人教版高中高二文科数学选修1-2测试题教学教材
人教版高中数学文科选修1-2同步练习题、期中、期末复习资料、补习资料:47复数的概念与运算(文)

复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念 1.虚数单位数叫做虚数单位,它的平方等于,即。
要点诠释:①是-1的一个平方根,即方程的一个根,方程的另一个根是;②可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如()的数叫复数,记作:();其中:叫复数的实部,叫复数的虚部,是虚数单位。
全体复数所成的集合叫做复数集,用字母 表示。
要点诠释:复数定义中,容易忽视,但却是列方程求复数的重要依据. 3.复数的分类对于复数()若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:i i 1-21i =-i 21x =-21x =-i -i a bi +,a b R ∈z a bi =+,a b R ∈a b i C ,a b R ∈z a bi =+,a b R ∈4.复数集与其它数集之间的关系(其中为自然数集,为整数集,为有理数集,为实数集,为复数集。
)知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:. 要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”. 知识点三、复数的加减运算 1.复数的加法、减法运算法则:设,(),我们规定:要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
2017-2018学年高二数学人教A版选修1-2教师用书: 模块

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i为虚数单位,则复数(1+i)2=( )A.0 B.2C.2i D.2+2i【解析】(1+i)2=1+2i+i2=2i.【答案】 C2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:81092070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3【解析】a +i 2-i=2a -1+a +5,由题意知2a -1=a +2,解得a =3.【答案】 C7.在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.执行如图1所示的程序框图,若输出的n=7,则输入的整数K的最大值是( )图1A.18 B.50C.78 D.306【解析】第一次循环S=2,n=2,第二次循环S=6,n=3,第三次循环S=2,n=4,第四次循环S=18,n=5,第五次循环S=14,n=6,第六次循环S=78,n=7,需满足S≥K,此时输出n=7,所以18<K≤78,所以整数K的最大值为78.【答案】 C10.已知a1=3,a2=6,且a n+2=a n+1-a n,则a33为( )A.3 B.-3C.6 D.-6【解析】a1=3,a2=6,a3=a2-a1=3,a4=a3-a2=-3,a5=a4-a3=-6,a6=a5-a4=-3,a7=a6-a5=3,a8=a7-a6=6,…,观察可知{a n}是周期为6的周期数列,故a33=a3=3.【答案】 A11.下列推理合理的是( )A.f(x)是增函数,则f′(x)>0B.因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)C.α,β是锐角△ABC的两个内角,则sin α>cos βD.A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形【解析】A不正确,若f(x)是增函数,则f′(x)≥0;B不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:81092071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)过________.附表:k =-230×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025. 【答案】 0.02515.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .则四维空间中“超球”的四维测度W =2πr 4,猜想其三维测度V =________.【解析】 由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V =W ′=(2πr 4)′=8πr 3.【答案】 8πr 316.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)设z =-++2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得k =-230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:81092072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y -b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)当x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
2021-2022学年人教版高中数学选修1-2教材用书;模块综合检测(二) Word版含答案

