传热学

合集下载

传热学——精选推荐

传热学——精选推荐

第一章、基本内容:一、热量传递的三种基本方式⒈导热 掌握导热系数λ是一物性参数,其单位为w /(m·K);它取决于物质的热力状态,如压力、温度等。

⒉对流 掌握对流换热的表面传热系数h 为一过程量,而不像导热系数λ那样是物性参数。

⒊热辐射 掌握黑体辐射的斯蒂藩—玻耳兹曼定律。

二、传热过程与传热系数⒈传热过程 理解传热系数K 是表征传热过程强弱的标尺。

⒉热阻分析1、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。

答:有以下换热环节及热传递方式(1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流);(2)由暖气片管道内壁至外壁,热传递方式为导热;(3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。

二、定量计算本节的定量计算主要是利用热量传递的三种基本方式所对应的定律,即导热的傅里叶定律,对流换热的牛顿冷却公式,热辐射的斯蒂藩—玻耳兹曼定律进行简单的计算。

另外,传热过程、热阻综合分析法及能量守恒定律也是较重要的内容。

1、一双层玻璃窗,宽1.1m ,高1.2m ,厚3mm ,导热系数为1.05W/(m·K);中间空气层厚5MM ,设空气隙仅起导热作用,导热系数为0.026W/(m·K)。

室内空气温度为25℃。

表面传热系数为20W/(m 2·K);室外空气温度为-10℃,表面传热系数为15W/(m 2·K)。

试计算通过双层玻璃窗的散热量,并与单层玻璃窗相比较。

假定在两种情况下室内、外空气温度及表面传热系数相同。

解:(1)双层玻璃窗情形,由传热过程计算式:(2)单层玻璃窗情形:显然,单层玻璃窃的散热量是双层玻璃窗的2.6倍。

因此,北方的冬天常常采用双层玻璃窗使室内保温。

2、一外径为0.3m ,壁厚为5mm 的圆管,长为5m ,外表面平均温度为80℃。

200℃的空气在管外横向掠过,表面传热系数为80W/(m 2·K)。

传热学

传热学

2.气体辐射对波长有选择性。
3.气体辐射在整个容器内进行
七、固体表面的换热情况 1. 固体表面与固体相接触——单纯导热。
2. 固体表面与液体相接触——对流换热。
2. 固体表面与气体相接触——复合换热。
第九章
传热过程与换热器
一、传热过程 ——热流体通过固体壁面将热量传递 给冷流体。 1.平壁
i 1 1 h1 λi h2 i t f1 t f 2 Φ do 1 1 1 ln hi d i l 2l di hod o l

W
四、影响对流换热的因素
1.流动原因——强迫对流、自然对流。
2.流动状态——层流、紊流。
3.流体物性——、、、、v 、Cp等。 4.流体相变——凝结、沸腾。 5.壁面形状
五、四个准则数
ul ul 惯性力 1)雷诺数 Re 粘性力
2)普朗特数
Pr a c p 动量扩散率 c p 热量扩散率
K fi
1 1 1 hi h0 0
A0 肋化系数 Ai
; 肋壁效率 0 查表。
*加装肋片的目的和注意事项
二、换热器 1.对数平均温差
t ' t" 顺流、逆流: t m t ' ln t "
叉流、复杂流: t m t m逆 温差修正系数 f P、R t 2 "t 2 ' t1 't1 " P ;R t1 't 2 ' t 2 "t 2 '
第五章
对流换热
一、热对流与对流换热的定义与机理 二、速度边界层和热边界层
1.速度边界层——从速度为零的壁面到速度达 到主流速度的99%的流体薄层。 2.热边界层——从壁面过余温度(t-tw)为零, 到流体过余温度为来流过余温度的99 % 的 流体薄层 3.

