脉冲星
脉冲星的科学意义

脉冲星的科学意义脉冲星是宇宙中天然的极端物理实验室,超强引力场为广义相对论和引力波的检验提供了独特场所。
脉冲星的理论和观测研究对推动天文、天体物理、核物理、粒子物理、等离子体物理、广义相对论和引力波等领域的发展都有着非常重要的意义。
我国500米口径球面射电望远镜的建成为新型和奇特脉冲星的自主观测和发现提供了契机。
以下是小编为你整理的脉冲星的科学意义,希望能帮到你。
脉冲星的重大发现世界上公认的脉冲星发现者是贝尔女士(J. Bell),当时她是英国剑桥大学的博士研究生。
1967年夏天,在无意搜索射电望远镜天线的数据带时,她注意到奇怪的周期信号——每隔1.33秒一次流量变化,后经仔细认证,认定这是天体信号,来自后被称为“脉冲星”的天体,即物理学家曾经预言的超级致密的中子星[1]。
经过50年的研究,已知道脉冲星是一种极端致密的天体,由8~25倍太阳质量的恒星演化到末期发生的超新星爆发而形成,中心物质大约为一个太阳质量,物质密度是1014~1015克·厘米-3,相当于水密度的千万亿倍。
脉冲星的辐射来自其强大磁场的极冠区,每当中子星极冠转到地球视线方向,就会发出信号。
中子星半径约在10 千米,自旋很快,其中射电脉冲星旋转周期在1.4 毫秒~8.5秒之间。
中子星的物质结构由内向外可以分为内核、外核、内壳层、外壳层、大气层。
内核厚度为几千米,密度大于1014克·厘米-3,主要成分尚未明确。
外核是包含中子、质子、电子的混合物,内壳层主要物质为电子、自由中子和原子核,外壳层约为几百米,从大气层底部延伸到密度约为1011克·厘米-3的位置,其主要成分是离子和电子。
最外部大气层很薄,为几厘米,这是脉冲星电磁辐射和热辐射的主要区域。
天文学家可通过射电、光学、X射线、γ射线等波段的望远镜探测脉冲星。
目前观测发现了2700颗脉冲星,其中大部分是孤立的,仅有200多颗存在于双星系统中。
脉冲星种类繁多,根据辐射能段的不同分为射电脉冲星、X射线脉冲星和γ射线脉冲星等;根据有无伴星可以分为脉冲星双星和孤立脉冲星;根据演化历史和自转周期的大小,可以分为常规脉冲星和毫秒脉冲星;根据供能机制的不同可以分为旋转供能脉冲星、吸积供能脉冲星、热供能脉冲星、磁供能脉冲星、核供能脉冲星等。
脉冲星的研究及其科学意义

脉冲星的研究及其科学意义脉冲星是极端天体物理领域中比较重要的研究对象,因其特殊的物理特性和独特的发现历史而备受关注。
脉冲星本质上是一种巨大、沉重、极度致密的恒星残骸,其表面到处都笼罩着极强磁场,其旋转周期极短,高达每秒几百次甚至几千次,被广泛认为是宇宙中最稳定的天体。
本文将从脉冲星的发现历史、物理特点、研究对象等方面入手,深入探讨脉冲星的研究及其科学意义。
一、脉冲星的发现历史1958年,贝尔实验室的天文学家詹姆斯.克林特发现了一个奇怪的天体,它以旋转的方式发送着快速而规律的无线电脉冲,被称为脉冲星。
当时的科学家们非常惊讶,因为传统的天体物理学已经无法解释这样奇特的现象。
之后,人们经过长期的研究和探索,逐渐认识到了脉冲星这一新型天体的物理特性和天文意义。
此后,脉冲星成为了天文学、物理学和宇宙学等多个学科交叉研究的重要对象。
二、脉冲星的物理特点脉冲星具有许多特殊的物理特点和天文特性,主要包括以下几个方面。
