排列组合问题经典题型解析含答案

合集下载

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.间接法当直接法求解类别比较大时,应采用间接法。

例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。

例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432八.递推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

排列组合常见题型及解答

排列组合常见题型及解答

排列组合常见题型一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法"可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A、38 B、83 C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客"有8种可能,因此共有38种不同的结果。

所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A=种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A。

360 B。

188 C。

216 D。

96【解析】:间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A=432,其中男生甲站两端的有1222223232A C A A A=144,符合条件的排法故共有288三.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。

排列组合典型题大全含答案.

排列组合典型题大全含答案.

>排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果)(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种-不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果(2)每项竞赛只许一名同学参加,有多少种不同的结果4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少5、甲乙丙分10瓶汽水的方法有多少种。

6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.]【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合经典题型及解析

排列组合经典题型及解析

排列组合经典题型及解析1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.`例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( ) A 、24种 B 、60种 C 、90种 D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种, … 选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C 种 B 、44412843C C C 种C 、4431283C C A 种D 、444128433C C C A 种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种,答案:B .7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( ) A 、210种 B 、300种 C 、464种 D 、600种 ]解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B. (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种 解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种?六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法?七.染色问题例7 某城市中心广场建造一个花圃,花圃6分为个部分,现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).561432例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种?十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例 11.圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。

排列组合专题各方法题型及其答案

排列组合专题各方法题型及其答案

排列组合题型总结一.直接法例1用1, 2, 3, 4, 5, 6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

二.间接法当直接法求解类别比较大时,应釆用间接法。

例2有五张卡片,它的正反面分别写0与1, 2与3, 4与5, 6与7, 8与9,将它们任意三张并排放在一是组成三位数,共可组成多少个不同的三位数三.插空法当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法四.捆梆法当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种五.阁板法名额分配或相同物品的分配问题,适宜釆阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共多少种六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法七.染色问题例7菜城市中心广场建造一个花圃,花囲6分为个部分,现要我种4种颜色的花,每部分我种一种且相邻部分不能我种同一样颜邑的话,不同的我种方法有 _________ 种(以数字作答).八・逼推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法九•几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种十.先选后排法例9有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担.从10人中选派4人承担这三项任务,不同的选派方法有多少种十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.十二.转化命题法例11 •圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各•排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的究破口。

排列组合典型题大全含答案

排列组合典型题大全含答案

排列组合典型题⼤全含答案排列组合典型题⼤全⼀.可重复的排列求幂法:重复排列问题要区分两类元素:⼀类可以重复,另⼀类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使⽤住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学⽣报名参加数学、物理、化学竞赛,每⼈限报⼀科,有多少种不同的报名⽅法(2)有4名学⽣参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将3封不同的信投⼊4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34(3)34【例2】把6名实习⽣分配到7个车间实习共有多少种不同⽅法【解析】:完成此事共分6步,第⼀步;将第⼀名实习⽣分配到车间有7种不同⽅案,第⼆步:将第⼆名实习⽣分配到车间也有7种不同⽅案,依次类推,由分步计数原理知共有67种不同⽅案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C【解析】:冠军不能重复,但同⼀个学⽣可获得多项冠军,把8名学⽣看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意⼀家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法2、4个⼈争夺3项冠军,要求冠军不能并列,每个⼈可以夺得多项冠军也可以空⼿⽽还,问最后有多少种情况3、4个同学参加3项不同的⽐赛(1)每位同学必须参加⼀项⽐赛,有多少种不同的结果(2)每项竞赛只许⼀名同学参加,有多少种不同的结果4、5名学⽣报名参加4项⽐赛,每⼈限报1项,报名⽅法的种数有多少⼜他们争夺这4项⽐赛的冠军,获得冠军的可能性有多少5、甲⼄丙分10瓶汽⽔的⽅法有多少种6、(全国II ⽂)5位同学报名参加两个课外活动⼩组,每位同学限报其中的⼀个⼩组,则不同的报名⽅法共(A)10种(B) 20种(C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动⼩组,每个兴趣⼩组只能有⼀个⼈来负责,负责⼈可以兼职,则不同的负责⽅法有多少种8、4名不同科⽬的实习教师被分配到3个班级,不同的分法有多少种思考:4名不同科⽬的实习教师被分配到3个班级,每班⾄少⼀个⼈的不同的分法有多少种⼆.相邻问题捆绑法:题⽬中规定相邻的⼏个元素捆绑成⼀个组,当作⼀个⼤元素参与排列.【例1】,,,,A B C D E五⼈并排站成⼀排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把,A B视为⼀⼈,且B固定在A的右边,则本题相当于4⼈的全排列,4424A 种例2. 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲⼄两元素捆绑成整体并看成⼀个复合元素,同时丙丁也看成⼀个复合元素,再与其它元素进⾏排列,同时对相邻元素内部进⾏⾃排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题经典题型与通用方法1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有()A 、60 种B 、48 种C 、36 种D 、24 种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 • 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A 、1440 种B 、3600 种C 、4820 种D 、4800 种3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果B必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( )4.标号排位问题分步法:把元素排到指定位置上, 可先把某个元素按规定排入, 第二步再排另一个元素, 如此继续下去,依次即可完成 •例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( )A 、6 种B 、9 种C 、11 种D 、23 种5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260 种B 、2025 种C 、2520 种D 、5040 种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口6. 全员分配问题分组法:例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种?A 、24 种B 、60 种C 、90 种D 、 120 种4人,则不同的分配方案有(44 4C 12C 8C 4种4 43C 12C 8CC 、C 12C 8 A3种2) 5 本不同的书,全部分给4 个学生,每个学生至少一本,不同的分法种数为(A、480 种B、240 种C、120 种 D 、96 种7. 名额分配问题隔板法:例7 :10 个三好学生名额分到7 个班级,每个班级至少一个名额,有多少种不同分配方案?8. 限制条件的分配问题分类法:例8. 某高校从某系的10 名优秀毕业生中选 4 人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9. 多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。