传热学

传热学

传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。

传热学-第一章

传热学-第一章

1.1.2 传热学研究中的连续介质假设
基本假定: 所研究的物体中的温度、密度、速度、压力 等物理参数都是空间坐标的连续函数。 对于气体而言,所研究物体的几何尺寸要远大于 分子间的平均自由程。 在微机电系统中,所研究物体的几何尺寸常在微 米到毫米之间,微机电系统内的流动和传热问题不满 足连续介质的基本假定。

物体,包括所有方向和所有波长,因此,相同温度下,
黑体的吸收能力最强 (8)黑体辐射的控制方程: Stefan-Boltzmann 定律

AT
4
q T
4
4 A T 真实物体则为: (9) 两黑体表面间的辐射换热
(参见图1-7):
4 A (T14 T2 )
温。如何解释其道理?越厚越好?
(2) 特别是在下列技术领域大量存在传热问题 动力、化工、制冷、建筑、机械制造、新能源、微电子、 核能、航空航天、微机电系统(MEMS)、新材料、军事
科学与技术、生命科学与生物技术…
(3) 几个特殊领域中的具体应用 a 航空航天:高温叶片气膜冷却与发汗冷却;火箭
推力室的再生冷却与发汗冷却;卫星与空间站热控制;
上面传热过程中传递的热量为:
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
传热系数
(1-10)
Φ Ak (t f 1 t f 2 ) Ak t
1 k 1 1 rh1 r rh 2 h1 h2 1
1.1.3 传热学与工程热力学的关系
(1) 热力学 + 传热学 = 热科学(Therma即热 量传递的速率。
铁块, M1 300oC

传热学总结

传热学总结
油气储运工程--- Oil & gas storage and transportation engineering
n
6
传热学
油气储运工程09级
热扩散率:a ( c) ① ɑ越大,表示物体受热时,其内部温 度扯平的能力越大。 ② ɑ越大,表示物体中温度变化传播的 越快。所以,ɑ也是材料传播温度变化能力大小的指标,亦称 导温系数。 典型一维稳态导热问题: t t 平壁导热 (A ) q 面积热阻RA :单位面积的导热热阻称面积热阻。 热阻R:整个平板导热热阻称热阻。 圆筒壁的导热: 2 l (t t ) = (t t ) Φ
油气储运工程--- Oil & gas storage and transportation engineering
12
传热学
油气储运工程09级
国际单位制中的7个基本物理量: 长度[m],质量[kg],时间[s],电流[A],温度[K],物质的量 [mol],发光强度[cd] 相似原理的重要应用: 1.相似原理在传热学中的一个重要的应用是指导试验的安排及试 验数据的整理。 2.相似原理的另一个重要应用是指导模化试验。 自然对流亦有层流和湍流之分。 自然对流传热可分成大空间和有限空间两类。 gtl 3 Gr 数是浮升力/粘滞力比值的一种量度。 2 瑞利数: Ra Gr Pr
油气储运工程--- Oil & gas storage and transportation engineering
传热学
油气储运工程09级
第六章 相似原理及量纲分析
同类现象:用相同形式且具有相同内容的微分方程式所描述的现象。 相似的概念:对于两个同类的物理现象,如果在相应的时刻及相应的 地点与现象有关的物理量一一对应成比例,则称此两现象彼此相似。 判别两现象相似的条件: ①只有同类现象才能谈相似。 ②单值性条件相似:初始条件、边界条件、几何条件、物理条件。 ③同名的已定特征数相等。 获得相似准则数的方法:相似分析法和量纲分析法。 相似分析法:在已知物理现象数学描述的基础上,建立两现象之间 的一些列比例系数,尺寸相似倍数,并导出这些相似系数之间的关 系,从而获得无量纲量。 量纲分析法:在已知相关物理量的前提下,采用量纲分析获得无量 纲量。