(一)极端的致密度脉冲星是一类被极度压缩的恒星残骸,通常其质量为太阳质量的1-2倍,但体积仅为太阳体积的10公里左右。
这种密度已经超过了物理学界认为极限的值,也就是大约4x10^14克/厘米^3。
因此,脉冲星的压缩程度已经到达了超过范德华力、电磁力等所有基本相互作用力的极限,它们是人类目前所知宇宙中最密集的天体物质。
(二)极强的磁场脉冲星拥有极强的磁场,大约为10^12到10^15高斯。
这种强度远远超过了普通星体磁场的强度,它是由于脉冲星天体在形成的过程中发生了磁场大幅度增强的“磁演化”过程导致的。
这种强磁场对脉冲星的结构和运动具有极大的影响,例如它可以控制脉冲星的旋转和辐射过程,影响到脉冲星的辐射特性和天体物理特性。
(三)极快的自转脉冲星的旋转速率非常快,约从每秒10到每秒700次不等,其中部分脉冲星的自转速率甚至超过了每秒1000次。
脉冲星自转速率的这种快速旋转是由于气体落入脉冲星的磁场所产生的旋转磁场耦合效应所致。
有关于脉冲星的故事

有关于脉冲星的故事脉冲星被认为是“死亡之星”,是恒星在超新星阶段爆发后的产物。
超新星爆发之后,就只剩下了一个“核”,仅有几十公里大小,它的旋转速度很快,有的甚至可以达到每秒714圈。
在旋转过程中,它的磁场会使它形成强烈的电波向外界辐射,脉冲星就像是宇宙中的灯塔,源源不断地向外界发射电磁波,这种电磁波是间歇性的,而且有着很强的规律性。
正是由于其强烈的规律性,脉冲星被认为是宇宙中最精确的时钟。
脉冲星的存在是过去人们没有预料到的,它的性质如此奇特,以至于人们在对它的认识过程中产生了很多故事。
以下是小编为你整理的有关于脉冲星的故事,希望能帮到你。
发现脉冲星脉冲星刚发现的时候,人们以为那是外星人向我们发射的电磁波,他们在寻求宇宙中的知音。
1967年,英国剑桥新建造了射电望远镜,这是一种新型的望远镜,它的作用是观测射电辐射受行星际物质的影响。
整个装置不能移动,只能依靠各天区的周日运动进入望远镜的视场而进行逐条扫描。
1967年7月,这台仪器正式投入使用,接受波长为3.7米。
用望远镜观测并担任繁重记录处理的是休伊什的女博士研究生乔斯琳·贝尔。
在观测的过程中,细心的贝尔小姐发现了一系列的奇怪的脉冲,这些脉冲的时间间距精确的相等。
贝尔小姐立刻把这个消息报告给她的导师休伊什,休伊什认为这是受到了地球上某种电波的影响。
但是,第二天,也是同一时间,也是同一个天区,那个神秘的脉冲信号再次出现。
这一次可以证明,这个奇怪的信号不是来自于地球,它确实是来自于天外。
这是不是外星人向我们发出的文明信号呢,新闻媒体对这个问题投入了极大的热情,不久,贝尔又发现了天空中的另外几个这样的天区,最后终于证明,这是一种新型的还不被人们认识的天体——脉冲星。
1974年,这项新发现获得了诺贝尔物理奖,奖项颁给了休伊什,以奖励他所领导的研究小组发现了脉冲星。
令人遗憾的是,脉冲星的直接发现者,乔斯琳.贝尔小姐不在获奖人员之列。
事实上,在脉冲星的发现中,起关键作用的应该是贝尔小姐的严谨的科学态度和极度细心的观测。
宇宙脉冲星的分布与数目研究

宇宙脉冲星的分布与数目研究宇宙是一个神秘而广阔的存在,其中隐藏着无穷无尽的奇观和谜题。
而脉冲星便是这其中的一种存在,它们以其独特的脉冲信号和强大的能量释放,引起了科学家们的极大兴趣。
那么,关于宇宙脉冲星的分布与数目的研究,我们即将进入一段精彩的探索之旅。