例9( 1)由数字0,1 ,2,3,4,5 组成没有重复数字的六位数,其中个位数字小于十位数字的共有 ( ) A、210 种B、300 种C、464 种D、600 种(2 )从1 , 2 , 3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3 )从1 , 2 , 3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?10. 交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A B) n(A) n(B) n(A B)例10.从6名运动员中选出4人参加4 X 100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?11. 定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

例11. 现1 名老师和 4 名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?12. 多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。

例12. (1)6 个不同的元素排成前后两排,每排 3 个元素,那么不同的排法种数是()A、36 种B、120 种C、720 种D 、1440 种(2)8 个不同的元素排成前后两排,每排 4 个元素,其中某 2 个元素要排在前排,某 1 个元素排在后排,有多少种不同排法?13. “至少”“至多”问题用间接排除法或分类法:例13. 从4 台甲型和 5 台乙型电视机中任取 3 台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140 种B、80 种C、70 种 D 、35 种14. 选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法例14. (1)四个不同球放入编号为1,2 ,3,4 的四个盒中,则恰有一个空盒的放法有多少种?(2)9 名乒乓球运动员,其中男 5 名,女4 名,现在要进行混合双打训练,有多少种不同的分组方法?15. 部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15. (1)以正方体的顶点为顶点的四面体共有()A、70 种B、64 种C、58 种 D 、52 种(2 )四面体的顶点和各棱中点共10 点,在其中取4 个不共面的点,不同的取法共有(A、150 种B、147 种C、144 种D、141 种16. 圆排问题单排法:把n个不同元素放在圆周n个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n 个普通排列:a1,a2,a3L ,a n;a2,a3,a4,L ,a n,L ;a n,a1,L ,a n 1在圆排列中只算一种,因为旋转后可以重合,故认为相同,n个元素的圆排列数有n!种•因此可将某个元素固定展成单排,其它的n 1元素全排列n例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?17. 可重复的排列求幕法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n个不同元素排在m个不同位置的排列数有m n种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?18. 复杂排列组合问题构造模型法:例18.马路上有编号为1 , 2 , 3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏, 也不能关掉两端的两盏,求满足条件的关灯方案有多少种?19. 元素个数较少的排列组合问题可以考虑枚举法:例19.设有编号为1 , 2 , 3, 4 , 5的五个球和编号为1 , 2 , 3 , 4 , 5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20. 复杂的排列组合问题也可用分解与合成法:例20. (1 ) 30030能被多少个不同偶数整除?(2)正方体8个顶点可连成多少队异面直线?21. 利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例21. (1 )圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?22. 全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c ....... 表示n份相应的写好的信纸。

把错装的总数为记作f(n)。

假设把a错装进B里了,包含着这个错误的一切错装法分两类:(1 ) b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。

(2 ) b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 份信纸b、c……装入(除B以外的)n —1个信封A、C……,显然这时装错的方法有f(n-1)种。

