优化算法和梯度下降法
最优化方法

随机梯度下降每次迭代只使用一个样本,迭代 一次计算量为n 2 ,当样本个数m很大的时候, 随机梯度下降迭代一次的速度要远高于批量梯 度下降方法。 两者的关系可以这样理解:随机 梯度下降方法以损失很小的一部分精确度和增 加一定数量的迭代次数为代价,换取了总体的 优化效率的提升。增加的迭代次数远远小于样 本的数量。
2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)
牛顿法(Newton's method) 牛顿法是一种在实数域和复数域上近似求解方程 的方法。方法使用函数 f ( x ) 的泰勒级数的前 面几项来寻找方程 f ( x ) = 0 的根。牛顿法最大 的特点就在于它的收敛速度很快。
具体步骤:
首先,选择一个接近函数 f ( x ) 零点的 x 0 , 计算相应的 f ( x 0 ) 和切线斜率 f ' (x 0 ) (这 里 f ' 表示函数 f 的导数)。然后我们计算穿 过点 (x 0 , f (x 0 )) 并且斜率为 f '(x 0 ) 的直线 和 x 轴的交点的 x 坐标,也就是求如下方程的 解:
批量梯度下降法(Batch Gradient Descent,BGD)
(1)将J(theta)对theta求偏导,得到每个theta对应 的的梯度:
(2)由于是要最小化风险函数,所以按每个参数 theta的梯度负方向,来更新每个theta:
(3)从上面公式可以注意到,它得到的是一个全 局最优解,但是每迭代一步,都要用到训练集 所有的数据,如果m很大,那么可想而知这种 方法的迭代速度会相当的慢。所以,这就引入 了另外一种方法——随机梯度下降。 对于批量梯度下降法,样本个数m,x为n维向 量,一次迭代需要把m个样本全部带入计算, 迭代一次计算量为m*n 2 。
梯度下降算法及优化方法

梯度下降算法及优化⽅法序⾔对于y=f(wx+b),如何使⽤神经⽹络来进⾏求解,也就是给定x和y的值,如何让系统⾃动⽣成正确的权重值w和b呢?⼀般情况下,有两种尝试⽅法:1)随机试:纯概率问题,⼏乎不可能实现。
2)梯度下降法:先初始化w和b(可以随机设置,也可以⼈为默认),然后使⽤下降算法来对w和b进⾏更新。
都有哪些⽅法?到底哪种⽅法更好?⽬录⼀、基础知识⼆、SGD三、Momentum四、Adagrad五、Adadelta六、RMSProp七、Adam正⽂⼀、基础知识斜率:在⼀维空间上,斜率就是函数的导数;梯度:在多维空间⾥,函数的导数叫梯度,梯度是偏导数组成的向量;⼆、SGD⼀般情况下,SGD指Mini-batch GD,(GD可分为三种:Batch GD,Stochastic GD,mini-batch GD)SGD就是每次迭代计算mini-batch的梯度,然后对参数进⾏更新:1)gt=∇θt−1f(θt−1)2)Δθt=−η∗gt其中,η是学习率,gt是梯度SGD完全依赖于当前batch的梯度,η可理解为允许当前batch的梯度多⼤程度影响参数更新。
劣势:1、学习率LR选择⽐较困难2、对所有参数都使⽤相同的LR:在数据不均衡的情况下,如稀疏特征希望更新快些,常出现特征出现慢些时,SGD不太满⾜要求。
3、容易收敛到局部最优,有可能被困于鞍点三、Momentum积累之前的动量来替代梯度1)mt=µ∗mt−1+gt2)Δθt=−η∗mt其中,µ是动量因⼦梯度下降前期:使⽤上⼀次参数来更新,下降⽅向⼀致,乘上较⼤的µ能够进⾏很好的加速梯度下降后期,在局部最⼩值来回震荡的时候,gradient→0,µ使得更新幅度增⼤,跳出陷阱梯度⽅向改变时,µ能够减少更新结论:momentum项能够加速SGD,抑制振荡,从⽽加快收敛四、Adagrad对学习率进⾏了约束:nt=nt−1+gt2Δθt=−η/(√nt+ϵ)∗gt此处,对gt从11到tt进⾏⼀个递推形成⼀个约束项regularizer:−1/√(∑r=1t(gr)2+ϵ) ,ϵ⽤来保证分母⾮0特点:前期gt较⼩的时候, regularizer较⼤,能够放⼤梯度后期gt较⼤的时候,regularizer较⼩,能够约束梯度适合处理稀疏梯度缺点:由公式可以看出,仍依赖于⼈⼯设置⼀个全局学习率η设置过⼤的话,会使regularizer过于敏感,对梯度的调节太⼤中后期,分母上梯度平⽅的累加将会越来越⼤,使gradient→0,使得训练提前结束五、Adadelta对Adagrad的扩展,也是对学习率进⾏⾃适应约束,但对计算进⾏了简化。
BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究优化算法是神经网络中的关键技术之一,它可以帮助神经网络快速收敛,有效地优化模型参数。
目前,常用的优化算法包括梯度下降法、动量法、Adagrad、Adam等。
本文将比较这些优化算法的优缺点。
1. 梯度下降法(Gradient Descent)梯度下降法是最基本的优化算法。
它通过计算损失函数对参数的梯度,不断地朝着梯度的相反方向更新参数。
优点是实现简单,容易理解。
缺点是容易陷入局部最优,并且收敛速度较慢。
2. 动量法(Momentum)动量法在梯度下降法的基础上增加了动量项。
它通过累积之前的梯度信息,使得参数更新时具有一定的惯性,可以加快收敛速度。
优点是减少了陷入局部最优的可能性,并且对于存在波动的梯度能够平滑更新。
缺点是在平坦区域容易产生过大的动量,导致无法快速收敛。
3. AdagradAdagrad算法基于学习率的自适应调整。
它通过累积梯度平方的倒数来调整学习率,使得对于稀疏梯度的参数每次更新较大,对于频繁出现的梯度每次更新较小。
优点是适应性强,能够自动调整学习率。
缺点是由于学习率的不断减小,当训练时间较长时容易陷入局部最优。
4. AdamAdam算法结合了动量法和Adagrad算法的优点。
它维护了一种动态的学习率,通过计算梯度的一阶矩估计和二阶矩估计来自适应地调整学习率。
优点是适应性强,并且能够自适应学习率的大小和方向。
缺点是对于不同的问题,参数的敏感性差异较大。
在一些问题上可能不适用。
综上所述,每个优化算法都有自己的优点和缺点。
梯度下降法是最基本的算法,容易理解,但是收敛速度较慢。
动量法通过增加动量项加快了收敛速度,但是容易陷入局部最优。
Adagrad和Adam算法具有自适应性,能够自动调整学习率,但是在一些问题上可能效果不佳。
因此,在实际应用中应根据具体问题选择适合的优化算法或采取集成的方式来提高模型的性能。
最优化问题的算法迭代格式