首先,我们来了解一下什么是脉冲星。
脉冲星是一种非常致密的天体,是恒星演化的自然结果之一。
它们的核心大约只有太阳的1.4倍质量,但却被压缩到只有几十公里的直径。
这种极度压缩使得脉冲星表面的重力场超过地球数以万亿倍,让它们成为宇宙中最强大的重力场之一。
脉冲星以其独特的脉冲信号而闻名。
它们像一个巨大的灯塔,不断地向宇宙发出规律的脉冲信号,每一次信号都会持续几毫秒至几秒钟。
这种规律的脉冲信号被认为是脉冲星自转所产生的,并由其强大的磁场束缚着。
脉冲星的数目在宇宙中并不多。
据科学家们的观测,整个银河系中大约有几万颗脉冲星存在。
虽然在宇宙的尺度上可能只是一个微不足道的数字,但考虑到这些天体的极端特性和能量释放,它们的存在对于我们了解宇宙的演化和物质性质的研究意义重大。
脉冲星的分布在银河系中并不均匀。
根据科学观测,脉冲星主要存在于银河系的中心区域和旋臂区域。
这一分布特点与脉冲星的起源密切相关。
科学家们认为,脉冲星大多形成于超新星爆发的残骸中,而这些超新星爆发往往发生在银河系的中心区域和旋臂区域。
除了分布的特点外,脉冲星还对于宇宙中的暗物质研究起着重要作用。
暗物质是宇宙中一种无法直接观测到的物质形态,但却占据了宇宙总质量的大约27%。
科学家们通过观测脉冲星的运动轨迹和脉冲信号的变化,可以间接推测出这些信号受到了暗物质的引力影响。
这为我们解开暗物质之谜提供了重要线索。
为了更加深入地了解脉冲星的分布与数目,科学家们采取了多种研究方法。
其中一个重要的方法是通过射电望远镜的观测。
脉冲星的脉冲信号主要体现在射电波段,因此射电望远镜可以帮助科学家捕捉到这些信号,并进一步分析和研究。
脉冲星的高能观测特征

产生EGRET能区伽玛射线的物理过程是:
★宇宙线粒子与星际介质的非弹性碰撞产生次级粒 子,特别是荷电和中性π介子。中性介子几乎立刻 衰变为2个伽玛射线。
★与光子碰撞的宇宙线电子可通过逆Compton散射 提升光子能量到伽玛射线波段。主要的靶是整个 银河系中的光学和红外光子。
◎ HEAO-3携带了具有高谱分辨的低能伽玛射线望远 镜(Mahoney et al 1980),它探测了来自银心区的0.5 MeV正电子-电子湮灭线(Riegler et al 1981)。
同期,地基探测器的伽玛射线天体物理也在发展。 VHE伽玛射线天体物理中的一个里程碑为1989年,使用 Whipple天文台ACT得到了Crab星云(但不是脉冲星)的 高置信度的探测(Weekes et al 1989)。
GLAST LAT的一些主要特征: ☆巨大的视场( 近似2.4 弧度或约20\% 空间); ☆计划的扫描模式每3小时看整个空间; ☆宽能区 (20 MeV - >300 GeV); ☆改进的点扩展函数(对E>1 GeV 比EGRET好因子3) ; ☆大有效面积 (比EGRET好因子>4); ☆单光子绝对时间精度好于10微秒。
★ 94个源说明与称为blazars的活动星系核类可 能成协。
★ 5颗脉冲星出现于表中。
★ Large Magellanic Cloud作为一延展的伽玛射 线源被探测到。
★一个太阳耀斑足够亮以致于在源分析中被看到。 ★170源,总数的一半以上,仍未被证认。