总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。

a装入C,装入D……的n —2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:得到一个递推公式:f(n)=(n-1) {f(n-1)+f(n-2)} ,分别带入n=2、3、4等可推得结果。

111 1也可用迭代法推导出一般公式:f( n) n!(1 ( 1)n—)1! 2! 3! n!排列组合问题经典题型与通用方法解析版1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列例1. A,B,C, D, E五人并排站成一排,如果 A B必须相邻且B在A的右边,则不同的排法有( ) A、60 种B、48 种C、36 种D、24 种解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,A4 24种,答案:D.2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A、1440 种B、3600 种C、4820 种D、4800 种5 2 5 2解析:除甲乙外,其余5个排列数为乓种,再用甲乙去插6个空位有A6种,不同的排法种数是A5A6 3600种,选B .3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法例3. AB,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法有( )A、24 种B、60 种C、90 种D、120 种解析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即1 5A560 种,选B .24. 标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成 •例4.将数字1 , 2 , 3 , 4填入标号为1 , 2 , 3 , 4的四个方格里,每格填一个数,则每个方格的标号与 所填数字均不相同的填法有( )A 、6 种B 、9 种C 、11 种D 、23 种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3 x 3 x 1=9种填法,选B .5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5. (1)有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务,不同的选法种数是()A 、1260 种B 、2025 种C 、2520 种D 、5040 种 解析:先从10人中选出2人承担甲项任务,再从剩下的 8人中选1人承担乙项任务,第三步从另外的 7人中选1人承担丙项任务,不同的选法共有 C ;Q C 8C 7 2520种,选C .(2 )12名同学分别到三个不同的路口进行流量的调查,若每个路口 4人,则不同的分配方案有()444A 、C 12C 8C 4 种4 4 4B 、3C12C 8C 4种C 、C 142C 84A 33 种G ;C ;C :D 、A 3种答案:A .6.全员分配问题分组法:例6. (1) 4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有C :种方法,再把三组学生分配到三所学校有A ;种,故共有C ^A ; 36种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配(2 ) 5本不同的书,全部分给 A 、 480 种 B 、 240 种 答案:B .7. 名额分配问题隔板法:7个班级,每个班级至少一个名额,有多少种不同分配方案? 解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成 7堆,每堆至少一个,可以 在10个小球的9个空位中插入 6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6 C984种.8. 限制条件的分配问题分类法 :例8.某高校从某系的10名优秀毕业生中选 4人分别到西部四城市参加中国西部经济开发建设, 其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:4①若甲乙都不参加,则有派遣方案A 8种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余333学生有A 8方法,所以共有 3A ;③若乙参加而甲不参加同理也有 3A 8种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余 8人到另外两个城市有 A 种,共有方法.所以共有不同的派遣方法 总数为 A 84 3A 3 3A 3 7A 24088 种.9. 多元问题分类法: 元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总 计. 例9 (1 )由数字0, 1 , 2, 3 , 4 , 5组成没有重复数字的六位数,其中个位数字小于十位数字的共有4个学生,每个学生至少一本,不同的分法种数为( C 、120 种D 、96 种例7 : 10个三好学生名额分到( )A、210 种B、300 种C、464 种D、600 种;A3A;,A;A3A3, A;解析:按题意,个位数字只可能是0, 1 ,2 ,3 , 4共5种情况,分别有A5个,AA3A;, A;A;个,合并总计300个,选B(2 )从1 , 2 , 3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做A 7,14,21,L 98共有14个元素,不能被7整除的数组成的集2合记做A 1,2,3,4, L ,100共有86个元素;由此可知,从A中任取2个元素的取法有G4,从A中任取一个,又从A中任取一个共有G;C86,两种情形共符合要求的取法有C i4 C14C86 1295种.(3)从1 , 2 , 3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将I 1,2,3L ,100分成四个不相交的子集,能被4整除的数集A 4,8,12,L 100 ;能被4除余1的数集B 1,5,9丄97,能被4除余2的数集C 2,6丄,98,能被4除余3的数集D 3,7,11丄99,易见这四个集合中每一个有25个元素;从A中任取两个数符合要;从B,D中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有C25 C25C25 C25 币申•10. 交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A B) n(A) n(B) n(A B)例10.从6名运动员中选出4人参加4 X 100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列} , A= {甲跑第一棒的排列} , B= {乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:n(I) n(A) n(B) n(A B) A4 A3 A53 A^ 252种.11. 定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

相关文档
最新文档