Fractal fits to Riemann zeros
与连续函数等价的z—积分的riemann型定义

与连续函数等价的z—积分的riemann型定义
与连续函数等价的z—积分的riemann型定义如下:
Riemann积分是一个重要的概念,用于测量函数关于给定区间上的变动。
与Riemann积分等价的连续函数是以函数上的每一点为基础,分析函数变动以计算某一区间内总和。
Z-积分概念类似,它是区间上函数的累加,区间上的单元累加,取得最终结果。
Riemann积分通过将函数划分为等长的F(x)的子段来定义。
每个x的点被称为定点,它表示函数在这一点的值。
子段的长度被称为步长,步长可以任意选择。
子段的累加会计算出一个积分值。
Riemann积分的定义是依赖于F(x)在区间上的变化,因此它用来计算函数在某一区间上的变动,而不一定是等长的子段。
Z-积分的定义和Riemann积分的定义类似。
与Riemann积分一样,Z-积分也是将函数按x轴划分为小段,计算它在每一点的值,但它不需要按等长的小段来定义。
Z-积分的定义是:将函数按x轴划分为区间,对各点分别计算其函数值,所有区间段上值的累加,即为函数的Z-积分。
在此定义中,每个区间可以是任意定义的,计算结果可以用来代表函数关于给定区间上的变动。
总之,Riemann积分与Z-积分同为实现函数上变动综合值的方式,二者均围绕着对函数变化累加以确定总和进行定义。
Riemann积分以函数上的每一点为基础,将函数划分为等长的子段,在子段的累加来计算出一个积分值;而Z-积分则是将函数按x轴划分为任意段来定义,将函数按段累加以取得总和。
riemannzeta函数 模形式

riemannzeta函数和模形式是数学领域中重要的概念,它们在数论、解析数论、自守形式等领域有着重要的作用。
本文将从理论和应用两个方面来介绍riemannzeta函数和模形式的基本概念、性质和相关的研究成果。
一、riemannzeta函数riemannzeta函数是数论中的重要函数,它被定义为复平面上的解析函数,其表达式为:\[ \zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^s} \]其中s是复数变量。
riemannzeta函数最初由黎曼在研究素数分布时引入,并在分析数论中占据着至关重要的地位。
riemannzeta函数具有许多重要的性质,比如在复平面上的解析性、黎曼函数方程等。
1.1 riemannzeta函数的解析性riemannzeta函数在复平面上的解析性是指它在定义域内是解析的,即对于复平面上的任意一点s,riemannzeta函数都有定义且在该点处有导数。
这一性质使得riemannzeta函数在复变函数论中占据着重要地位,也为研究riemannzeta函数的性质奠定了基础。
1.2 黎曼函数方程riemannzeta函数满足着著名的黎曼函数方程,即对于所有的s∈C\{1},都有:\[ \zeta(s) = 2^s\pi^{s-1}\sin(\frac{\pi s}{2})\Gamma(1-s)\zeta(1-s) \]这一函数方程表明了riemannzeta函数在复平面上的对称性,为研究riemannzeta函数的性质提供了极大的便利。
1.3 riemannzeta函数在数论中的应用riemannzeta函数在数论中有着许多重要的应用,其中最著名的莫过于黎曼假设。
黎曼假设是指所有非平凡的riemannzeta函数零点的实部都是1/2。
该假设在数论领域和素数分布领域有着深远的意义,然而至今尚未得到严格的证明。
二、模形式模形式是复变函数论中的一个重要概念,它起源于数论领域,随后发展成为一个独立的研究方向。
Einstein张量在二维广义Riemann空间中为零的论证及其在高维情形中的一些探讨

定 义 2 定 义 g =e e , =e e , 中 e : ・ g ・ 其 。为协 变 基
底 矢 量 , 为 逆 变 基 底 矢 量 . e
, : g g, g 一 ). ; ÷ (j g k
5 伴 随 矩 阵 定 理 . 若矩阵 A = , A A I则
下 面再 给 出另 一 个 更 有 助 于 证 明的 定 义 :
证 明 在二 维 平 面 上 建 立 直 角 坐 标 系 , 元 表 达 式 为 线
定义2c ;= : a
一
,
+厂
—r
所 定 义 的 四
阶混 合 张量 成 为 Rima n—Chitf l 量. e n r oe张 s
四 、 定 理 的 证 明 主
2 .广 义 R e n i ma n空 间 定 义 : 流 型 M 上 给 定 度 规 场 g 则 ( , ) 做 广 义 黎 设 , M g a n曲率 张 量 . i n m 关 于这 一 概 念 , 们 依 然 给 出 两 个 从 不 同方 向 出 发 的 我
定义: = = t , R ; g R R 是由 Rp q t 缩并而来的唯一 . q
的 一 个 二 阶 张 量 , 为 Ric 张 量 . 称 ci
6 .标 量 曲 率 定 义 : gp … R称 为 标 量 曲率 . R= " R
7 En ti 量 . is n张 e 定义 : G“=R“一g l 或 G =R。 k 尺( 一 R 。) G 或 G g , “( )
称 为 E n ti isen张 量 .
式 后 仍 能 推 出 满 足 物 理 规 律 的 结 论 , 可 克 服 上 述 困 难. 便
E nti 到 了 这 一 张 量 , 著 名 的 En t n张 量 G 定 义 i e s n找 即 is i e
超格中的理想(英文)

超格中的理想(英文)
赵彬;韩胜伟
【期刊名称】《模糊系统与数学》
【年(卷),期】2008(22)4
【摘要】在超格中引入了超序的概念,得到了超序的若干特征定理。
借助于超序的概念,给出了超格中的理想的定义,研究了超格中的理想的一系列性质。
【总页数】8页(P44-51)
【关键词】超格;超序;理想
【作者】赵彬;韩胜伟
【作者单位】陕西师范大学数学与信息科学学院
【正文语种】中文
【中图分类】O153
【相关文献】
1.Ni/W金属超晶格中的反常阻温特性(英文) [J], 潘风明;焦正宽
2.双带紧束缚模型中噪声对超晶格中电子输运性质的影响(英文) [J], 邵建立;段素青;赵宪庚
3.无周期光学超晶格中误差函数研究(英文) [J], 张丽娟;赵丽明
4.纤锌矿GaN和AIN声子态的面间力常数模型在六角GaN/AIN超晶格中的应用(英文) [J], 王灵俊;韦广红;张淳;万钧;乔峰
5.直流和太拉赫兹交流驱动的半导体超晶格中的相干现象(英文) [J], 刘仁保;朱邦芬
因版权原因,仅展示原文概要,查看原文内容请购买。
数学专业英语(修订版2)

slice fundamental
k• ±Ï ëþz Ïf C ©) og 4• Ö ©ª Ø Œ
a —8 ½n p
d òÿ ¦ > 5‰z ˜¡ Ä
notation identity sphere lemma
Rd
and it is well defined for a.e. x.
obviously f (x−y)g(y)dy = f (x)g(x−y)dy and if f and g are measurable(integrable), then f ∗ g is also measurable(integrable), and ||f ∗ g|| ≤ ||f || · ||g||.
dust sequence characteristic compact completion hypothesis convex counting rectifiable difference mapping rational preserving
metric series jump positive smooth gradient
as x → ∞. (1) There exists a positive continuous function f on R so that f is integrable
∞ j=1
m(Ej
).