近期Cassandjian和Grenier(2008)发展了EGRET源 的一个新表,基于弥散发射的一个新的模型 (Grenier etal 2005)。该表,仅包含188个源,由 于气体浓度之故合并许多3EG源到弥散辐射 ,特别是在中等银纬处。
星系守护者:脉冲星磁场之王

1. 在宇宙中,脉冲星是一类极为神秘的天体。
这些天体通常是矮星或中子星,可以通过周期性的射电脉冲来识别。
2. 脉冲星的特殊之处在于其强大的磁场。
实际上,脉冲星的磁场远远超过了任何其他天体,除了黑洞外。
3. 这使得脉冲星成为宇宙中最有趣的物体之一,因为它们不仅可以帮助我们了解恒星演化和磁场行为,还可能成为未来太空探索的目标。
4. 当然,要理解脉冲星的奥秘,我们需要先了解它们的构成。
脉冲星的核心是由氢、氦和少量重元素组成的超导体,它们被包裹在一个极其密集的中子星内部。
5. 中子星的密度非常高,可以达到每立方厘米1千克以上,这意味着它们的重力场极为强大。
这样的重力场可以使光线弯曲,星系中的物质被吸引到中子星表面,产生强烈的引力潮汐效应。
6. 正是由于这些特性,中子星才具有如此强大的磁场。
这些磁场可以达到10的15次方高斯以上,远远超过地球表面上的磁场。
7. 这种强大的磁场不仅会影响脉冲星周围的物质,还会导致脉冲星本身发出射电脉冲。
这些脉冲产生的频率和周期性让我们能够识别它们,并用来研究脉冲星的性质。
8. 此外,脉冲星还表现出一些令人惊奇的行为。
例如,有些脉冲星会发生星际物质的吸积,从而加速自身旋转。
这种过程被称为“脉冲星减速”,是天文学家们研究恒星演化的重要工具之一。
9. 另外,脉冲星还可能成为未来太空探索的目标。
由于脉冲星周围的磁场异常强大,它们可能成为未来太空飞行器的“引擎”,利用磁场推动宇宙飞船前进。
10. 总的来说,脉冲星是宇宙中最神秘的物体之一。
它们的强大磁场、周期性射电脉冲以及不可思议的行为使得我们对它们的了解仍然非常有限,但随着科技的不断进步,我们相信这些天体将会带给我们更多的惊喜和发现。
脉冲星的天文学研究进展

脉冲星的天文学研究进展脉冲星是指自转速度极快的中子星,它们天文学的研究一直备受关注。
自2019年,中国科学家首次成功发现了三颗彗星脉冲星以来,天文学家们的研究又向前迈进了一步。
脉冲星的自转周期非常短,通常在纳秒到秒级之间,而它们的较强磁场也是其最显著的特点之一。
在天文学界中,脉冲星被认为是极其稳定的时间标准,因为模拟数据表明它们的旋转速度几乎不变,不受外界干扰。
在以前的天文学研究中,脉冲星往往被用来研究重力理论和宇宙演化。
不过,随着科技的飞速发展,脉冲星的研究领域也在不断拓展。
今天,我们将介绍一些最近的脉冲星研究进展。
1. 发现彗星脉冲星根据最近的研究报告,中国天文学家第一次成功地发现了三颗彗星脉冲星。
在过去的十年中,只有美国的一台望远镜能够探测到这种类型的脉冲星,但其仪器只能探测到其中的一颗。
而中国专门建造了一台高灵敏度的望远镜,并使用高性能计算机处理数据,成功探测到了三颗彗星脉冲星,实现了这方面的突破。
2. 探索脉冲星的磁场脉冲星的较强磁场一直被认为是其最显著的特点之一。
近年来,天文学家们通过观察脉冲星发射的射电脉冲,探索了脉冲星的磁场。
其中一个例子是基于射电波测量的在内部测量脉冲星磁场的方法。
这项技术可在三维环境中测量脉冲星的磁场,并对天文学家们对脉冲星的理解进行了深入的挑战。
3. 研究脉冲星的进化天文学家们对脉冲星的进化历史也很感兴趣。