最优化问题的算法迭代格式最优化问题的算法迭代格式最优化问题是指在一定的条件下,寻找使某个目标函数取得极值(最大值或最小值)的变量取值。
解决最优化问题的方法有很多种,其中较为常见的是迭代法。
本文将介绍几种常用的最优化问题迭代算法及其格式。
一、梯度下降法梯度下降法是一种基于负梯度方向进行搜索的迭代算法,它通过不断地沿着目标函数的负梯度方向进行搜索,逐步接近极值点。
该方法具有收敛速度快、易于实现等优点,在许多应用领域中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和学习率 $\alpha$,梯度下降算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 更新当前点 $x_k$ 为 $x_{k+1}=x_k-\alpha\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则返回第 1 步。
2. 算法特点- 沿着负梯度方向进行搜索,能够快速收敛;- 学习率的选择对算法效果有重要影响;- 可能会陷入局部极小值。
二、共轭梯度法共轭梯度法是一种基于线性方程组求解的迭代算法,它通过不断地搜索与当前搜索方向共轭的新搜索方向,并在该方向上进行一维搜索,逐步接近极值点。
该方法具有收敛速度快、内存占用少等优点,在大规模问题中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和初始搜索方向 $d_0$,共轭梯度算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则进行下一步;- 计算当前搜索方向 $d_k$;- 在当前搜索方向上进行一维搜索,得到最优步长 $\alpha_k$;- 更新当前点为 $x_{k+1}=x_k+\alpha_k d_k$;- 计算新的搜索方向 $d_{k+1}$;- 返回第 2 步。
2. 算法特点- 搜索方向与前面所有搜索方向都正交,能够快速收敛;- 需要存储和计算大量中间变量,内存占用较大;- 可以用于非线性问题的求解。
数学技术中常用的优化算法及使用技巧

