中考数学总复习 第三章 函数 第14课时 二次函数

合集下载

2024长沙中考数学一轮复习 第14课时 二次函数解析式的确定(含与方程的关系)(课件)

2024长沙中考数学一轮复习 第14课时 二次函数解析式的确定(含与方程的关系)(课件)

针对训练
6. 已知抛物线 y=2(x+1)2-3. (1)将其向左平移 2 个单位,得到的抛物线的表达式为__y_=__2_(x_+__3_)_2_-__3___; (2)将其向上平移 4 个单位,得到的抛物线的表达式为__y_=__2_(_x_+__1_)2_+__1___.
考点 3 二次函数与方程的关系
5. 如图,抛物线的顶点 M 在 y 轴上,抛物线与直线 y=x+1 相交于 A,B 两点,且 点 A 在 x 轴上,点 B 的横坐标为 2,那么抛物线的解析式为___y_=__x_2_-__1_____.
第 5 题图
考点 2 二次函数图象的平移
平移前解析式 y=a(x-h)2+k
平移方式(n>0) 向左平移 n 个单位 向右平移 n 个单位 向上平移 n 个单位 向下平移 n 个单位
针对训练
1. 已知抛物线 y=x2+bx+c 经过 A(-3,0),B(1,0)两点,则此抛物线的解析式为 ___y=___x_2+__2_x_-__3_______. 2. 对称轴是 y 轴且过点 A(1,3),点 B(-2,-6)的抛物线的解析式为_y_=__-__3_x_2+__6_. 3. 已知二次函数的图象经过(-1,0)、(3,0)、(0,3)三点,则这个二次函数的解析 式为_y_=___-__x_2_+__2_x_+__. 4. 已3知二次函数的顶点坐标为(1,2)且经过点(2,4),则这个二次函数的解析式为 ___y_=__2_x_2_-__4_x_+__4____.
图象画法 (1)列表;(2)描点;(3)连线
2. 待定系数法求二次函数解析式 方法 待定系数法 1. 对于二次函数解析式 y=ax2+bx+c,若系数 a,b,c 中有一个未 知,则代入二次函数图象上任意一点坐标;若有两个未知,则代入二 次函数图象上任意两点坐标;

中考数学专题复习课件 --- 第十四讲二次函数

中考数学专题复习课件 --- 第十四讲二次函数
结合近几年中考试题分析,二次函数的内容考查主要有
以下特点: 1.命题方式为二次函数解析式的确定,二次函数的图象与 性质的应用,判定二次函数的顶点坐标、开口方向、对称轴方 程,二次函数的实际应用,题型多样,涉及了选择题、填空题与 解答题.
2.命题的热点为二次函数解析式的求法、二次函数的实
际应用,二次函数与一次函数、反比例函数的综合应用.
3.(2011·凉山中考)二次函数y=ax2+bx+c的图象如图所示,
反比例函数 y a 与正比例函数y=bx在同一坐标系内的大致图
x
象是(
)
【解析】选B.由二次函数图象可知,a<0,c>0,
b 0, 2a
∴b<0.a<0,说明反比例函数图象在二、四象限,b<0,说明正 比例函数图象经过二、四象限,所以选B.
方法二:∵a=-10<0,
∴抛物线开口向下.
∴当30≤x≤40时,w≥2 000.
∵x≤32,∴30≤x≤32时,w≥2 000.
∵y=-10x+500, k=-10<0, ∴y随x的增大而减小. ∴当x=32时,y最小=180. ∵当进价一定时,销售量越小,成本越小,
∴20×180=3 600(元).
二次函数的图象与性质
1.二次函数y=ax2+bx+c(a≠0)可以通过配方得
2 b 2 4ac b 2 到: y a(x ) ,其中抛物线的顶点为 ( b , 4ac b ), 2a 4a 2a 4a 对称轴方程为直线 x b . 2a
2.已知一个二次函数y=ax2+bx+c(a≠0),要求其图象关于x轴 对称、y轴对称的函数解析式时,应先把原函数的解析式化成 y=a(x-h)2+k(a≠0)的形式,然后考虑所求图象的顶点坐标、

【中考复习方案】2015中考数学总复习 第14课时 二次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)