最近研究显示,脉冲星旋转越快,年龄就越小。
而通过比较大量脉冲星数据,天文学家也发现了一种异常现象,即:在旋转速度相同的情况下,有些脉冲星的年龄要比其他脉冲星更年轻。
这种现象引起了科学家们对脉冲星的进化历史的研究。
4. 探究脉冲星和引力波之间的关系近年来,引力波技术的飞速发展,也为研究脉冲星和引力波之间的关系提供了新契机。
研究发现,当脉冲星同轴旋转时,会产生星际介质扰动,引起引力波。
因此,在未来的引力波实验中,研究脉冲星的成分将会有着重要的地位,从而更好地理解引力波的性质。
脉冲星的研究及其物理特性分析

脉冲星的研究及其物理特性分析脉冲星是一类极为特殊、神秘的天体,它们是宇宙中最密集的天体之一。
脉冲星的研究引起了科学界的广泛关注,各国科学家们通过观测、理论分析和计算模拟等手段,逐渐揭开了脉冲星的神秘面纱。
脉冲星的形成与恒星演化密切相关。
当一个质量比太阳更大的恒星完成核聚变后,它会塌缩成为一颗致密的中子星。
这种中子星寥寥无几的核物质总质量就相当于太阳质量的2至3倍,却只有原来恒星的数十分之一大小。
由于塌缩的过程中转动动量守恒,这颗中子星的自转速度急剧增加,从而呈现出极为规律的脉冲信号。
脉冲星之所以能够被观测到,是因为它们的极强磁场导致的。
一个脉冲星的磁场强度可以达到数千亿高斯,是地球磁场的百万倍。
当脉冲星自转时,极强的磁场会使其周围的电子受到强烈的加速,从而形成一个强大的辐射源。
这个辐射源在宇宙射电波段上表现为规律的脉冲信号,因此被称为“脉冲星”。
脉冲星还具有一种独特的现象,即脉冲星的信号在经过宇宙介质时会发生延迟。
这种延迟现象被称为“色散”,它是由于宇宙介质中的等离子体效应引起的。
一般来说,辐射波的频率越高,色散现象越严重。
因此,观测脉冲星时要特别注意色散效应的影响,以保证数据的准确性。
除了射电信号外,脉冲星还会发射其他类型的辐射,如X射线和γ射线。
这些辐射源通常会是高能粒子加速的结果。
脉冲星的强磁场和快速自转为高能粒子提供了充足的能量,它们在磁场和引力场的作用下被加速至极高的速度。
这些高能粒子在脉冲星的磁层和磁极附近发生碰撞和湮灭,从而释放出大量能量。
对于脉冲星的物理特性进行深入的研究和分析,有助于我们更好地理解宇宙中极端条件下的物质和能量。
首先,脉冲星的快速自转提供了一个理想的实验场所,供科学家们研究中子星的物态方程和核物理性质。
中子星是目前人类能够观测到的最致密的天体,了解它们的物理性质对于理解宇宙的演化和星体结构变化有着重要的意义。
其次,脉冲星的辐射过程也对我们研究高能物理和相对论物理提供了重要的线索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1脉冲星科学是由理论和实验(对天文学来说是观测)来建立的,二者相互映照,时而这个领先,时而那个获胜。
中子星是理论预言领先于观测发现的最美妙事例之一。
杰姆斯·查德威克(James Chadwick)爵士1932年在实验室里发现中于并获得1935年的诺贝尔奖。
据说著名的俄国物理学家列夫·朗道(Lev Landau)和他的小组在发现中子后马上预测存在一种完全由中子组成的星,不幸的是,朗道没有立即发表自己的预测。
两年后,两位密切注意粒子物理学发展的美国天体物理学家摘取了果实。