数学技术中常用的优化算法及使用技巧在数学技术领域中,优化算法是一种重要的工具,它可以帮助我们在给定的条件下找到最优解。
无论是在工程、经济、医学还是其他领域,优化算法都扮演着重要的角色。
本文将介绍一些常用的优化算法及其使用技巧。
一、梯度下降法梯度下降法是一种常见的优化算法,它通过迭代的方式不断调整参数的值,以找到使目标函数最小化的最优解。
其基本思想是通过计算目标函数的梯度,沿着梯度的反方向进行参数的更新。
这样,我们可以逐步接近最优解。
在使用梯度下降法时,需要注意以下几点。
首先,选择合适的学习率。
学习率决定了每一步参数更新的大小,过大或过小的学习率都可能导致算法的收敛速度变慢或者无法收敛。
其次,需要设置合适的停止条件。
一般来说,可以通过设定目标函数的变化量小于某个阈值来判断算法是否停止。
最后,需要对输入数据进行预处理,以提高算法的性能。
二、遗传算法遗传算法是一种模拟自然进化过程的优化算法。
它通过模拟自然界中的遗传、变异和选择等过程,来搜索问题的最优解。
遗传算法的基本思想是通过不断迭代地生成和改进解的群体,逐步接近最优解。
在使用遗传算法时,需要注意以下几点。
首先,需要选择合适的编码方式。
编码方式决定了解的表示形式,不同的编码方式适用于不同类型的问题。
其次,需要设计合适的适应度函数。
适应度函数用于评估解的质量,它决定了解在进化过程中的生存和繁殖能力。
最后,需要设置合适的参数。
参数包括种群大小、交叉概率、变异概率等,它们会影响算法的性能。
三、模拟退火算法模拟退火算法是一种基于物理退火过程的优化算法。
它通过模拟固体物体在高温下冷却的过程,来搜索问题的最优解。
模拟退火算法的基本思想是通过接受一定概率的劣解,以避免陷入局部最优解。
在使用模拟退火算法时,需要注意以下几点。
首先,需要选择合适的初始温度和退火率。
初始温度决定了算法开始时接受劣解的概率,退火率决定了温度的下降速度。
其次,需要设计合适的能量函数。
能量函数用于评估解的质量,它决定了解在退火过程中的接受概率。
优化设计方法

优化设计方法引言在现代科技发展的趋势下,优化设计方法逐渐成为产品设计领域的关键技术。
优化设计方法旨在通过数学模型和计算机模拟,寻找最佳设计方案,提高产品性能和效率。
本文将介绍常见的优化设计方法及其应用领域,以及如何使用这些方法来提高产品设计效果。
1. 数学优化模型数学优化模型是优化设计方法的基础。
通过数学模型,我们可以描述设计问题,并将其转化为数学形式。
最常见的数学优化模型包括线性规划、非线性规划和多目标规划。
•线性规划:线性规划是一种将目标函数和约束条件均为线性关系的优化模型。
线性规划广泛应用于生产优化、资源分配等问题。
•非线性规划:非线性规划是一种目标函数或约束条件存在非线性关系的优化模型。
非线性规划常用于工程设计、经济决策等领域。
•多目标规划:多目标规划是一种存在多个目标函数的优化模型。
多目标规划可以同时考虑多个设计指标,并寻找它们之间的最佳平衡。
数学优化模型为优化设计方法提供了理论基础和计算手段。
2. 优化算法优化算法是实现优化设计方法的关键。
根据问题的特点和数学模型的复杂程度,可以选择不同的优化算法。
•梯度下降法:梯度下降法是一种迭代算法,通过不断调整设计参数,使目标函数逐渐趋近最小值。
梯度下降法适用于凸优化和连续设计空间。
•遗传算法:遗传算法是通过模拟自然进化过程,通过不断迭代和交叉变异,使设计方案不断进化和优化的一种算法。
遗传算法适用于复杂的非线性优化问题。
•蚁群算法:蚁群算法模拟蚂蚁觅食过程,通过信息素的传递和蚂蚁的合作,在设计空间中寻找最佳解。
蚁群算法适用于组合优化和离散设计空间。
不同的优化算法适用于不同的问题类型,选择适合的优化算法可以提高设计效率和优化结果的准确性。
3. 优化设计应用领域优化设计方法在各个领域都有广泛的应用,以下列举几个常见的应用领域:3.1. 工程设计在工程领域,优化设计方法可以帮助工程师寻找最佳的设计方案,提高工程系统的性能和效率。
例如,优化设计方法在结构设计中可以减小结构重量,提高结构的稳定性和耐久性。
各类梯度优化算法的原理