6.Countable intersections of open sets which are called Gδ sets, consider their com-
plements, the countable union of closed sets called the Fδ sets. A subset E of Rd is measurable: (1)if and only if E differs from a Gδ by a set of
解析数论是使用数学分析作为工具来解决数论问题的分支

解析数论是使用数学分析作为工具来解决数论问题的分支。
微积分和复变函数论发展以后,产生了解析数论。
该学科的第一个主要成就是狄利克雷用解析方法证明了Dirichlet's theorem on arithmetic progressions。
依靠黎曼zeta函数对素数定理的证明是另一个里程碑。
解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。
中国的华罗庚、王元、陈景润等人在“哥德巴赫猜想”、“华林问题”等解析数论问题上取得世界公认的成就。
黎曼ζ函数Riemann zeta functionIn mathematics, the Riemann zeta function, named after German mathematician Bernhard Riemann, is a function of great significance in number theory because of its relation to the distribution of prime numbers. It also has applications in other areas such as physics, probability theory, and applied statistics. The Riemann hypothesis, a conjecture about the distribution of the zeros of the Riemann zeta function, is considered by many mathematicians to be the most important unsolved problem in pure mathematics.[1]DefinitionThe Riemann zeta-function ζ(s) is the function of a complex variable s initially defined by the following infinite series:As a Dirichlet series with bounded coefficient sequence this series converges absolutely to an analytic function on the open half-plane of s such that Re(s) > 1 and diverges on the open half-plane of s such that Re(s) < 1. The function defined by the series on the half-plane of convergence can however be continued analytically to all complex s≠ 1. For s= 1 the series is formally identical to the harmonic series which diverges to infinity. As a result, the zeta function becomes a meromorphic function of the complex variable s, which is holomorphic in the region {s∈ C : s≠1} of the complex plane and has a simple pole at s= 1 with residue 1.Specific valuesThe values of the zeta function obtained from integral arguments are called zeta constants. The following are the most commonly used values of the Riemann zeta function.this is the harmonic series.this is employed in calculating the critical temperature for a Bose–Einstein condensate in physics, and for spin-wave physics in magnetic systems.the demonstration of this equality is known as the Basel problem. The reciprocal of this sum answers the question: What is the probability that two numbers selected at random are relatively prime? [2]this is called Apéry's constant.Stefan–Boltzmann law and Wien approximation in physics.Euler product formulaThe connection between the zeta function and prime numbers was discovered by Leonhard Euler, who proved the identitywhere, by definition, the left hand side is ζ(s) and the infinite product on the right hand side extends over all prime numbers p (such expressions are called Euler products):Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s= 1, diverges, Euler's formula implies that there are infinitely many primes. For s an integer number, the Euler product formula can be used to calculate the probability that s randomly selected integers are relatively prime. It turns out that this probability is indeed 1/ζ(s). The functional equationThe Riemann zeta function satisfies the functional equationvalid for all complex numbers s, which relates its values at points s and 1 −s. Here, Γ denotes the gamma function. This functional equation was established by Riemann in his 1859 paper On the Number of Primes Less Than a Given Magnitude and used to construct the analytic continuation in the first place. An equivalent relationship was conjectured by Euler in 1749 for the functionAccording to André Weil, Riemann seems to have been very familiar with Euler's work on the subject.[3]The functional equation given by Riemann has to be interpreted analytically if any factors in the equation have a zero or pole. For instance, when s is 2, the right side has a simple zero in the sine factor and a simple pole in the Gamma factor, which cancel out and leave a nonzero finite value. Similarly, when s is 0, the right side has a simple zero in the sine factor and a simple pole in the zeta factor, which cancel out and leave a finite nonzero value. When s is 1, the right side has a simple pole in the Gamma factor that is not cancelled out by a zero in any other factor, which is consistent with the zeta-function on the left having a simple pole at 1.There is also a symmetric version of the functional equation, given by first definingThe functional equation is then given by(Riemann defined a similar but different function which he called ξ(t).)The functional equation also gives the asymptotic limit(GergőNemes, 2007)Zeros, the critical line, and the Riemann hypothesisThe functional equation shows that the Riemann zeta function has zeros at −2, −4, ... . These are called the trivial zeros. They are trivial in the sense that their existence is relatively easy to prove, for example, from sin(πs/2) being 0 in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields impressive results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip {s∈ C: 0 < Re(s) < 1}, which is called the critical strip. The Riemann hypothesis, considered to be one of the greatest unsolved problems in mathematics, asserts that any non-trivial zero s has Re(s) = 1/2. In the theory of the Riemann zeta function, the set{s∈ C: Re(s) = 1/2} is called the critical line. For the Riemann zeta function on the critical line, see Z-function.The location of the Riemann zeta function's zeros is of great importance in the theory of numbers. From the fact that allnon-trivial zeros lie in the critical strip one can deduce the prime number theorem. A better result[4]is that ζ(σ+ i t) ≠ 0 whenever |t| ≥ 3 andThe strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound consequences in the theory of numbers.It is known that there are infinitely many zeros on the critical line. Littlewood showed that if the sequence (γn) contains the imaginary parts of all zeros in the upper half-plane in ascending order, thenThe critical line theorem asserts that a positive percentage of the nontrivial zeros lies on the critical line.In the critical strip, the zero with smallest non-negative imaginary part is 1/2 + i14.13472514... Directly from the functional equation one sees that the non-trivial zeros are symmetric about the axis Re(s) = 1/2. Furthermore, the fact that ζ(s) = ζ(s*)* for all complex s≠1 (* indicating complex conjugation) implies that the zeros of the Riemann zeta function are symmetric about the real axis.The statistics of the Riemann zeta zeros are a topic of interest to mathematicians because of their connection to big problems like the Riemann hypothesis, distribution of prime numbers, etc. Through connections with random matrix theory and quantum chaos, the appeal is even broader. The fractal structure of the Riemann zeta zero distribution has been studied using rescaled range analysis.[5] The self-similarity of the zero distribution is quite remarkable, and is characterized by a large fractal dimension of 1.9. This rather large fractal dimension is found over zeros covering at least fifteen orders of magnitude, and also for the zeros of other L-functions.The properties of the Riemann zeta function in the complex plane, specifically along parallels to the imaginary axis, has also been studied, by the relation to prime numbers, in recentphysical interference experiments, by decomposing the sum into two parts with opposite phases, ψ and ψ*, which then are brought to interference. [6]For sums involving the zeta-function at integer and half-integer values, see rational zeta series.[O] ReciprocalThe reciprocal of the zeta function may be expressed as a Dirichlet series over the Möbius functionμ(n):for every complex number s with real part > 1. There are a number of similar relations involving various well-known multiplicative functions; these are given in the article on the Dirichlet series.The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of s is greater than 1/2. [O] UniversalityThe critical strip of the Riemann zeta function has the remarkable property of universality. This zeta-function universality states that there exists some location on the critical strip that approximates any holomorphic function arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable.[O] Representations[O] Mellin transformThe Mellin transform of a function f(x) is defined asin the region where the integral is defined. There are various expressions for the zeta-function as a Mellin transform. If the real part of s is greater than one, we havewhere Γ denotes the Gamma function. By subtracting off the first terms of the power series expansion of 1/(exp(x) −1) around zero, we can get the zeta-function in other regions. In particular, in the critical strip we haveand when the real part of s is between −1 and 0,We can also find expressions which relate to prime numbers and the prime number theorem. If π(x) is the prime-counting function, thenfor values with We can relate this to the Mellin transform of π(x) bywhereconverges forA similar Mellin transform involves the Riemann prime-counting function J(x), which counts prime powers p n with a weight of 1/n,so that Now we haveThese expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's prime-counting function is easier to work with, and π(x) can be recovered from it by Möbius inversion.Also, from the above (specifically, the second equation in this section), we can write the zeta function in the commonly seen form:[O] Laurent seriesThe Riemann zeta function is meromorphic with a single pole of order one at s= 1. It can therefore be expanded as a Laurent series about s= 1; the series development then isThe constants γn here are called the Stieltjes constants and can be defined by the limitThe constant term γ0 is the Euler-Mascheroni constant.[O] Rising factorialAnother series development valid for the entire complex plane iswhere is the rising factorial This can be used recursively to extend the Dirichlet series definition to all complex numbers.The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the Gauss-Kuzmin-Wirsing operator acting on x s−1; that context gives rise to a series expansion in terms of the falling factorial.[O] Hadamard productOn the basis of Weierstrass's factorization theorem, Hadamard gave the infinite product expansionwhere the product is over the non-trivial zeros ρ of ζ and the letter γ again denotes the Euler-Mascheroni constant. A simpler infinite product expansion isThis form clearly displays the simple pole at s = 1, the trivial zeros at −2, −4, ... due to the gamma function term in the denominator, and the non-trivial zeros at s = ρ.[O] Globally convergent seriesA globally convergent series for the zeta function, valid for all complex numbers s except s = 1, was conjectured by Konrad Knopp and proved by Helmut Hasse in 1930:The series only appeared in an Appendix to Hasse's paper, and did not become generally known until it was rediscovered more than 60 years later (see Sondow, 1994).Peter Borwein has shown a very rapidly convergent series suitable for high precision numerical calculations. The algorithm, making use of Chebyshev polynomials, is described in the article on the Dirichlet eta function.