模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3i C .1+3iD .1-3i解析:选D ∵z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,∴=1-3i.2.以下说法,正确的个数为( )①公安人员由罪犯的脚印的尺寸估量罪犯的身高状况,所运用的是类比推理. ②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推想出球的某些性质,这是运用的类比推理.④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理. A .0 B .2 C .3 D .4解析:选C ①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推想出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观看下图中图形的规律,在其右下角的空格内画上合适的图形为( )解析:选A 表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应当是阴影矩形.4.三段论:“①全部的中国人都坚强不屈;②雅安人是中国人;③雅安人肯定坚强不屈”,其中“大前提”和“小前提”分别是( )A .①②B .①③C .②③D .②①解析:选A 解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①全部的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人肯定坚强不屈).故选A.5.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( ) A .肯定是异面直线 B .肯定是相交直线 C .不行能是平行直线 D .不行能是相交直线解析:选C 假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面冲突,故c 与b 不行能是平行直线.故应选C.6.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出:“a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出:“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出:“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出:“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B ①②正确,③④错误,由于③④中虚数不能比较大小. 7.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .36解析:选C 执行程序:k =2,s =0;s =2,k =3;s =5,k =5;s =10,k =9;s =19,k =17,此时不满足条件k <10,终止循环,输出结果为s =19.选C.8.p =ab +cd ,q =ma +nc ·b m +dn (m ,n ,a ,b ,c ,d 均为正数),则p ,q 的大小为( ) A .p ≥q B .p ≤q C .p >q D .不确定解析:选B q =ab +mad n +nbc m+cd ≥ab +2abcd +cd =ab +cd =p .9.下图所示的是“概率”学问的( )A .流程图B .结构图C .程序框图D .直方图解析:选B 这是关于“概率”学问的结构图.10.为了解某班同学宠爱打篮球是否与性别有关,对该班50名同学进行了问卷调查,得到如下的2×2列联表:宠爱打篮球不宠爱打篮球总计 男生 20 5 25 女生 10 15 25 总计302050那么在犯错误的概率不超过________的前提下,认为“宠爱打篮球与性别有关”.( ) 附参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )P (K 2>k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.78910.828A.0.05 B .0.010 C .0.005D .0.001解析:选C 由2×2列联表可得,K 2的估量值k =50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“宠爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a =3+22,b =2+7,则a ,b 的大小关系为________________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,明显,6<7.∴a <b .答案:a <b 12.复数z =i1+i(其中i 为虚数单位)的虚部是________. 解析:化简得z =i 1+i =i (1-i )(1+i )(1-i )=12+12i ,则虚部为12.答案:1213.依据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是________(填序号).①a n =2n ②a n =2(n -1) ③a n =2n ④a n =2n -1解析:由程序框图可知:a 1=2×1=2,a 2=2×2=4,a 3=2×4=8,a 4=2×8=16,归纳可得:a n =2n . 答案:③14.(福建高考)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0 有且只有一个正确,则100a +10b +c 等于________.解析:可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1与集合元素的互异性相冲突,所以只有①正确是不行能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相冲突,所以只有②正确是不行能的; (3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201. 答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某高校远程训练学院网上学习流程如下:(1)同学凭录用通知书到当地远程训练中心报到,交费注册,领取网上学习注册码.(2)网上选课,课程学习,完成网上平常作业,获得平常作业成果.(3)预约考试,参与期末考试获得期末考试成果,获得综合成果,成果合格获得学分,否则重修.试画出该远程训练学院网上学习流程图.解:某高校远程训练学院网上学习流程如下:17.