传热学总结

传热学总结

传热学总结1.热流量:单位时间内通过某一给定面积的热量。

2.热流密度:单位面积的热流密度。

3.热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。

4.热对流:由物体的宏观运动和冷热流体的混合引起的流体各部分之间的相对位移引起的传热过程。

5.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合作用的热量传递过程。

6.传热系数:单位传热面积上冷热流体温差为1℃时的热流值。

7.辐射传热:物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递。

8.传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程。

1.温度场:物体某一时刻各点温度分布的总称。

它是空间和时间坐标的函数。

2.等温面(线):在温度场中,在同一时刻由相同温度的点连接的表面(或线)。

3.温度梯度:等温表面法向上的最大温度变化率。

4.稳态导热:物体中各点温度不随时间而改变的导热过程。

5.非稳态热传导:物体中每个点的温度随时间变化的热传导过程。

6.傅里叶导热定律:在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向与温度升高的方向相反。

7.热导系数:物性参数,热流密度矢量与温度梯度的比值,数值上等单位温度梯度作用下产生的热流密度矢量的模。

8.保温材料:平均温度不高于350℃时λ≤ 0.12W/(MK)。

9.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。

初始条件:初始时刻的温度分布。

第一类边界条件:物体边界上的温度。

第二类边界条件:物体边界上的热流密度。

第三类边界条件:物体边界与周围流体间的表面传热系数h及周围流体的温度tf。

10.肋效率:肋的实际散热量与假设整个肋表面处于肋底温度时的散热量之比。

肋面总效率:肋侧表面实际散热量与肋侧壁温均为肋基温度的理想散热量之比。

传热学知识点

传热学知识点

传热学1.热传导方式传热在固体液体气体中发生2.传热方式为热传导,热对流,热辐射3.等温面的特点:(1) 温度不同的等温面或线彼此不能相交;(2) 在连续的温度场中,等温面不会中断(3) 若温度间隔相等时,等温线的疏密可反映出不同区域导热热流密度(单位面积的热流量)的大小。

4.热量方向与温度梯度方向相反5.热量传递方向不止能从高温处传向低温处6.复合传热是指既有对流换热,又有辐射换热的换热现象7.热传导1.热传导定义:物体内部或相互接触的表面间,由于分子、原子及自由电子等微观粒子的热运动及相互碰撞而产生的热量传递现象称为热传导( 简称导热)2.特点:物质各部分不会发生相对位移3.热导率特点:1)对于同种物质,其固态的热导率值最大,气态的热导率值最小2)一般金属的热导率大于非金属的热导率3)导电性能好的金属,其导热性能也好4)纯金属的热导率大于它的合金5)对于各向异性物体,热导率的数值与方向有关5)对于同种物质,其晶体的热导率要大于非晶体的热导率热对流1.热对流:指流体的宏观运动使温度不同的流体相对位移而产生的热量传递的现象,显然,热对流只能发生在流体之中,而且必然伴随有微观微粒热运动产生的导热。

2.流动原因:一自然对流:温度不同引起密度差,轻者上浮,重者下沉;二强制对流:风机、泵或搅拌等外力所致流体质点的运动。

3.强制对流引起的热量传递远大于自然对流热量传递4.热辐射1.热射线主要有有红外线,可见光2.热辐射特点:(1) 热辐射总是伴随着物体的内热能与辐射能这两种能量形式之间的相互转化。

(2) 热辐射不依靠中间媒介,可以在真空中传播因此,又称其为非接触性传热。

(3) 物体间以热辐射的方式进行的热量传递是双向的。

即不仅高温物体向低温物体辐射热能,而且低温物体向高温物体辐射热能。

3.布鲁布鲁对流换热1.对流换热:流体与固体表面之间的热量传递是热对流和导热两种基本传热方式共同作用,不是基本传热方式2.特点:(1) 导热与热对流同时存在的热传递过程(2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差(3) 由于流体粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层3.对流换热是指流体流经固体时流体与固体表面之间的热量传递现象4.圆管壁稳定传热时,温度呈对数曲线分布5.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导热系数小的材料放置在外层,保温效果更好(错误)6.提高对流传热系数的途径:①使流动从层流转变为湍流②增加流速③增大管径④选用螺纹管,短管,弯管(5). 在管外流动,应加折流板7.沸腾三个阶段:自然对流、核状沸腾、膜状沸腾,工业上采用核状沸腾8.边界层的分离增强了流体的扰动,h 增大/ 流体在圆管外的换热,为避免层流,底层对对流换热的影响会设置障碍物,促使边界层的分离形成,为增强传热效果9.空气在圆管内做湍流运动,当其他条件不变,空气流速提高一倍时,对流传热h为原来对流传热系数的1.74倍10.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导数系数小的材料放置在外层,保温效果更好(错误)11.蒸汽冷凝时,定期排放不凝性气体。