由与白矮星类比而受到启发(拉尔夫·富勒提出白矮星是以电子简并压来支撑自身重量),弗里兹·兹维基和瓦尔特·巴德建议,中子能产生一种简并压,并能支持质量超过钱德拉塞卡极限的恒星残骸。
他们俩对1054年超新星的遗迹蟹状星云很有兴趣,星云中心有一个萎缩的天体,但不是白矮星。
第二次世界大战爆发前不久,罗伯特·奥本海默(Robert OPPenheimer,后来的原子弹之父)和沃尔科夫(G·V olkofD提出了一种严格意义上的中子星理论。
他们特别证明,对于质量与太阳相当的恒星,简并中子的流体静力学平衡是可以实现的。
他们的工作被天文界客气地置之一旁。
卡米尔·弗拉马里昂(Camme Nammaho…著名的《普通天文学》于1955年出版,在这本(首先激起我对天文学的热爱的)书中,仅有几行字提到兹维基的革命性理论,并说“这是些不可能由观测检验的含糊思想”。
观测检验不得不再等待12年。
1.1空中灯塔我在这儿搞一项新技术来拿博士学位,可一帮傻乎乎的小绿人却选择了我的天线和我的频率未同我们通讯。
——乔丝琳·贝尔(Jocelyn Bell) 1967年,剑桥大学一名年轻研究生乔丝琳·贝尔,从她的导师安托尼·休伊斯(Antnony Hewish)那里接受了一项任务,检查和改进用于测量遥远射电源辐射的新射电望远镜。
在用手工分析记录器打出来的几百米长的微米波图纸时,她的兴趣被一个精确地每隔l.刀730133秒出现一次的周期性信号所吸引。
贝尔小姐偶然发现的,正是一颗发出射电脉冲的星:脉冲星。
很快又陆续发现了其他的脉冲星。
1968年在蟹状星云和船帆座超新星遗迹里也找到了脉冲星。
在好几个月里,极大的兴奋甚至扩散到了天文界以外,有人认为,按如此精确的间隔到达的空中信号只能是来自人工源,是由一种像科幻小说里的“小绿人”那样的外星人瞄准我们发出的。
在还没有正式名称时,头一批脉冲星曾被幽默地称作小绿人一号、二号等等。
这只是天文学家开的玩笑,却被大众传媒想象为与外星人接触而兴奋激昂。
与此同时,理论天体物理学家在严肃地思考。
1968年弗兰科·帕齐尼(Franco Pacini)和托马斯·歌尔德(ThomasGold)提出,脉冲星是快速旋转的中子里,他们的基本思想如下:中子星有强磁场,在场中运动的带电粒子(电子和质子)发出同步辐射,形成一个与中子星一起转动的射电波束,于是随着星体的自转,每当射电束扫过射电望远镜天线时,地球上就收到一个脉冲(图对)。
这种灯塔效应的发生是因为中子显的自转轴和磁轴不重合,而这是天文学中常见的现象。
这个简单而又完整的解释立即被接受,成为专家们采用的有效模型。
安托尼·休伊斯由于他的射电望远镜设计而获得1974年诺贝尔奖一一而脉冲星的发现只是在乔丝琳·贝尔博士论文的一个附录里被提到!1.2一类更极端的星为什么脉冲星的旋转和磁场这么重要呢?中子星是在质量足够大的恒星的核心坍缩时形成的。
角动量守恒定律使最初很小的旋转速度放大到极高的值,这同冰上运动员收拢手臂来增加旋转速度是一样的道理。
磁线就像是冻结在恒星物质上,与星体一起转动,当恒星坍缩时,磁场线被挤紧,磁场就增强。
事实上在许多方面,中子星就是白矮星的一种更极端化的变体。
它的半径大约只有7公里,从白矮星到中子星的尺度缩减甚至比从太阳到白矮星的缩减还要厉害,而与从红巨星到太阳的缩减相当。
中子星的平均密度每立方厘米可不是1吨,而是1亿吨。