(本小题满分12分)某同学对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)依据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计50岁以下50岁以上总计(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下:=30×(8-128)212×18×20×10=(2)由于K2的观测值k10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”.18.(本小题满分14分)为了探究同学选报文、理科是否与对外语的爱好有关,某同学调查了361名高二在校同学,调查结果如下:理科对外语有爱好的有138人,无爱好的有98人,文科对外语有爱好的有73人,无爱好的有52人.试分析同学选报文、理科与对外语的爱好是否有关?解:依据题目所给的数据得到如下列联表:理科文科总计有爱好13873211无爱好9852150总计2361253612k=361×(138×52-73×98)2236×125×211×150≈1.871×10-4.由于1.871×10-4<2.706,所以据目前的数据不能认为同学选报文、理科与对外语的爱好有关,即可以认为同学选报文、理科与对外语的爱好无关.主食蔬菜主食肉类总计50岁以下481250岁以上16218总计201030。
人教A版选修一高二数学文科选修1-2模块训练题.docx

高中数学学习材料唐玲出品高二数学文科选修1-2模块训练题一、选择题(每题4分)1、在回归直线方程表示回归系数中b bx a y,ˆ+=( ) A .当0x =时,y 的平均值 B.当x 变动一个单位时,y 的实际变动量C .当y 变动一个单位时,x 的平均变动量 D.当x 变动一个单位时,y 的平均变动量 2、复数534i--的共轭复数是( )A .34-iB .3455i -+ C .34+iD .3455i -- 3.经过对2K 的统计量的研究,得到了若干个临界值,当23.841K >时,我们( )A .有95%的把握认为A 与B 有关 B .有99%的把握认为A 与B 有关C .没有充分理由说明事件A 与B 有关系D .有97.5%的把握认为A 与B 有关4、下列说法正确的个数是( )①若()()213x i y y i -+=--,其中,,I x R y C R I ∈∈为复数集。
则必有()2113x yy -=⎧⎪⎨=--⎪⎩ ②21i i +>+ ③虚轴上的点表示的数都是纯虚数 ④若一个数是实数,则其虚部不存在A .0B . 1C .2D .35.在一次实验中,测得(),x y 的四组值分别是()1,2A ,()2,3B ,()3,4C ,()4,5D ,则y 与x 之间的回归直线方程为( )A .1y x =+B .2y x =+C .21y x =+D .1y x =-6、根据右边程序框图,当输入10时,输出的是( ) A .12 B .19 C .14.1 D .-307、若z C ∈且221z i +-=,则12z i --的最小值是: A 2B 3C 4D 58、在复平面内,复数2(13)1ii i+++对应的点位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限9. 给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集) ①“若a,b ∈R,则0a b a b -=⇒=”类比推出“a,b ∈C,则0a b a b ->⇒=”②“若a,b,c,d ∈R ,则复数,a bi c di a c b d +=+⇒==”类比推出“若,,,a b c d Q ∈,则2=2,a b c d a c b d ++⇐==”;③若“a,b ∈R,则0a b a b -=⇒>”类比推出“a,b ∈C,则0a b a b -=⇒>” 其中类比结论正确的个数 ( ) A .0 B .1 C .2 D .310、把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为( )二、填空题(每题4分)11、221(1)(4),.z m m m m i m R =++++-∈232.z i =-则1m =是12z z =的_____________条件 12、已知111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算: 35(2),(4)2,(8),22f f f =>> (16)3,f >7(32)2f >,推测当2n ≥时,有__________________________. 13、由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据 “三段论”推理出一个结论,则这个结论是 。
新课标高二数学文期末(选修1-2)

;解析:当
x≠1
时,∵
,
两边都是关于 x 的函数,求导得 ( x x 2 x 3
即
nx)'
x
n1 xx
'
. 1
13. Ax By Cz D 0,(A 2 B 2 C 2 0) ;
14.
2 ,1 ; 2
三、
15.解:命题
号填在题后的括号内(每小题 5 分,共 50 分)。
1.已知函数 f (x) ln(x 2 1)则 ( ) 是
x
fx
A.奇函数
B.偶函数
C.非奇非偶函数
() D.既是奇函数也是偶函
数
2.设 x , y R ,则 xy 0 是| x y || x | | y | 成立的
第三步在 AP 上取了 5 个点 A1、A2、A3、A4、A5,事实上第三步可以简化,利用尺
规只需确定分点如下即可:A1、A2、A4、A5。
如果要确定 100 等分点,在射线 AP 上至少需要作的点的个数是
()
A.100
B.50
C.10
D.9
x2 8.设 F1、F2 为双曲线 4 -y2=1 的两焦点,
知
识本身一般不会很烦琐。解题思路应用到数列的知识,对线段的长度进行组合即可。
8.A;
9.C;
10.C;解析:考虑两复数对应的点在复平面内的位置,解题可应用向量内积为零求得结果。
且两个复数对应的点到原点的距离相等,可得结果。
二、
11. 7i ;
12. 1
(n
1)x n (1 x)
2
nxn1
高二数学(文)新课标版选修1-2综合测试题Word版含解析