【中考复习方案】2015中考数学总复习 第14课时 二次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)
第14课时 二次函数的图象及性质
第14课时┃二次函数的图象及性质
考 点 聚 焦
考点1 二次函数的概念
y=ax2+bx+c
考点聚焦
京考探究
第14课时┃二次函数的图象及性质
考点2 二次函数的图象及画法
2 b 4ac-b -2a, 4a
x=-
b 2a
y=a(x-h)2+k
考点聚焦
京考探究
第14课时┃二次函数的图象及性质
变式题
[2014· 威海] 已知二次函数 y=ax2+bx+c(a≠0)的 图象如图 14-3,则下列说法: ①c=0;②该抛物线的对称轴是直线 x=-1;③当 x=1 时,y=2a;④am2+bm+a>0(m≠-1). 其中正确的有( A.1 个 C.3 个
例 1 [2011· 北京] 抛物线 y=x2-6x+5 的顶点坐标为( A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)
[解析] y=x2-6x+5=(x-3)2-4, ∴顶点坐标 为(3,-4).
A
)
考点聚焦
京考探究
第14课时┃二次函数的图象及性质
方法点析
会熟练运用配方法或公式求出抛物线顶点坐标和对 称轴,牢记顶点坐标与对称轴及二次函数最值之间的内 在关系.
考点聚焦
京考探究
第14课时┃二次函数的图象及性质
考点4
二次函数图象的平移
将二次函数 y=ax2+bx+c(a≠0)用配方法化成 y=a(x- h)2+k(a≠0)的形式, 而任意抛物线 y=a(x-h)2+k 均可由 抛物线 y=ax2 平移得到,具体平移方法如图 14-1:
考点聚焦
京考探究
第14课时┃二次函数的图象及性质

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第14课时 二次函数的图象及其性质二

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第14课时 二次函数的图象及其性质二

考点聚焦
归类探究
回归教材
第14课时┃ 二次函数的图象及其性质(二)
考点聚焦
归类探究
回归教材
第14课时┃ 二次函数的图象及其性质(二)
考点3 平面直角坐标系中的平移与对称点的坐标 将抛物线 y=ax2+bx+c(a≠0)用配方法化成 y=a(x-h)2 +k(a≠0)的形式,而任意抛物线 y=a(x-h)2+k 均可由抛物 线 y=ax2 平移得到,具体平移方法如图 14-1 所示.
探究三
二次函数的图象特征与a,b,c之间的关系
命题角度: 1.二次函数的图象的开口方向,对称轴,顶点坐标, 与坐标轴的交点情况与a,b,c的关系; 2.图象上的特殊点与a,b,c的关系.
考点聚焦
归类探究
回归教材
第14课时┃ 二次函数的图象及其性质(二)
例 3 [2014· 资阳] 二次函数 y=ax2+bx+c(a≠0)的图象如 图 14-2 所示,给出下列四个结论:①4ac-b2<0;②4a+c<2b; ③3b+2c<0; ④m(am+b)+b<a(m≠-1). 其中正确结论有( B )
考点聚焦
归类探究
回归教材
第14课时┃ 二次函数的图象及其性质(二)
函数 y=2x2+4x-3 的图象向右平移 2 个单位长 度, 再向下平移 1 个单位长度得到抛物线 y=2(x-2)2+4(x -2)-3-1,即 y=2(x-1)2-6,顶点坐标是(1,-6).


考点聚焦
归类探究
回归教材
第14课时┃ 二次函数的图象及其性质(二)
方法点析
二次函数的图象特征主要从开口方向,与x轴有无交点, 与y轴交点及对称轴的位置,确定a,b,c及b2-4ac的符号 ,有时也可把x的值代入,根据图象确定y的符号.

中考数学专题复习14《二次函数图像与性质》(2021年整理)

中考数学专题复习14《二次函数图像与性质》(2021年整理)

江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省昆山市2017年中考数学专题复习14《二次函数图像与性质》的全部内容。