[O] ApplicationsAlthough mathematicians regard the Riemann zeta function as being primarily relevant to the "purest" of mathematical disciplines, number theory, it also occurs in applied statistics (see Zipf's law and Zipf-Mandelbrot law), physics, and the mathematical theory of musical tuning.During several physics-related calculations, one must evaluate the sum of the positive integers; paradoxically, on physical grounds one expects a finite answer. When this situation arises, there is typically a rigorous approach involving much in-depth analysis, as well as a "short-cut" solution relying on the Riemann zeta-function. The argument goes as follows: we wish to evaluate the sum 1 + 2 + 3 + 4 + · · ·, but we can rewrite it as a sum of reciprocals:The sum S appears to take the form of However, −1 lies outside of the domain for which the Dirichlet series for thezeta-function converges. However, a divergent series of positive terms such as this one can sometimes be represented in a reasonable way by the method of Ramanujan summation (see Hardy, Divergent Series.) Ramanujan summation involves an application of the Euler–Maclaurin summation formula, and when applied to the zeta-function, it extends its definition to the whole complex plane. In particularwhere the notation indicates Ramanujan summation.[7]For even powers we have:and for odd powers we have a relation with the Bernoulli numbers:Zeta function regularization is used as one possible means of regularization of divergent series in quantum field theory. In one notable example, the Riemann zeta-function shows up explicitly in the calculation of the Casimir effect.[O] GeneralizationsThere are a number of related zeta functions that can be considered to be generalizations of Riemann's zeta-function. These include the Hurwitz zeta functionwhich coincides with Riemann's zeta-function when q = 1 (note that the lower limit of summation in the Hurwitz zeta function is 0, not 1), the Dirichlet L-functions and the Dedekind zeta-function. For other related functions see the articles Zeta function andL-function.The polylogarithm is given bywhich coincides with Riemann's zeta-function when z = 1.The Lerch transcendent is given bywhich coincides with Riemann's zeta-function when z = 1 and q = 1 (note that the lower limit of summation in the Lerch transcendent is 0, not 1).The Clausen function that can be chosen as the real orimaginary part ofThe multiple zeta functions are defined byOne can analytically continue these functions to then-dimensional complex space. The special values of these functions are called multiple zeta values by number theorists and have been connected to many different branches in mathematics and physics.[O] Zeta-functions in fiction。
静态傅里叶变换光谱仪的微阶梯反射镜设计及制作
2 0 1 7年 7月
ቤተ መጻሕፍቲ ባይዱ
应
用
光
学
V01 .3 8 No. 4
J o u r n a l o f Ap p l i e d Op t i c s
J u 1 .2 0 1 7
文章编号 : 1 0 0 2 — 2 0 8 2 ( 2 0 1 7 ) 0 4 — 0 6 4 4 — 0 5
胶 固连 ; 水平 方向反 复推动相 邻后一 个楔形玻 璃条直到检 测仪 器测量 出相邻 楔 形玻璃 条 的阶梯 厚度
差达 到要 求 为止 ; 用 紫外灯 固化 紫外胶 ; 重 复 以上 步骤 制作 出所 需 台阶数 目的微 阶梯 反射镜 。和别
的制 作方法相 比 , 此方 法安 全性和 可行 性 高, 而且 具有 一致 性 、 台阶厚 度 可控 特 点 , 可制 作 出台阶 高 度误 差为 0 . 1 2 4 b t m、 表 面粗糙度 为 1 2 n m 的微 阶梯 反射镜 , 达到 系统设计要 求 。
Ab s t r a c t : The mi r r o r o f s t a t i c Fo u r i e r t r a n s f o r m s p e c t r o me t e r e mpl o y s a m i c r o s t e p pe d mi r r o r , whi c h a l l ows t h e s p e c t r o me t e r t o p e r f o r m s i mu l t a ne ou s s a mp l i ng a t v a r i o u s l e v e l s wi t h ou t a s p a c e dr i v e n d e v i c e . Ba s e d o n t he o r e t i c a l a n a l y s i s a nd t e s t da t a a na l ys i s a n d c o mpa r i s o n, t h e me t h o d o f U — s i n g we d g e s ha p e d gl a s s s t r i ps i s e v e n t u a l l y de t e r mi n e d t o ma k e mi c r o s t e p pe d r e f l e c t i o n mi r r o r . Th i s me t h od us e s ge ne r a l o p t i c a l e l e me nt s a nd p r o c e s s t o ma nu f a c t u r e 1 we d g e s h a p e d g l a s s bl o c k a n d 1 0 we d ge s ha p e d g l a s s s t r i p s, t he n s e l e c t s we d g e s ha p e d g l a s s s t r i p b y s e qu e nc e a n d c e me nt s t he m o n t h e c a n t o f we d ge s h a pe d gl a s s b l o c k o n e by o ne 。a n d u s e s U V a d he s i v e t o c e me nt c o nt a c t
riemann问题精确解及程序实现
Riemann问题精确解及程序实现在流体力学和计算流体动力学中,Riemann问题是一个经典的数学物理问题,对于理解激波、稀疏波和激波-叠加问题等都有重要意义。
Riemann问题的精确解是指在一个特定的初始条件下,精确地求解出Riemann问题得到的解析解。
对于Riemann问题的精确解以及在计算流体动力学中的程序实现,我们将深入探讨并提供一些观点和思考。
一、Riemann问题的基本概念1. Riemann问题的基本描述Riemann问题最初由德国数学家Bernhard Riemann提出,是一类包含一个跨越一维空间的虚线和其两侧分别是不同状态的初始值问题。
它被广泛地运用在气体动力学、流体力学、等离子体物理、弹性力学等领域。
Riemann问题的基本描述是求解一组非线性偏微分方程组在时间和空间上的解析解,问题的初值包含两个不同的宏观态。
这个问题在数值计算和模拟中具有重要意义。
2. Riemann问题的物理意义Riemann问题是一维激波的基本问题,对于理解一维激波和稀疏波结构以及它们在多维情况下的相互作用有着重要的物理意义。
它的解可以帮助我们更好地理解气体动力学、流体力学等领域中的复杂现象。
二、Riemann问题的精确解1. 常见的Riemann问题常见的Riemann问题包括Euler方程、Navier-Stokes方程等,它们描述了流体的运动、压力、密度等物理量。
对于这些问题,我们可以使用不同的数值方法来求解它们的精确解,如Lax-Friedrichs方法、Roe方法等。
2. 求解Riemann问题的精确解对于一维的Riemann问题,可以通过计算它的特征线和跃度条件来求解其精确解。
在特征线上,可以得到一维激波的解,而跃度条件则用来确定激波的速度和压力等物理量。
这些方法对于理解和解决Riemann问题非常重要。
三、Riemann问题的程序实现1. 基于数值方法的程序实现在计算流体动力学中,为了求解Riemann问题的精确解,可以使用基于数值方法的程序实现。
riemann微积分
riemann微积分
Riemann微积分是微积分学中的一种重要方法,它是由德国数学家Bernhard Riemann在19世纪提出的。
Riemann微积分是一种基于极限的方法,用于研究函数的变化和积分的计算。
在Riemann微积分中,我们将函数分成若干个小区间,然后在每个小区间内取一个点,这些点被称为采样点。
然后我们计算每个小区间内函数值的平均值,这个平均值被称为Riemann和。
通过将所有小区间的Riemann和相加,我们可以得到函数的积分值。
Riemann微积分的优点在于它可以处理各种类型的函数,包括不连续函数和非光滑函数。
此外,Riemann微积分还可以用于计算曲线的长度、曲率和表面积等问题。
然而,Riemann微积分也存在一些缺点。
例如,当我们将函数分成若干个小区间时,我们需要选择合适的小区间大小。
如果小区间太大,我们可能会错过函数的细节;如果小区间太小,我们可能会浪费大量的计算资源。
另一个问题是,Riemann微积分只能处理有限个小区间的函数。
如果我们需要处理无限个小区间的函数,我们需要使用更高级的方法,如Lebesgue积分。
Riemann微积分是微积分学中的一种重要方法,它可以用于研究函数的变化和积分的计算。
虽然它存在一些缺点,但它仍然是许多数
学家和科学家使用的首选方法之一。
非线性动力学方程的四阶近似几何积分的特性与计算
非线性动力学方程的四阶近似几何积分的特性与计算
张素英;邓子辰
【期刊名称】《动力学与控制学报》
【年(卷),期】2004(002)001
【摘要】基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的.