(完整PPT)传热学

(完整PPT)传热学

(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。

01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。

02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。

热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。

非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。

传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。

生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。

解决高速飞行时的高温问题,保证航空航天器的安全运行。

机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。

能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。

建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。

传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。

热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。

热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。

导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。

温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。

压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。

稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。

在稳态导热过程中,热流密度和温度分布保持恒定。

非稳态导热物体内部各点温度随时间变化而变化的导热过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d() I cos
dA d
又称余弦定律 3) 黑体辐射法向方向最大,切线方向为零
27
《传热学》讲义 5 黑体定向辐射强度与辐射力之间的关系
d() I cos
dA d
Eb
d ( dA
)
Ib
cos
d
I b cos sin d d
2
2
I b 0
d 0
cos sin d
Ib
3. 物体表面的发射率取决于物质种类、表面温度和表面状况。 这说明发射率只与发射辐射的物体本身有关,而不涉及外 界条件。
45
《传热学》讲义
8-4 实际物体对辐射能的吸收与辐射的关系
• 为什么要研究实际物体吸收特性? 通过热辐射交换热量 辐射与吸收之间的收支情况
• 吸收特性与辐射特性之间有什么关系? 黑体 实际物体
37
《传热学》讲义
三 实际物体的定向辐射强度
实际物体
• IIb 同温度
• 与有关 1 定向发射率 ()
I Ib
• ():0~1 • 一般与有关
• 漫射表面
38
《传热学》讲义 2 实际物体定向发射率 ()的变化规律
金属导体 • 0~30º,()常数 • 然后随增大而增大 • 接近90º时急剧减小
黑体?
41
4 影响、、的因素
《传热学》讲义
• 仅仅取决于物体自身,与外界无关 物体的种类 物体表面温度 物体表面状况:氧化与否、光滑程度等
• 表8-2 注意温度范围
42
四 小结和说明
《传热学》讲义
对应于黑体的辐射力Eb,光谱辐射力Eb和定向辐射强度I, 分别引入了三个修正系数,即:发射率,光谱发射率( )和定
物体之间通过热辐射交换热量的过程。
当系统达到热平衡时,辐射换热量为零,但热辐射仍然不
断进行。
2
《传热学》讲义
2. 特点
• 任何物体,只要温度高于0 K,就会不停 地向周围空间发出热辐射;
• 可以在真空中传播; • 伴随能量形式的转变; • 具有强烈的方向性; • 辐射能与温度和波长均有关
3
《传热学》讲义
39
《传热学》讲义
非金属
• 0~60º,()常数,然后随增大而急
剧减小
40
《传热学》讲义
3 法向黑度n 实际物体的()随变化很大 • 半球平均发射率基本为常数 高度磨光表面n=1.2 粗糙表面n=0.98 一般光滑表面n=0.95 • 所以,大多数工程材料n
实际上我们并不关心物体表面局部的热辐射特性!
28
6 例题
《传热学》讲义
例 8-4
29
四 小结
《传热学》讲义
Stefan-Boltzmann’s Law Planck’s Law Lambert’s Law
总体 按波长分布 在空间分布
30
《传热学》讲义
作业
8-5、8-6、8-8
31
《传热学》讲义
8-3 固体和液体的辐射特性
{总体 按波长分布 按空间分布
《传热学》讲义 一般有两种处理方法 (1)灰体法:即将光谱吸收比 () 等效为
常数,即 = () = const。并将()与波长
无关的物体称为灰体,与黑体类似,它也是一 种理想物体,但对于大部分工程问题来讲,灰 体假设带来的误差是可以容忍的;