2017年中考数学专题练习14《二次函数图像与性质》【知识归纳】1.一般地,形如 的函数叫做二次函数,当a ,b 时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是 ,对称轴是直线x= ,顶点坐标是( , ). 3.抛物线的开口方向由a 确定,当a >0时,开口 ;当a <0时,开口 ;a 的值越 ,开口越 .4.抛物线与y 轴的交点坐标为 .当c >0时,与y 轴的 半轴有交点;当c <0时,与y 轴的 半轴有交点;当c =0时,抛物线过 . 5.若a >0,当x =2ba -时,y 有最小值,为 ; 若a <0,当x =2ba-时,y 有最大值,为 .6.当a >0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧,y 随x 的增大而 ;当a <0时,在对称轴的左侧,y 随x 的增大而 ,在对称轴的右侧.y 随x 的增大而 . 7.当m >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =a (x +m )2的图象;当k >0时,二次函数y =ax 2的图象向 平移 个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“ ”右 “ ”;上“ ”下“ ”. 【基础检测】1.(2016•兰州)二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 2.当x 为实数时,代数式x 2﹣2x ﹣3的最小值是 .3.(2016•永州)抛物线y=x 2+2x+m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( )A .m <2B .m >2C .0<m≤2 D.m <﹣24。

2015年浙江省杭州数学中考总复习课件第14课时:二次函数的应用

2015年浙江省杭州数学中考总复习课件第14课时:二次函数的应用
第14课时
二次函数的应用
第14课时┃ 二次函数的应用
考 点 聚 焦
考点1 二次函数与几何图形的综合应用
[2014·北京] 已知点 A 为某封闭图形边界上一定点,动点 P 从点 A 出发,沿其边界顺时针匀速运动一周,设点 P 运动的时间 为 x,线段 AP 的长为 y,表示 y 与 x 的函数关系大致如图 14-1 所示,则该封闭图形可能是 ( A )
当堂检测
第14课时┃ 二次函数的应用
杭 考 探 究
探究一 用二次函数解决抛物线形实际问题
例 1 [2014·天水] 如图 14-3,排球运动员站在 O 处练习 发球,将球从点 O 正上方 2 米的点 A 处发出,把球看成点,其运 行的高度 y(米)与运行的水平距离 x(米)满足关系式 y=a(x- 2 6) +h.已知球网与点 O 的水平距离为 9 米,高度为 2.43 米,球 场的边界与点 O 的水平距离为 18 米. (1)当 h=2.6 时,求 y 与 x 的关系式;
考点聚焦
杭考探究
当堂检测

第14课时┃ 二次函数的应用
根据问题信息求出函数表达式, 并求相应的 自变量的值及函数最值.
思路点津
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用
解:(1)y= (2)设销售 A 类杨梅 x 吨,则 ①当 2≤x<8 时,w=x(-x+14)+9(20-x)-3×20-x- [12+3(20-x)]=-x2+7x+48. 当 x≥8 时,w=6x+9(20-x)-3×20-x-[12+3(20-x)] =-x+48. 所以函数表达式为 w=
考点聚焦
杭考探究
当堂检测
第14课时┃ 二次函数的应用

中考数学总复习 第三单元 函数及其图象 第14课时 二次函数的实际应用随堂小测

中考数学总复习 第三单元 函数及其图象 第14课时 二次函数的实际应用随堂小测

二次函数的实际应用1.★在A 市中学生男子足球比赛中,某队守门员踢出的足球飞行高度y (m)与水平距离x (m)之间满足关系式y =-18x 2+1.5x ,则足球飞出的最远距离是( ) A .8 m B .12 m C .15 m D .20 m2.★王大爷用200 m 的竹篱笆围成一个长方形的养鸡场,则能围成的养鸡场的最大面积是( ) A .50 m 2 B .100 m 2 C .200 m 2 D .2500 m 23.我国最新研制的38 mm 高射炮炮弹的飞行高度y (m)与飞行时间x (s)满足关系式y =ax 2+bx ,若该炮弹在第3秒和第11秒的飞行高度相同,则下列哪一个时间的高度最高( )A .第4秒B .第7秒C .第10秒D .第15秒4.一所中学的大门近似于抛物线(如图Y -15),若大门的跨度AB =10 m ,大门最高点C 距离地面6 m ,则该二次函数的表达式是____________.Y -16.如图Y -16是一条单向行驶的隧道的截面图,其截面图是抛物线,且表达式为y =-13x 2+3.那么一辆宽为2米,载物高度为2.5米的载货汽车________(填“能”或“不能”)安全通过该隧道.6.为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元/件的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)/件满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)/件之间的表达式;(利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?参考答案1.B [解析] 足球飞出距离最远时,y =0,即-18x 2+1.5x =0,解得x =0或x =12,所以足球飞出的最远距离是12 m .本题容易出错的地方是不理解飞出最远距离的意义,导致无法求解.2.D3.B [解析] 根据抛物线的对称性知对称轴为直线x =3+(11-3)÷2=7,所以第7秒时,炮弹的飞行高度最高.4.y =-625(x -5)2+6 [解析] 根据题意,抛物线的顶点坐标为(5,6).设抛物线的表达式为y =a (x -5)2+6.又因为抛物线过点(0,0),所以0=a (0-5)2+6,解得a =-625,故所求抛物线的表达式为y =-625(x -5)2+6. 5.能 [解析] 当x =1时,y =-13×12+3≈2.67>2.5(m),所以该汽车能安全通过隧道. 6.解:(1)根据题意,得S =(x -40)y =(x -40)(-10x +1200)=-10x 2+1600x -48000,其中x >40.所以利润S (元)与销售单价x (元件)之间的表达式是S =-10x 2+1600x -48000(x >40).(2)S =-10x 2+1600x -48000.因为a =-10<0,所以当x =-b 2a =-16002×(-10)=80时,S 有最大值,最大值是=-10×802+1600×80-48000=16000(元).答:当销售单价定为80元/件时,销售利润最大,最大利润是16000元.。