选修1-2综合测试题一、选择题1.下列有关线性回归的说法,不正确的是( ) A .相关关系的两个变量不一定是因果关系 B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程2.设i 是虚数单位,z 是z 的共轭复数,若i z +=1,则=⋅+z i iz( ) A. 2- B. 2 C.i 2 D.i 2- 3.已知数组()11,x y ,()22,x y ,⋅⋅⋅,()1010,x y 满足线性回归方程ˆybx a =+,则“()00,x y 满足线性回归方程y bx a =+”是“1210010x x x x ++⋅⋅⋅+=,1210010y y y y ++⋅⋅⋅+=”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.某产品的广告费用x 与销售额y 的统计数据如下表:由上表求得回归方程9.49.1y x ∧=+,当广告费用为3万元时销售额为( ) A .39万元 B .38万元 C .38.5万元 D .37.3万元 5.已知i 为虚数单位,复数z 满足()1z i i +=,复数z 所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法正确的有( )个①在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好. ②在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好. ③在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越大,模型的拟合效果越好.④在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适,带状区域的宽度越窄,说明模型的拟合精度越高. A .1 B .2 C .3 D .47.用反证法证明命题“三角形三个内角至少有一个不大于060”时,应假设( ) A .三个内角都不大于060 B .三个内角都大于060 C .三个内角至多有一个大于060 D .三个内角至多有两个大于0608.如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )9.自然数按照下表的规律排列,则上起第2013行,左起第2014列的数为( )A.320142013+⨯B.220142013+⨯C.120142013+⨯D.20142013⨯10.观察下列各式:5675=3125,5=15625,5=78125,,则20135的末四位数为( )A .3125B .5624C .0625D .8125 二、填空题11.在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z =-+,则12z z =____.12.已知,x y 的取值如下表:从所得散点图分析,y 与x 线性相关,且^^0.95y x a =+,则^a = . 13.观察下列各式:213122+< 221151233++< 222111712344+++< ……照此规律,当n N *Î时,则()2221111231n ++++<+ .14.同住一间寝室的四名女生,她们当中有一人在修指甲,一人在看书,一人在梳头发,另一人在听音乐。
人教A版高中数学选修系列1-2模块考试测试题二(数学文科).docx

选修系列1-2模块考试测试题二(数学 文科)参考数据:)(02k K P ≥0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.4550.708 1.323 2.072 2.706 3.841 5.024 6.635 7.87910.828一、选择题1.复数)1(i i -=( )i D i C i B i A +---+-11112.下列关于残差图的描述错误的是()合精度越高宽度越宽,说明图形拟残差点分布的带状区域合精度越高宽度越窄,说明图形拟残差点分布的带状区域残差图的纵坐标为残差编号残差图的横坐标为样本D C B A 3.用来刻画系统结构的框图是( )程序图工序流程图结构图流程图D C B A4.现有如下错误推理:“复数是实数,i 是复数,所以i 是实数”。
其错误的原因是推理形式错误使用了“三段论”,但大前提错误使用了“三段论”,但使用了类比推理使用了归纳推理D C B A 5.已知两个分类变量Y X 和,它们的取值分别为{}21,x x 和{}21,y y ,在下列各等高条形图中,表示Y X 和之间关系最强的是( )1x 2x6.在一次调查中,测得两个变量y x 和的五组值分别是)3,4(),4,3(),2,2(),2,1(D C B A , )4,5(E ,则其线性回归方程a x b yˆˆˆ+=必过点( ) )3,4()4,3()3,3()3,2(D C B A7.已知O 是复平面的原点,如果向量OA 和OB 对应的复数分别是i i +-2和21,那么向量AB 对应的复数是( )i D iC i B i A 3333131----+8.在某次关于吸烟与患肺癌的调查中随机变量2K 的观测值635.6 k ,则下列说法正确的是( )患肺癌”无关系的前提下认为“吸烟与01.0在犯错概率不超过患肺癌”有关系的前提下认为“吸烟与01.0在犯错概率不超过01.0可能性是一个吸烟的人患肺癌的个人患肺癌1必有个长期吸烟的人群中,100在D C B A9.已知ma mb a b m b a ++与则,0,0,若,1312109,9775,6554 的大小关系是( )不确定D m a m b a b C ma mb a b Bm a m b a b A ++++=++10.阅读程序框图,则输出的=S ( )55302014D C B A11.已知111C B A ∆的三个内角的余弦值分别等于222C B A ∆的三 个内角的正弦值,那么下列结论正确的是( )是钝角三角形是锐角三角形,是锐角三角形是钝角三角形,是钝角三角形是锐角三角形,是锐角三角形是锐角三角形,222111222111222111222111C B A C B A D C B A C B A C C B A C B A B C B A C B A A ∆∆∆∆∆∆∆∆12.已知c b a ,,是ABC ∆的三边长,r 是其内接圆半径,S 是ABC ∆的面积,可以证明)(21c b a r S ++=。