太阳绕自己的轴每25天旋转一周(它是较差转动,转动速度与纬度有关),而中于星是作刚体转动,转~周还不到1秒钟(一般认为孤立自矮星要么转得很慢,要么根本不转)。
磁场也是如此:太阳的磁场与地球的相似,约为1高斯2白矮星的磁场可达1亿高斯;而对中子星来说磁场是集中在一个小了几十亿倍的表面上,因而高到1 亿高斯(实验室里人工能得到的最高磁场是30万高斯,是由重量超过10吨的巨型电磁铁产生的)。
正是这些极端的性质才使对中子星的探测成为可能。
中子星不可能在光谱的光学部分看到,因为它们的热光度虽然是由被加热到1000万度的表面发出,却由于表面积太小而极低。
一个直径只有30公里的物体不可能在见光年以外的距离上被看到,而恒星之间的平均距离还远大于此。
不过还是有少数脉冲星的光学辐射被探测到了,其中包括蟹状星云和船帆座的脉冲星。
光学脉冲与射电脉冲精确同步。
船帆座脉冲星是天空中已知最暗弱的星之一,比天狼星要暗200亿倍。
于是,由旋转和磁场所造成的周期性发射不仅在射电频率上而且也在更高的频率上被探测到了。
即使在X射线和伽玛射线频率上所有的信号也被星体的旋转以同样方式调制。
1.3狂啸与低语一般认为,某些脉冲星的高能辐射是在中子星的极冠上发出的。
沿磁场线落向极冠的带电粒子以高到接近于光速的速度撞击星体的坚硬外壳而使之剧烈升温。
中子星简言之就是一个巨大的旋转磁体,其作用像一台发电机,一个每秒钟转一周的中子星能产生10‟…伏特的电压。
在这种条件下,电力能够克服巨大的表面引力而使带电粒子释放并随之被加速。
这些粒子立即产生高能伽玛射线,但这种辐射因被磁场抓住而难以逃离,于是转变成电子\正电子(电子的反粒子)对。
这些对又会湮灭而产生新的伽玛射线,这些伽玛射线稍后又产生出新的电子一正电子对,如此循环,直到辐射逃离这个区域。
这个多重粒子产生的过程叫做级联,能使一个由里面释放的粒子产生出几千个粒子。
在脉冲星刮出的电磁旋风里,射电辐射只能算是一点“沙沙”声,但正是这点声响被我们的仪器收到了。
脉冲星理论家正在构造脉冲星大气(又称为磁球,由于磁场的根本重要性)的模型,试图解释脉冲星辐射的所有细节。
这就像由听声音来推断工厂里~架隐藏着的机器的运转状况。
1.4脉冲星的熄灭如同恒星的命运是由其质量控制一样,脉冲星的命运(这里是指其旋转周期的演化)是由初始磁场决定的。
很容易推测出,脉冲星的旋转会随着其能量的损耗而一点点地减慢。
由于能量的释放是由磁场造成的,对脉冲星减慢速率的测量就能用来计算中子星的磁场。
由于这个缘故,年轻中子星的旋转就比年老的要快得多。
诞生于1054年的蟹状星云脉冲星当然还很年轻,它每秒钟转33次,而年老脉冲星的周期就可能是几秒钟。
但是,脉冲星的周期不可能短于1毫秒,如果周期太短,脉冲星的固体外壳就会因承受不了离心力而破碎。
脉冲星的减慢速率是每秒10-“到10-”秒。
这个极低的值仍然可以在一段几年长的时间里测量出来。
旋转变得过慢,脉冲式的辐射也就消失了,脉冲星的寿命决不超过几百万年。
1.5超新星与脉冲星已经几次提到蟹状星云和船机座星云的脉冲星,它们是与著名超新星的遗迹相联系的。
但是,在其他很有名的超新星遗迹里就没有找到脉冲星,像仙后座八天鹅座环、第谷超新星(1572)和开普勒超新星(1604)都是如此。
