◆回馈制动状态中,M作发电运转,EM>EG,电流反向,从M流向G, M 轴上输入的机械能转变为电能反送给G。 ◆两电动势顺向串联,向电阻R供电,G和M均输出功率,由于R一般都很 小,实际上形成短路,在工作中必须严防这类事故发生。 ◆两个电动势同极性相接时,电流总是从电动势高的流向电动势低的,由 于回路电阻很小,即使很小的电动势差值也能产生大的电流,使两个电动势 之间交换很大的功率,这对分析有源逆变电路是十分有用的。
P R I E I
d d M
2
d
(3-107)
当逆变工作时,由于EM为负值,故Pd一般为负值,表示功率由直流电 源输送到交流电源。 ◆变压器二次侧线电流的有效值 2 (3-108) 2 I 2 I VT 3 I d 0.816I d
3.7.3 逆变失败与最小逆变角的限制
■逆变运行时,一旦发生换相失败,外接的直流电 源就会通过晶闸管电路形成短路,或者使变流器 的输出平均电压和直流电动势变成顺向串联,由 于逆变电路的内阻很小,形成很大的短路电流, 这种情况称为逆变失败,或称为逆变颠覆。 ■逆变失败的原因 ◆触发电路工作不可靠,不能适时、准确地给各 晶闸管分配脉冲,如脉冲丢失、脉冲延时等,致 使晶闸管不能正常换相。 ◆晶闸管发生故障,该断时不断,或该通时不通。 ◆交流电源缺相或突然消失。 ◆换相的裕量角不足,引起换相失败。
触发脉冲不进入小于bmin的区域内。
I X 2 U sin m
d B 2
(3-111)
3.7 整流电路的有源逆变工作状态
3.7.1 逆变的概念 3.7.2 三相桥整流电路的有源逆变工作状态 3.7.3 逆变失败与最小逆变角的限制
3.7.1 逆变的概念
■什么是逆变?为什么要逆变? ◆逆变(invertion):把直流电转变成交流电的 过程。 ◆逆变电路:把直流电逆变成交流电的电路。 ☞当交流侧和电网连结时,为有源逆变电路。 ☞变流电路的交流侧不与电网联接,而直接接 到负载,即把直流电逆变为某一频率或可调频率 的交流电供给负载,称为无源逆变。 ◆对于可控整流电路,满足一定条件就可工作于 有源逆变,其电路形式未变,只是电路工作条件 转变。既工作在整流状态又工作在逆变状态,称 为变流电路。
3.7.2 三相桥整流电路的有源逆变工作状 态
u2 ua ub uc ua ub uc ua ub uc ua ub O
wt b=
3
b=
4 u cb uab u ac u bc u ba u ca
b=
6 u cb u ab u ac u bc u ba u ca u cb u ab u ac u bc
u
d

u
10
u
20
u
10
u U >E
d M
d
u
10
u
20
u
10
O
wt
i =i + i
d VT 1 VT2
O
wt
U <E
d M
i
d
i I
d

i =i +i
d VT1 VT 2
i VT1
O a)
i VT 2
i VT1
Байду номын сангаас
d
I
i VT 2
O
i VT 1
b)
i VT 2
d
wt
wt
图3-47 单相全波电路的整流和逆变
☞为晶闸管的关断时间tq折合的电角度,约4~5 ☞g为换相重叠角,可查阅相关手册,也可根据表3-2计算,即
cos cos( g )
(3-109)
I X 2 U sin m
d B 2
(3-110)
根据逆变工作时=-b,并设b=g,上式可改写成
cosg 1
由此计算出g ☞'为安全裕量角,主要针对脉冲不对称程度(一般可达5),约取为 10。 ◆设计逆变电路时,必须保证 b b min ,因此常在触发电路中附加一保护环节,保证
u d u ab u ac u bc u ba u ca
w t1 w t2 w t3
O
wt
b=
3
b=
4
b=
6
图3-48 三相桥式整流电路工作于有源逆变状态时的电压波形
■逆变角 ◆通常把>/2时的控制角用-=b表示,b称为逆变角。 ◆ b的大小自b=0的起始点向左方计量。 ◆三相桥式电路工作于有源逆变状态,不同逆变角时的输出电压波形及晶闸 管两端电压波形如图3-48所示。
相关文档
最新文档