高二文科数学选修1-2测试题(含答案)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改高二文科数学选修1-2测试题班别:____姓名:___考号:___得分____一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 (D)A.①②③B.①②C.②③D.①③④2.对相关系数r,下列说法正确的是 (D)A.||r越大,线性相关程度越大 B.||r越小,线性相关程度越大C.||r越大,线性相关程度越小,||r越接近0,线性相关程度越大r≤且||r越接近1,线性相关程度越大,||r越接近0,线性相关程度越小D.||13.在独立性检验中,统计量2K>3.841时有95%的K有两个临界值:3.841和6.635;当2把握说明两个事件有关,当2K>6.635时,有99%的把握说明两个事件有关,当2K≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K=20.87,根据这一数据分析,认为打鼾与患心脏病之间 (C)A.有95%的把握认为两者有关 B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病4.下列表述正确的是(D)①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
A.①②③;B.②③④;C.②④⑤;D.①③⑤。
z=-,则z在复平面内对应的点位于(D)5.若复数3iA.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…),则在第n个图形中共有( B)个顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(文)选修1-2测试题(60分钟)
满分:100分 考试时间:2018年3月
姓名: 班级: 得分:
附:1.22
(),()()()()
n ad bc K n a b c d a b a c b c b d -=
=+++++++ 2.“X 与Y 有关系”的可信程度表:
P (K 2≥k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
一、 单项选择题(每题4分,共40分。
每题只有一个选项正确,将答案填在下表中)
1、下列说法不正确的是( )
A .程序图通常有一个“起点”,一个“终点”
B .程序框图是流程图的一种
C .结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成
D .流程图与结构图是解决同一个问题的两种不同的方法 2. 给出下列关系:其中具有相关关系的是( ) ①考试号与考生考试成绩; ②勤能补拙; ③水稻产量与气候; ④正方形的边长与正方形的面积。
A .①②③ B .①③④ C .②③ D .①③ 3、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n 个图案中的白色地面砖有( ). A .4n -2块 B .4n +2块 C .3n +3块
D .3n -3块
4、如图是一商场某一个时间制订销售计划时的局部结构图,则直
接影响“计划” 要素有( )
A .1个
B .2个
C .3个
D .4个 5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度;
B. 假设三内角都大于60度;
C. 假设三内角至多有一个大于60度;
D. 假设三内角至多有两个大于60度。
6、在复平面内,复数
103i
i
+的共轭复数应对应点的坐标为( ) A . (1,3) B .(1,-3) C .(-1,3) D .(3 ,-1)
7、已知两个分类变量X 和Y ,由他们的观测数据计算得到K 2的观测值范围是3.841<k<6.635,根据K 2的
临界值表,则以下判断正确的是( )
A .在犯错误概率不超过0.05的前提下,认为变量X 与Y 有关系
B. 在犯错误概率不超过0.05的前提下,认为变量X 与Y 没有关系
C.在犯错误概率不超过0.01的前提下,认为变量X 与Y 有关系
D. 在犯错误概率不超过0.01的前提下,认为变量X 与Y 没有关系
8、已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n ∈N ,可归纳猜想出n S 的表达式为 ( )
A .
21
n n + B .311n n -+ C .21
2n n ++
D .
22
n
n + 9、z 为纯虚数,且|z-1|=|-1+i|,则z=( )
A.i
B. -i
C. ± i
D.±2i 10、求135101S =++++L 的流程图程序如右图所示,其中①应为 ( )
A .101?A =
B .101?A ≤
C .101?A >
D .101?A ≥
二、填空题:(每小题4分,共16分)
11、对于一组数据的两个线性模型,其R 2分别为0.85和0.25,若从
中选取一个拟合效果好的函数模型,应选 (选填“前者” 或“后者”) 12、2006
)11(
i
i -+=___________ 13、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12
S r a b c =++();利用类比思想:若四
面体内切球半径为R ,四个面的面积为124S S S 3,,S ,;则四面体的体积V= 14、 把“函数y=2x+5的图像是一条直线”改写成三段论形式:
题号 1 2 3 4 5 6 7 8 9 10 答案
ˆˆˆ∑∑∑∑n
n
i
i i i
i=1
i=1
n
n
2
2
2i
i
i=1
i=1
(x
-x)(y -y)
x -nxy
b
==
,
(x
-x)x
-nx
a
=y -bx y
开始 ①
是 否 S =0 A =1
S =S +A A =A +2
输出x 结束
三、解答题:(共44分)
15.证明题(每小题6分共12分): (1
>
(2)若0a >,0b >,求证:()11
()4a b a b
++≥
16、(10分)据不完全统计,某厂的生产原料耗费x (单位:百万元)与销售额y (单位:百万元)如下:
变量X ,Y 为线性相关关系,(1)求线性回归方程必过的点; (2)求线性回归方程, 6.5y bx a b ∧
=+=; (3)若实际销售额要求不少于54百万元,则原材料耗费至少要多少百万元
17、(10分)实数m 取什么值时,复数i m m m z )2(12
2--+-=是 (1)纯虚数;(2)对应的点在直线y=2x-2上
18、(12
(1)请将上述的列联表的空缺处完成;
(2) 请你根据所给数据判断能否有85%的把握认为在恶劣气候下航行,女人比男人更容易晕船?。