【总页数】7页(P21-27)
【作者】张素英;邓子辰
【作者单位】西北工业大学工程力学系,西安,710072;西北工业大学工程力学系,西安,710072;大连理工大学工业装备结构分析国家重点实验室,大连,116023
【正文语种】中文
【中图分类】O313
【相关文献】
1.基于Magnus和Fer展开式构造一般非线性动力学方程的几何积分方法 [J], 张素英;邓子辰
2.基于精细积分技术的非线性动力学方程的同伦摄动法 [J], 梅树立;张森文
3.非线性动力学方程的自适应精细积分 [J], 梅树立;张森文;徐加初;郭幸福
4.弱非线性动力学方程的Noether准对称性与近似Noether守恒量 [J], 张毅
5.激光增益系数ζ(ν)和佛克脱函数的近似积分计算—兼论δ函数在近似计算中的应用 [J], 钱选清
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fractal Fits to Riemann ZerosPaul B.Slater ∗ISBER,University of California,Santa Barbara,CA 93106(Dated:February 7,2008)a r X i v :m a t h -p h /0606005v 2 26 M a r 2007AbstractWu and Sprung(Phys.Rev.E,48,2595(1993))reproduced thefirst500nontrivial Riemann zeros,using a one-dimensional local potential model.They concluded—and similarly van Zyl and Hutchinson(Phys.Rev.E,67,066211(2003))—that the potential possesses a fractal.We model the nonsmoothfluctuating part of the potential by structure of dimension d=32the alternating-sign sine series fractal of Berry and Lewis A(x,γ).Setting d=3,we estimate2the frequency parameter(γ),plus an overall scaling parameter(σ)we introduce.We search for that pair of parameters(γ,σ)which minimizes the least-squaresfit S n(γ,σ)of the lowest n eigenvalues—obtained by solving the one-dimensional stationary(non-fractal)Schr¨o dinger equation with the trial potential(smooth plus nonsmooth parts)—to the lowest n Riemann zeros for n=25.For the additional cases we study,n=50and75,we simply setσ=1.The fits obtained are compared to those gotten by using just the smooth part of the Wu-Sprung potential without any fractal supplementation.Some limited improvement—5.7261vs. 6.39207 (n=25),11.2672vs.11.7002(n=50)and16.3119vs.16.6809(n=75)—is found in our (non-optimized,computationally-bound)search procedures.The improvements are relatively strong in the vicinities ofγ=3and(its square)9.Further,we extend the Wu-Sprung semiclassical framework to include higher-order corrections from the Riemann-von Mangoldt formula(beyond the leading,dominant term)into the smooth potential.PACS numbers:Valid PACS02.10.De,03.65.Sq,05.45.Df,05.45.MtKeywords:Riemann zeros,Wu-Sprung potential,Berry-Lewis alternating-sign sine series fractal, Schr¨o dinger equation,fractal potential,affine scaling law,deterministic Weierstrass-Mandelbrot fractal func-tion,quantum chaos,Riemann-von Mangoldt formula,rankit normality test∗Electronic address:slater@I.INTRODUCTIONIn summarizing the results of their paper,“Riemann zeros and a fractal potential”,Wu and Sprung stated that“we have found analytically a one-dimensional local potential which generates the smooth average level density obeyed by the Riemann zeros.We have then shown how anyfinite number of low lying Riemann zeros can be reproduced by introducing fluctuations on top of the potential.The mystery of how a one-dimensional integrable system can produce a‘chaotic’spectrum is resolved by adopting the concept of a fractal potential which,in the infinite N limit,would lead to the system having a dimension larger than one”[1,p.2597](cf.[2,3,4,5,6,7,8]).(“Indeed...finding an Hermitian operator whose eigenvalues are[the Riemann zeros]may be impossible without introducing chaotic systems”[2,p.3].)The Wu-Sprung potential V—which generates the smooth average level density obeyed by the Riemann zeros—satisfied Abel’s integral equation[1,eq.(6)],and was written implicitly as[1,eq.(7)](cf.[9][10,sec.4]),x W S(V)=1πV−V0lnV02πe2+√V ln√+√V−V0√V−√V−V0.(1)Here V0=3.10073π≈9.74123.Our objective is to reproduce,as best we can,thefluctuations on top of the potential V W S(x),implicitly given by(1),so that the application of the Schr¨o dinger equation to the so-amended(smooth plus fractal)potential would yield the Riemann zeros themselves.For our exploratory purposes,we adopt(being a particular case of a deterministic Weierstrass-Mandelbrot[WM]fractal function)the alternating-sign sine series of Berry and Lewis[11, eq.(5)],A(x,γ)=Σ∞m=−∞(−1)m sinγm xγ(2−d)m,(1<d<2,1<γ).(2)Here,d is the fractal dimension,which—following the box-counting argument of Wu andSprung[1](cf.[12])—we take to be32.We have,in this d=32Berry-Lewis context,aspecific case,A(γx,γ)=−γ12A(x,γ),(3) of the“affine scaling law”[11,eq.(3)].We also scale—in thefirst(n=25)of our three sets of analyses(n=25,50,75)—A(x,γ)by a parameterσ,where n is the number of thelowest Riemann zeros we aspire tofit(sec.II A).For the cases n=50(sec.II B)and75 (sec.II C),we will simply setσ=1.In sec.III,we demonstrate how to incorporate more terms of the Riemann-von Mangoldt formula[13]for the cumulated number of Riemann zeros than Wu-Sprung themselves did,using a semiclassical argument,in deriving x W S(V). (It remains,however,to numerically implement these lastfindings.)II.ANALYSESA.n=25We proceed,to begin,trying tofit thefirst twenty-five Riemann zeros byfinding dis-tinguished values of the two parameters(γandσ).We randomly generate trial values 1≤γ≤10and0≤σ<10.(Numerically-speaking,we truncate the summation in(2)by summing from m=−30to m=30(cf.[11,App.]).We have not yet gauged the sensitivitynor of the various results in this paper to this choice of cutoff—nor to the setting d=32 further to the specific measure offit(sum-of-square deviations)employed—though it would certainly be of interest to do so for any or all of them.)If we use the smooth potential given by(1)itself—without any fractal supplementation —the sum-of-squares deviation of thefirst twenty-five eigenvalues yielded by application of the one-dimensional stationary Schr¨o dinger equation from thefirst twenty-five Riemann zeros is6.23907(Fig.1).