2014届中考数学(华师版)复习方案:14二次函数的图象及其性质(二)

2014届中考数学(华师版)复习方案:14二次函数的图象及其性质(二)
解 析 抛物线y=(x-1)2+3向左平移1个单位所得直线解析式
为y=(x-1+1)2+3,即y=x2+3;再向下平移3个单位为y=x2+3-3,
即y=x2.故选D.
考点聚焦 归类探究
归类探究
项目 字母 a
b
c
c>0 c<0
考点聚焦
第14课时┃ 二次函数的图象及其性质(二)
项目 字母
字母的符号 b2-4ac=0
图象的特征 与 x 轴有唯一交点 (顶点) 与 x 轴有两个不 同交点 与 x 轴没有交点 当 x=1 时,y=a+b+c
b2-4ac
b2-4ac>0 b2-4ac<0
特殊 关系
图14-1
[注意] 确定抛物线平移后的解析式最好利用顶点式,利用顶点的 平移来研究图象的平移.
考点聚焦 归类探究
第14课时┃ 二次函数的图象及其性质(二)
考点4
求二次函数的最值
1.如果自变量的取值范围是全体实数,那么二次函数 y=ax2+bx+c 在 2 4 ac - b b 图象顶点 处取得最大值(或最小值),即当 x=- 时,y 最值= ______________ , 2a 4a 具体求法: ①配方法:将二次函数 y=ax2+bx+c 化为 y=a(x-h)2+k 的形式,其图 (h, k ) . 象的顶点坐标为________ y最小=k ; 最小值 ,当 x=h 时,___________ 当 a>0 时,y 有________ y最大=k . 最大值 ,当 x=h 时,___________ 当 a<0 时,y 有________
两个不相等 实根 _____________ 两个相等 实根 _____________
_____________ 实根 没有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向上(k>0)【或下(k<0)】平移|k|个单位 y=a(x-h)2+k
考点二:确定二次函数的关系式
3.二次函数解析式的表示方法: (1) 一般式: yax2 bxc(a,b,c为常数a 0); (2) 顶点式:ya(xh)2 k(a,h,k为常数,a0); (3) 两根式: (a ya(xx1)(xx2) 0,x1,x2是抛物线 与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式 或顶点式,但并非所有的二次函数都可以写成交 点式,只有抛物线与轴有交点,即时,抛物线的 解析式才可以用交点式表示.二次函数解析式的 这三种形式可以互化.
参照下表:
y=ax2
向上(k>0)【或向下(k<0)】平移|k|个单位 y=ax 2+k
向右(h>0)【或左(h<0)】 平移|k|个单位
y=a(x-h)2
向右(h>0)【或左(h<0)】 平移 |k|个单位
向上(k>0)【或下(k<0)】 平移|k|个单位
向右(h>0)【或左(h<0)】 平移|k|个单位
A B
D
B D
考点一:二次函数的图象和性质 Nhomakorabea1.二次函数的图象和性质见下图:
考点一:二次函数的图象和性质
• 2.对于二次函数 ya2xbxc(a,b,c是常a数 0),, 在考虑
其性质时,特别要注意在对称轴两边分别说明.二次
函数的图象是抛物线,其中a由开口方向确定,b由
对称轴确定,c由y轴交点确定.对于函数的移动情况
yx62 36
相关文档
最新文档