各类梯度优化算法的原理梯度优化算法是求解优化问题中的一类重要算法。
该类算法的目标是通过迭代的方式逐步优化模型的参数,使得模型在训练数据上的损失函数最小化。
常见的梯度优化算法包括梯度下降法、随机梯度下降法、动量法、Nesterov加速梯度法、Adagrad、RMSprop、Adam等。
下面将分别对这些算法的原理进行详细介绍。
梯度下降法是最基本的优化算法之一。
它通过每次迭代更新参数的方式,使得模型在训练数据上的损失函数值逐渐减小。
具体来说,对于每个参数θ,梯度下降法的更新公式如下:θ= θ- α* ∇(Loss(θ))其中∇(Loss(θ))表示损失函数Loss(θ)关于参数θ的梯度,α表示学习率,控制每次迭代更新的步长。
梯度下降法的核心思想是,沿着损失函数的梯度方向更新参数,使得损失函数值逐渐减小。
随机梯度下降法(Stochastic Gradient Descent, SGD)是梯度下降法的一种改进方法。
与梯度下降法每次迭代都要计算所有样本的梯度不同,随机梯度下降法每次迭代只计算一个样本的梯度。
具体来说,对于每个参数θ,随机梯度下降法的更新公式如下:θ= θ- α* ∇(Loss(θ;x_i,y_i))其中(x_i,y_i)表示训练样本,Loss(θ;x_i,y_i)表示损失函数关于样本(x_i,y_i)的值。
相比于梯度下降法,随机梯度下降法的计算开销更小,但是更新方向可能会产生较大的抖动。
动量法(Momentum)是一种基于动量更新参数的优化算法。
它的核心思想是,每次迭代时将当前的更新方向与历史的更新方向进行加权平均,从而增加参数更新的冲力。
具体来说,对于每个参数θ,动量法的更新公式如下:v = β* v - α* ∇(Loss(θ))θ= θ+ v其中v表示历史的更新方向,β表示动量因子,控制历史更新方向的权重。
动量法的好处是可以加快参数更新的速度,并且减小更新方向的抖动,从而更容易逃离局部最优点。
机器学习概念之梯度下降算法(全量梯度下降算法、随机梯度下降算法、批量梯度下降算法)

机器学习概念之梯度下降算法(全量梯度下降算法、随机梯度下降算法、批量梯度下降算法) 不多说,直接上⼲货!回归与梯度下降 回归在数学上来说是给定⼀个点集,能够⽤⼀条曲线去拟合之,如果这个曲线是⼀条直线,那就被称为线性回归,如果曲线是⼀条⼆次曲线,就被称为⼆次回归,回归还有很多的变种,如本地加权回归、逻辑回归,等等。
⽤⼀个很简单的例⼦来说明回归,这个例⼦来⾃很多的地⽅,也在很多的开源软件中看到,⽐如说weka。
⼤概就是,做⼀个房屋价值的评估系统,⼀个房屋的价值来⾃很多地⽅,⽐如说⾯积、房间的数量(⼏室⼏厅)、地段、朝向等等,这些影响房屋价值的变量被称为特征(feature),feature在机器学习中是⼀个很重要的概念,有很多的论⽂专门探讨这个东西。
在此处,为了简单,假设我们的房屋就是⼀个变量影响的,就是房屋的⾯积。
假设有⼀个房屋销售的数据如下: ⾯积(m^2) 销售价钱(万元) 123 250 150 320 87 160 102 220 … … 这个表类似于帝都5环左右的房屋价钱,我们可以做出⼀个图,x轴是房屋的⾯积。
y轴是房屋的售价,如下: 如果来了⼀个新的⾯积,假设在销售价钱的记录中没有的,我们怎么办呢? 我们可以⽤⼀条曲线去尽量准的拟合这些数据,然后如果有新的输⼊过来,我们可以在将曲线上这个点对应的值返回。
如果⽤⼀条直线去拟合,可能是下⾯的样⼦: 绿⾊的点就是我们想要预测的点。
⾸先给出⼀些概念和常⽤的符号,在不同的机器学习书籍中可能有⼀定的差别。
房屋销售记录表 - 训练集(training set)或者训练数据(training data), 是我们流程中的输⼊数据,⼀般称为x 房屋销售价钱 - 输出数据,⼀般称为y 拟合的函数(或者称为假设或者模型),⼀般写做 y = h(x) 训练数据的条⽬数(#training set), ⼀条训练数据是由⼀对输⼊数据和输出数据组成的 输⼊数据的维度(特征的个数,#features),n 下⾯是⼀个典型的机器学习的过程,⾸先给出⼀个输⼊数据,我们的算法会通过⼀系列的过程得到⼀个估计的函数,这个函数有能⼒对没有见过的新数据给出⼀个新的估计,也被称为构建⼀个模型。