(This is only0.0069percent of the total[non-fitted]sum of squares of the zeros themselves,that is,92569.63,so one might aver that the semiclassically-based smooth Wu-Sprung potential is notably successful in well-approximating the Riemann zeros. It is,of course,our objective here to reduce this small percentage even further.Let us also note that a referee suggested that the scatter in Figs.17and9might be reduced if the modulus of the scatter were to be plotted.)We randomly generated4,007pairs of(γ,σ)from the indicated ranges,and solved for each such pair,the Schr¨o dinger equation with the smooth potential plus the fractalσA(x,γ) with the corresponding choice ofγandσ.Further,we calculated the corresponding sum-of-squares(S25(γ,σ))deviations from thefirst twenty-five Riemann zeros.We obtained a range of values S25(γ,σ)∈[5.7261,166.075].In Fig.2,we display the results for those1,833 pairs of the4,007that yielded S25(γ,σ)<15.FIG.1:Deviations from thefirst twenty-five Riemann zeros of thefirst twenty-five eigenvalues obtained by solving the Schr¨o dinger equation using the(smooth/non-fractal)Wu-Sprung potential (1).The sum-of-squares of these deviations is6.39207,while the sum-of-squares of these Riemann zeros is much larger,92569.63.FIG.2:Scatterplot showing the sum-of-squares goodness-of-fit statistic S25(γ,σ)as a function of the frequency parameter(γ)and the scaling parameter(σ).Those1,833points of the4,007 sampled for which S25(γ,σ)<15are included.Additionally,in Fig.3we show the results for those210pairs yielding S25(γ,σ)<6.39207—that is,those pairs which yield results superior(numerically inferior,that is)to those obtained with the original smooth unsupplemented potential(1).Fig.4is a histogram of the values ofγ—having been uniformly sampled from[1,10]—occurring in these210pairs.FIG.3:Truncation of the previous scatterplot to those210(fit-improving)pairs yielding S25(γ,σ)<6.39207.For all such pairsσ<2.86475.FIG.4:Histogram for the frequency parameterγcorresponding to those210pairs(γ,σ)for which S25(γ,σ)<6.39207,the value obtained from solving the Schr¨o dinger equation using the smooth unsupplemented Wu-Sprung potential.The classification bins forγ∈[1,9.5]are of length1.2 (There were noγ’s recorded for a number of bins,including[9.5,10].)The two topmost peaks (corresponding to the classification binsγ∈[2.5,3]and[8.5,9])may possibly reflect(cf.(3)) an assertion of Berry and Lewis,made(using t for what we denote by x)in regard to what they termed deterministic Weierstrass-Mandelbrot fractal functions(W(t)).They note that “the whole function W can be reconstructed from its values in the range t0≤t≤γt0;for example,W in the rangesγt0≤t≤γ2t0andγ−1t0≤t≤t0are magnified and diminished versions,respectively,of W in the range t0≤t≤γt0...The repetition and resolution of features at t0,γt0,γ2t0etc,is again obvious”[11,p.461].(Similarγ-histograms—Figs.12 and17—will be obtained for the n=50and75analyses further below.) In Fig.5we have an analogous histogram based on the scaling parameterσ.(For no valueσ>2.86475,though we sample uniformly from[0,10],do we obtain an improvement by usingσA(x,γ).)In Fig.6we have—for these same210pairs—a plot ofγvs.σ.(TheFIG.5:Histogram for the scaling parameterσcorresponding to those210pairs(γ,σ)for which S25(γ,σ)<6.39207FIG.6:Plot of those pairs(γ,σ)for which S25(γ,σ)<6.39207.The correlation coefficient is -0.264263.associated correlation coefficient is negative,that is,-0.275492.)The minimum over all the4,007pairs was S25(1.54523,1.95798)=5.7261.(The next smaller value was S25(1.15274,1.57931)=5.81754.All other sum-of-squares deviations exceeded6.0.)In Fig.7(cf.Fig.1)we show the deviations of the predicted eigenvalues at this point(1.15274,1.57931)from the corresponding Riemann zeros.In Fig.8we display, for this same minimizing point,the corresponding twenty-five eigenfunctions drawn at the twenty-five eigenvalues for the associated(smooth plus fractal)potential.B.n=50Now,we present in Fig.9the extension of Fig.1from thefirst twenty-five to thefirst fifty Riemann zeros.(It is considerably more demanding to solve the Schr¨o dinger equationFIG.7:Deviations from thefirst twenty-five Riemann zeros of thefirst twenty-five eigenvalues obtained by solving the Schr¨o dinger equation using the(non-fractal)Wu-Sprung potential(1) supplemented by the scaled Berry-Lewis fractal function1.95798A(x,1.54523).The sum-of-squares of these deviations is5.7261,reduced from6.39207for the non-supplemented smooth potential (Fig.1).FIG.8:Eigenfunctions drawn at the eigenvalues obtained by solving the Schr¨o dinger equation for the potential which yields the minimum S25(1.54523,1.95798)=5.7261of the4,007pairs sampledfor this increased n.)The associated sum-of-squares is11.7002,which is but0.00261percent of the total sum-of-squares,448704.56,of thefirstfifty Riemann zeros themselves.In Fig.10we show the results of a“rankit”test(described in the Wikipedia on-line encyclopaedia)for the normality of the distribution of deviations in Fig.9.If the observations do come from a normal/Gaussian distribution,we expect the plot(necessarily non-decreasing in any case,Gaussian or otherwise)to be a straight line.So,there appears to be some deviations from strict normality,particularly in the tails of the distribution(suggesting that perhaps sums-of-squares might not be the most robust measure of deviation to be employedFIG.9:Deviations from thefirstfifty Riemann zeros of thefirstfifty eigenvalues obtained by solving the Schr¨o dinger equation using the(non-fractal)Wu-Sprung potential(1).The sum-of-squares of these deviations is11.7002.FIG.10:A“rankit”plot to assess the possible normality of the distribution of deviations of the fifty eigenvalues from the Schr¨o dinger equation solution using the smooth Wu-Sprung potential from the Riemann zeros themselves.For normally-distributed observations,one expects a straight line.for evaluation offits—though it is certainly the most conventional and familiar measure).We repeated for the case n=50,the form of analysis conducted for n=25(sec.II A), but now omitting(in the interest of interpretational simplicity)the scaling parameter(σ)—effectively setting it to unity.Based on1,013random choices ofγlying in[1,10],we obtained Fig.11.The minimum achieved was S50(3.10007,1)=11.2672,while without any fractal supplementation at all,the(larger)value of11.7002was obtained.(As a matter ofcuriosity,we found that S50(1,g Au)=11.7641≥11.7002,where g Au=√5+12≈1.61803is thegolden mean[14].Interpolation by third-degree polynomials of the points in Fig.11suggests that the actual minimum of11.2556would be achieved forγ=3.092.)The penultimateFIG.11:Scatterplot showing the sum-of-squares goodness-of-fit statistic S50(γ,1),based on1,013 randomly chosen points0≤γ≤10.Points below theγ-axis correspond to improvements infit.minimum,S50(3.10051,1)=11.2685,was nearby.Again(cf.Fig.4),we appear to discern a manifestation of relative minima in the vicinity of bothγ=3and(its square)9.