脉冲星与超新星遗迹之间的联系是出乎意外的:在截至1991年已知的450颗脉冲星和200个超新星遗迹中,只有三对结成了伴侣。
有好几种情况可以导致这个意外的结果。
最简单的解释是超新星并不留下一个中于星,而是留下某种不同类型的残迹(完全粉碎,或是黑洞),或者是中子星虽在爆发中形成,但又被爆发推到了别处。
事实上,母体星的引力坍缩可能并不是严格球对称的,由于旋转轴一般不与磁轴重合,物质的喷射是不对称的,在星体一侧以1万公里/秒的速度喷射出占总质量10%以上的物质,将给予脉冲星在相反方向上一个每秒数百公里的速度。
这种现象就像枪射击时的反冲,是运用动量守恒定律的结果。
反冲作用可以使超新星与刚形成的中子星分开,迫使天文学家到别的地方去寻找他们的脉冲星。
也可能许多脉冲星像其他恒星一样,原来是在双星系统中。
如果伴星的质量足够大并且也发生了超新星爆发,爆发的威力可能足以使双星系统被撕开,并给予脉冲星(中子星)以如实际观测值那么大的速度(lk60公里/秒)。
对于几乎所有超新星遗迹中都未见脉冲星这一现象的另一种可能解释是,中子星是存在的,但脉冲辐射现象要么不够强,要么不能从地球上观测到。
脉冲星辐射的基本特征是各向异性,脉冲星像一座灯塔,辐射是集中在一个与旋转轴有一定倾角的狭窄推里。
如果发射锥的取向不适当,光束就永远不会扫过地球,因此,许多中子星虽然实际上是脉冲星,但不能被地球上的天文学家作为脉冲星观测到。
脉冲星一般都比超新星遗迹要老。
脉冲射电辐射时期只是中子星寿命很有限的一段,但比超新星遗迹的寿命要长得多。
由旋转减慢速率估计的脉冲星平均寿命约是300万年(但最老的在10亿年以上),在这个时间里也发出射电辐射的超新星星云已完全消散,于是,观测到的脉冲星就比超新星遗迹要多得多,银河系里脉冲星的总数可能高达数万。
1.6空中旋转冠军1982年发现了一颗每秒自转660次(即周期为1.5毫秒)的超快脉冲星。
它的减慢速率是如此微小(每秒10…9秒,即自转周期在100年里增大10rp秒),至比地球上用作“标准”时间的最好的钻原子钟还要精确。
这颗星被记为%R1937+21(数字是其赤道坐标,即赤经为19时37分,赤纬为十21“),它提出了一个特别有趣的理论问题。
如果它的磁制动是这么弱,磁场强度就必定比蟹状星云和船帆座星云脉冲星的磁场要小1万倍。
但按照通常的关于脉冲星形成的观点,磁场很弱意味着年龄很大,而这又与其极高的旋转速度完全不符,怎样调解这个矛盾呢?一个非常有吸引力的理论模型是,脉冲星是双星系统的一员,其旋转被来自伴星的气流加速。
这个主意被最近发现的另外两个超快脉冲星所证实,一个的周期是5.5毫秒,另一个是6毫秒,它们都有明显的伴星。
但是没有找到PSR1937-ZI的伴星,当然也有可能那伴星原是颗挨得很近的白矮星。
这样一个系统的引力辐射将使轨道收缩,直到两颗星碰撞,白矮星被强大的潮汐力撕开而不复存在,中子星因受到碰撞,其旋转速度就增大到现在的观测值。
如同一颗属于双星系统的普通恒星的演化过程会由于两颗星之间的物质转移而改变一样,双星中脉冲星的演化也与孤立的脉冲星不同。
对一些具有特征性磁场值和旋转速度值的脉冲星的观测绘中子星的形成以新的启示。
有的中子星的确可以属于双星系统,它们不是直接形成于超新星核心的引力坍缩,而是由于白矮星因捕获身旁伴星的气体而不断增大质量,终于超过钱德拉塞卡极限而紧缩成中子星,就像最后如根草压垮了骆驼背。