(2)谱带模型法:即将所关心的连续分布的
谱带区域划分为若干小区域,每个小区域被 称为一个谱带,在每个谱带内应用灰体假设。
53
《传热学》讲义 4 灰体
• 定义:物体的光谱吸收比与波长无关 • 好处:对外界一视同仁 • 理想模型
在一般工业温度水平,大多数工程材 料均可看成灰体
吸收特性与辐射特性之间有什么关系?
54
《传热学》讲义
二 基尔霍夫(Kirchhoff)定律
1859年,Kirchhoff (德国物理学家,当时25 岁)提出了Kirchhoff 定律。
4 Wien位移定律
ma Tx2.91 0 3mK
太 阳 表 面 温 度 约 为 5800K ,
由上式可求得max0.5 m,位于
可见光范围内。可见光占太阳辐
射能的份额约为44.6% 。
对于2000K温度下黑体, 可求得max1.45 m,位
于红外线范围内。
18
5 黑体辐射函数
Eb
2 1
Ebd
《传热学》讲义
3 物体对热辐射的吸收、反射和穿透
当热辐射投射到物体表面上时, 一般会发生三种现象,即吸收、 反射和穿透,如图8-2所示。
QQ Q Q
Q Q Q 1 QQQ
absorptivity
1 图8.2 物体对热辐射的
吸收、反射和穿透
reflectivity
transmissivity
6
《传热学》讲义
对于大多数的固体和液体
只涉及表面
0, 1
对于不含颗粒的气体 整个气体容积
0, 1
对于黑体 1
镜体或白体 1
透明体
1
假想的
7
《传热学》讲义 4 反射同样具有镜反射和漫反射的分别
镜反射
漫反射 8Leabharlann 三 黑体模型《传热学》讲义
1 为什么? 2 黑体模型
• 可以全部吸收透射到其表面上的所有波长 的辐射能;
《传热学》讲义
第八章 热辐射基本定律和 辐射特性
主要从宏观的角度介绍热辐射的基本概念、 基本定律。
1
8-1 热辐射的基本概念
一 热辐射
1. 定义
《传热学》讲义
热辐射-thermal radiation
物体由于热的原因(温度高于 0 K)而发射电磁波的现象。
辐射换热-radiation heat transfer
所有这些差别全部归于上面的系 数; 在工程上一般都将真实表面假设 为漫发射面。
《传热学》讲义
44
本节中,还有几点需要注意
《传热学》讲义
1. 将不确定因素归于修正系数,这是由于热辐射非常复杂, 很难理论确定,实际上是一种权宜之计;
2. 服从Lambert定律的表面成为漫射表面。虽然实际物体的 定向发射率并不完全符合Lambert定律,但仍然近似地认 为大多数工程材料服从Lambert定律,这有许多原因;
二 热辐射具有电磁波的共性
1 f=C 2 电磁波谱
4
《传热学》讲义
• 理论上覆盖整个电磁波谱; • 对于太阳辐射(约5800K):0.22m; • 可见光0.380.76m
红外线0.76251000m • 一般工业范围内(2000K以下):
0.38100m 0.7620m • 远红外加热技术
5
《传热学》讲义
50
《传热学》讲义 如果投入辐射来自黑体,则上式可变为
1= f ( T1,T2,表面1的性质)
51
《传热学》讲义
物体的选择性吸收特性 • 太阳能集热器 • 太阳镜、防晒霜等 • 农业生产 • 多彩的世界 • 给工程中辐射换热的计算带来巨大麻烦
一般有两种处理方法 (1)灰体法 (2)谱带模型法
52
2 表达式
Eb T4
Eb
C0
T 4 100
• -Stefan-Boltzmann常数
5.6710-8 W/(m2·K4)
• C0-黑体辐射系数 5.67 W/(m2·K4)
13
《传热学》讲义
3 说明
• 1879年由Stefan根据实验结果提出,1884 年由Boltzmann用理论分析法予以证实;
20
《传热学》讲义
6 黑体辐射力中不同波长辐射能的比例 (1) 例8-3
温度(K) 1000 3000 6000
可见光 < 0.1% 11.4% 45.5%
红外线 > 99.9% 88.5% 43.0%
(2)定性上实际物体的光谱辐射力按波长分
布的规律………一致
21
《传热学》讲义
三 Lambert’s Law
• 单位:W/m3
• E和E关系
E 0 Ed
15
2 Planck定律
Eb
c15
ec2 (T) 1
《传热学》讲义
式中:
λ— 波长,m
T — 黑体温度,K
c1 — 第一辐射常数,3.742×10-16 Wm2;
c2 — 第二辐射常数,1.4388×10-2 WK;
16
《传热学》讲义 “Planck定律”
1 立体角 平面角 定义:球面面积除以球半径的平方 单位:sr(球面度)
d dAc
r2
22
《传热学》讲义
23
d dAc r2
dA crdrsind
dsindd
《传热学》讲义
在相同的立体角的基础上比较!
24
2 单位可见辐射面积
《传热学》讲义
在相同的可见辐射面积的基础上比较!
25
《传热学》讲义
• Boltzmann其人 热科学领域杰出的科学家 1906年 亚德里亚海 Boltzmann transport equation
• ET4
14
二 Planck’s Law
《传热学》讲义
1 光谱辐射力E spectral emissive power
• 单位时间、单位波长范围内(包含某一 特定波长)、物体的单位表面积向半球 空间发射出去的辐射能。
向发射率( ),其表达式和物理意义如下
实际物体的辐射力与黑体辐 射力之比:
E Eb
0
()Ebd T4
实际物体的光谱辐射力与黑 ( ) E
体的光谱辐射力之比:
Eb
实际物体的定向辐射强度与 () I() I()
相关文档
最新文档