(Also aroundγ=6,as in Fig.4too.The associated relative minimum of11.678occurs at γ=5.96158.)The relative minimum(11.4906)in the vicinity ofγ=9was attained atγ=8.78602,so,at that point,one has √γ=2.96412.For the smaller values ofγ,theplot is very scattered,but for the higher ones,a well-defined curve emerges.(The overall maximum is12.1412atγ=1.8165,while the maximum in the upper range[8,10]is12.108 atγ=9.7516.)We applied(third-order)interpolation to the data in Fig.11and obtained for the most salient domains of improvedfit,γ∈[3.03205,3.1537](containing our overall minimum)and[3.33583,3.38488],[5.85954,6.08565]and[8.45962,9.12272](containing our three distinct relative minima[Fig.11]).In Fig.12(cf.Fig.4)we show the histogram based on those(fit-improving)219of the1,013values ofγfor which S50(γ,1)<11.7002.In Fig.13we plot the deviations (∆smooth)from thefirstfifty Riemann zeros obtained using the smooth potential against those deviations(∆fractal)using the supplemented potential which minimizes thefit,obtaining basically a linear relationship.In Fig.14,we have the counterpart of Fig.8,for the case n=50.C.n=75Fig.15is the further extension of Figs.1and9to the n=75case.The associated sum-of-squares is16.6809,which is but0.0014308percent of the total sum-of-squares of theFIG.12:Histogram corresponding to those219values of the frequency parameterγfor which S50(γ,1)<11.7002,the value obtained from solving the Schr¨o dinger equation using the smooth. unsupplemented Wu-Sprung potential.The classification bins forγ∈[1,9.5]are of length12FIG.13:The predicted eigenvalues minus thefirstfifty Riemann zeros:the horizontal axis based on the smooth potential and the vertical axis based on the sum-of-squares minimizingfitFIG.14:Eigenfunctions drawn at the eigenvalues obtained by solving the Schr¨o dinger equation for the potential which yields the minimum S50(3.10007,1)=11.2672of the1,013points sampledFIG.15:Deviations from thefirst seventy-five Riemann zeros of thefirst seventy-five eigenvalues obtained by solving the Schr¨o dinger equation using the(non-fractal)Wu-Sprung potential(1).The sum-of-squares of these deviations is16.6809.FIG.16:Scatterplot showing the sum-of-squares goodness-of-fit statistic S75(γ,1),based on853 randomly chosen points0≤γ≤10.Points—of which there are172—below theγ-axis correspond to improvements infit.first seventy-five Riemann zeros,1.1658469·106.We generated853values of the frequency parameterγ,uniformly sampling from the interval[1,10].The bestfit of16.3119was achieved forγ=3.1106.(The penultimate minimum of16.3427was nearby atγ=3.11632, while the overall maximum[worsefit]was19.27atγ=2.47689.)In Fig.16we plot these 853values as a function ofγ.(In the vicinity ofγ=9,the relative minimum of16.5983is achieved atγ=8.64589≈2.940392.)In Fig.17we show the corresponding histogram.We continue to add randomly generated points to this n=75analysis,and may possibly undertake an n=100study too.FIG.17:Histogram corresponding to those172values of the frequency parameterγfor which S75(γ,1)<16.6809,the value obtained from solving the Schr¨o dinger equation using the smooth unsupplemented Wu-Sprung potential.The classification bins forγ∈[1,10]are of length1.III.HIGHER-ORDER CORRECTIONS TO THE WU-SPRUNG POTENTIALIn their semiclassical analysis,Wu and Sprung[1]took into account only the leading term of the Riemann-von Mangoldt formula[13],but nevertheless,as our results indicate,doing so is able to yield,via the Schr¨o dinger equation,eigenvalues that quite closely approximate the Riemann zeros themselves.It might prove beneficial,in trying to account for the(relatively small)residual variation—especially since we have been working in a non-asymptotic regime —to extend the Wu-Sprung approach by incorporating the higher-order non-oscillatory terms of the Riemann-von Mangoldt formula too(cf.[15][16,eq.(5)]).The(smooth)leading term—of the Riemann-von Mangoldt formula for the number of zeros below E—employed by Wu and Sprung took the formN(E)=E2πlogE2πe+78.(4)(This formula pertains to the important[Connes/Berry-Keating—absorption/emission spec-trum]“sign”problem[17,eqs.(6),(11)].)The remaining part(having both smooth and nonsmooth components)not utilized by Wu and Sprung is expressible as[13,p.436]S(E)+1πδ(t),(5)whereS(E)=12argζ(12+iE),(6)is the argument function andζ(s)is the Riemann zeta function.Further,δ(E)=E4log1+14E2+14arctan12E−E2+∞ρ(u)du(u+1/4)2+(E/2)2(7)andρ(u)=1/2−{u}.(Here{u}is the fractional part of u.)The function S(E)is itself strongly oscillatory(changing sign an infinite number of times).Incorporating the two additional(higher-order—O(E−2)and O(E−3),respectively)non-oscillatory(monotonically decreasing)terms of the Riemann-von Mangoldt formula[13],one could seek tofind the potential based onN(E)+E4log1+14E2+14arctan12E.(8)The corresponding potential can,in fact,be straightforwardly constructed(in implicit form), using the formula for Abel’s integral equation[18],following the procedure outlined in[1]. It takes the formx W SH (x)=2(1+π)√V tanh−1√V−V0√Vπ2−2(1+π)√V−V0π2+2√V−V0π2(9)−V tanh−1√V−V0√V−i2π2V−i2−V tanh−1√V−V0√V+i2π2V+i2−itan−1…√2√V−V0√2V0−i«√2V0−i−tan−1…√2√V−V0√2V0+i«√2V0+i√2π2−log1+14V2+π(log(4π2)−2log(V0))√V−V02π2−i log(1−i)V0+√((1+i)√V+i)√2i−4V0+2i√V−V04√V+(2+2i)2π2√2i−4V0+i log(−1+i)V0−i√((1+i)√V−1)√−4V0−2i−2i√V−V04√V−(2−2i)2π2√−4V0−2i−i log(1−i)(√i−2V0√V−V0−√2V0)+√2√(2i−(2+2i)√V)√i−2V02π2√2i−4V0+i logi((1+i)V0+√V)((1+i)√V+1)√−4V0−2i+(1−i)√V−V0(2+2i)√V+22π2√−4V0−2i.We have not so far been able to numerically invert x W SH(V),but in Figs.18and19we show the difference x W S(V)−x W SH (V)and the ratio x W S(V)x W SH(V),respectively.(As in theoriginal Wu-Sprung analysis[1],we set V0=9.74123in both cases.)FIG.18:The original(implicitly expressed)Wu-Sprung potential(1)minus the one(9)with higher-order Riemann-von Mangoldt correctionsFIG.19:The original(implicitly expressed)Wu-Sprung potential(1)divided by the one(9)with higher-order Riemann-von Mangoldt correctionsIV.CONCLUDING REMARKSIt might be possibly worthwhile exploring,in our context,the use of fractals other than the specific Berry-Lewis alternating-sign sine series(2)(cf.[19,Chap.12][20,21]).(It appears that A(x,γ)increases with x,while the Wu-Sprung plots of thefluctuations of the fractal potential from the smooth one[1,Fig.2]do not seem to exhibit such a growth phenomenon(cf.[19,Fig.12.13]).However,certain quite preliminary efforts of oursto explore along such lines have encountered some so-far not well-understood numerical difficulties.)Along with the alternating-sign sine series(A(x,γ))we have employed,Berry and Lewis too analyzed a certain companion(also deterministic Weierstrass-Mandelbrot) cosine series C(x,γ).However,this function can only assume nonnegative values,so—unless translated—it does not provide an immediately suitable model of the Wu-Sprung (both negative and positive)fluctuations.In the asymptotic limit,the Wu-Sprung potential V W S(x)behaves as[9,eq.(9)],V W Sasymp (x)=π2x24LWπ2|x|e−2,|x|→∞,(10)where LW(·)represents the Lambert-W function[22].It would be interesting to explore the question of whether the Schr¨o dinger equation can be exactly solved with(10)as a potential(cf.[23]).(In regard to this matter,M.Trott commented that“I would guess it is enough to look for the asymptotic region.If an analytic solution exists there,one might be able to’guess’the correct one in terms of Lambert-W.If one can’tfind an exact solution asymptotically,then probably no exact one in Lambert-W does exist either”.)If so,then with the use of perturbation theory[24],one might possibly be able to expedite the computational procedure we have employed above(in which we have solved the Schr¨o dinger equation—a demanding task—ab initio for each new set of random parameters).Questions pertaining to the nature of the eigen functions obtained and of the importance of tunneling contributions in the fractal potential remain to be addressed(cf.Figs.8and 14).Castro and Mahecha—in their proposed supersymmetric model of the Riemann ze-ros—suggested the use of a“fractal[emphasis added]SUSY QM equation instead of factoring the ordinary[emphasis added]Schr¨o dinger equation studied by Wu-Sprung”[20,p.788](cf.[21,25,26]).They further proposed the use of a fully general Weierstrass-Mandelbrot fractal to modelfluctuations in the supersymmetric potential.The alternating-sign sine series fractal(2)we have employed in this study is a specific in-stance of the WM-fractal[11],involving far fewer parameters—which is largely why we have employed it here in our exploratory numerical analyses.(References to further related work of Castro can be found at the number theory and physics archive website /people/staff/mrwatkin/zeta/physics.htm.)The analytical approach of Wu and Sprung[1],which has been the basis of our study hereincorporates the familiar(“Berry-Keating”[27])form of density-of-states N(E)given in(4). However,in Connes’s adelic(absorption spectrum)approach[28]the density-of-states takes another(cutoff(Λ)-dependent)form[17,eq.(11)],N Connes(E)=E2πlogΛ2−E2πlogE2π−1.(11)The question,then,arises of whether or not the Wu-Sprung framework can be meaning-fully/differently recast in the Connes adelic setting.(Berry has been quoted to the effect that“we think this is a matter of formalism and everything you can write as an absorption you can write as an emission spectrum if you manipulate things the right way”[29,p.247].It has been proposed that the approach of Connes can be implemented using pseudo-Hermitian Hamiltonians for which the eigenvectors are null[30].Shudo et al[31]measured absorption spectra and investigated the distribution of eigenfrequencies in“L-shaped”resonators.) In the context of fractal strings and sprays,the classical Riemann zeta function“can be viewed as the spectral zeta function of the unit interval”[32,p.2].In their study of the Weierstrass-Mandelbrot fractal function,upon which we have strongly relied,Berry and Lewis found,after some delicate analysis,that an attractive inverse-square potential generates the“Weierstrass spectrum”γn[11,sec.5].They further speculated that there might be no other such potential.AcknowledgmentsI would like to express gratitude to the Kavli Institute for Theoretical Physics(KITP)for computational support,and to Carlos Castro and Michael Trott for their sustained interest and expert advice.M.Trottfirst implemented the analysis underlying Figs.1and8and furnished the Mathematica program for solving the Schr¨o dinger equation that was used repeatedly above.[1]H.Wu and D.W.L.Sprung,Phys.Rev.E48,2595(1993).[2]N.N.Khuri,Math.Phys.Anal.Geom.5,1(2002).[3]M.Tomiya and S.Sakamoto,e-J.Surf.Sci.Nanotech.1,175(2003).[4]M.Tomiya,S.Sakamoto,H.Inoue,and N.Yoshinaga,Prog.Theor.Phys.Supp.157,156(2005).[5]N.Yoshinoga,M.Tomiya,S.Sakamoto,and A.Hirai,mun169,313(2005).[6]M.Tomiya and N.Yoshinaga,Prog.Theor.Phys.Supp.150,453(2003).[7] D.A.Lidar,D.Thirumalai,R.Elber,and R.B.Gerber,Phys.Rev.E59,2231(1999).[8]P.Babinec,Chaos,Sol.Fract.22,1007(2004).[9] D.Dominici,Some remarks on the Wu-Sprung potential.Preliminary report,math.CA/0510341.[10]J.Twamley and burn,The quantum mellin transform,quant-ph/0702107.[11]M.V.Berry and Z.V.Lewis,Proc.Roy.Soc.London A370,459(1980).[12] B.P.van Zyl and D.A.W.Hutchinson,Phys.Rev.E67,066211(2003).[13] A.A.Karatsuba and M.A.Korolev,Russ.Math.Surveys60,433(2005).[14]M.Livio,The Golden Ratio(Broadway,New York,2002).[15]K.Weibert,J.Main,and G.Wunner,Eur.Phys.J.D19,379(2002).[16]J.Main,V.A.Mandelshtam,G.Wunner,and H.S.Taylor,Nonlinearity11,1015(1998).[17]G.Sierra,J.Statist.Mech.2005,P12006(2005).[18]R.Gorenflo and S.Vessalla,Abel integral equations:Analysis and applications(Springer-Verlag,Berlin,1990).[19] C.Tricot,Curves and Fractal Dimensions(Springer-Verlag,New York,1995).[20] C.Castro and J.Mahecha,Int.J.Geom.Meth.Mod.Phys.1,751(2004).[21]P.B.Slater,A numerical examination of the Castro-Mahecha supersymmetric model of theRiemann zeros,math.NT/0511188.[22]R.M.Corless,G.H.Gonnet,D.E.G.Hare,D.J.Jeffrey,and D.E.Knuth,put.Math.5,329(1996).[23] B.W.Williams,Phys.Lett.A334,117(2005).[24]T.Kato,Perturbation Theory for Linear Operators(Springer-Verlag,Berlin,1966).[25]skin,Phys.Rev.E66,056108(2002).[26] F.Ben-Adda and J.Cresson,put.161,323(2005).[27]M.V.Berry and J.P.Keating,SIAM Review41,236(1999).[28] A.Connes,Selecta Math.(N.S.)5,29(1999).[29]K.Sabbagh,The Riemann Hypothesis:The greatest unsolved problem in mathematics(Farrar,Straus and Giroux,New York,2002).[30]Z.Ahmed and S.R.Jain,Mod.Phys.Lett.A21,331(2006).[31] A.Shudo,Y.Shimizu,P.˘Seba,H.-J.St¨o ckmann,and K.˙Zyczkowski,Phys.Rev.E49,3748(1994).[32]pidus and M.van Frankenhuysen,Fractal geometry and number theory:Complexdimensions of fractal strings and zeros of zeta functions(Birkhauser,Boston,2000).。