勾股定理(一)

合集下载

八年级数学上册 第一章 勾股定理专题课堂(一)课件

八年级数学上册 第一章 勾股定理专题课堂(一)课件
第六页,共十一页。
3.如图,在△ABC中,∠C=90°,AD平分∠CAB交CB于D,CD=3,BD=5.求AB 的长. 解:过D作DE⊥AB于E,根据(gēnjù)AAS可得△ACD≌△AED,所以CD=DE,AC= AE,在Rt△DEB中,BD2=DE2+BE2,解得BE=4.在Rt△ABC中,AB2=AC2+BC2, 即(AE+4)2=AC2+82,解得AC=AE=6,所以AB=BE+AE=10
第一章 勾股定理(ɡōu ɡǔ dìnɡ lǐ)
专题课堂(kètáng)(一) 勾股定理
第一页,共十一页。
勾股定理与分类讨论(tǎolùn) 在涉及三角形的边和高等问题时需要分类讨论.
例1:已知直角三角形两边长分别为2和3,则第三边的平方为_______.13或5 分析:此题已知直角三角形的两边长,但未明确这两边是直角边,还是斜边,因此较 长边3既可以是直角边,也可以是斜边.
第七页,共十一页。
勾股定理(ɡōu ɡǔ dìnɡ lǐ)与折叠问题
抓住折叠前后的对应线段,对应角相等,将有关线段转化到直角三角形中,用 勾股定理来解决.
第八页,共十一页。
例3:如图,在△ABC中,∠A=90°,沿CD折叠(zhédié)△ABC,点A恰好落在BC边上 的E处,AB=4,AC=3,求BD的长. 分析:由折叠知道AD=DE,∠A=∠CED=90°,AC=CE. 解:在Rt△ABC中,BC2=AC2+AB2,得BC=5,所以BE=BC-CE=BC-AC=2, 设BD=x,则DE=AD=4-x,在Rt△BED中,BD2=DE2+BE2,即x2=(4-x)2+22, 解得x=2.5,所以BD=2.5
第四页,共十一页。
运用勾股定理列方程பைடு நூலகம்解决非直角三角形的求值问题时,一般作垂线构造(gòuzào)直角三角形,并运用勾股 定理列方程,体现数形结合思想.

9-勾股定理1

9-勾股定理1
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:
(1)已知直角三角形的两边求第三边(在 中, ,则 , , )
(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边
(3)利用勾股定理可以证明线段平方关系的问题
【典型例题】
题型一:勾股定理的判定
例1:已知一个三角形的周长为12,其中两边长分别为3和4,则此三角形是()三角形。
(2).在 ABC中,若 =( + )( - ),则 ABC是三角形,且 .
小试牛刀:
1、已知 与 互为相反数,试判断以 、 、 为三边的三角形的形状。
2、.若 ABC的三边 、 、 满足条件 ,试判断 ABC的形状。
3.已知 则以 、 、 为边的三角形是
例4:已知如图,在△ABC中,∠C=60°,AB= ,AC=4,AD是BC边上高,求BC的长。
4、如图,直线 上有三个正方形 ,若 的面积分别为5和11,则 的面积为( )
(A)4(B)6(C)16(D)55
5、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面 倒下到 的位置,连结 ,设 ,请利用四边形 的面积证明勾股定理: .
6、(2010年辽宁省丹东市)图①是一个边长为 的正方形,小颖将
A、25海里B、30海里C、35海里D、40海里
3.勾股定理与勾股定理逆定理的区别与联系
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
【典型例题】
题型一:直接考查勾股定理及逆定理
例1.在 中中,
⑴已知 , .求 的长⑵已知 , ,求 的长分析:

第3章《勾股定理》 :3.1 勾股定理(1)(含答案)

第3章《勾股定理》 :3.1 勾股定理(1)(含答案)

第3章《勾股定理》:3.1 勾股定理(1)选择题1.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.3 B.4 C.5 D.6(第1题)(第2题)2.如图所示:数轴上点A所表示的数为a,则a的值是()A. 5 +1 B.- 5 +1 C. 5 -1 D. 5填空题3.如图,半圆的直径AB= .(第3题)(第4题)(第5题)4.如图,正方体的棱长为 2 cm,用经过A、B、C三点的平面截这个正方体,所得截面的周长是 cm.(第6题)(第7题)(第12题)5.有一个与地面成30°角的斜坡,如图,现要在斜坡上竖一电线杆,当电线杆与斜坡成的∠1=度时,电线杆与地面垂直.6.一副三角板如图所示叠放在一起,则图中∠a=度.7.如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为.(第13题)(第14题)(第15题)8.已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为.9.已知等腰△ABC的腰AB=AC=10cm,底边BC=12cm,则△ABC的角平分线AD的长是 cm .10.已知等边三角形的边长为2cm,则它的高为 cm .11.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB= cm .12.在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE交于点P,若∠A=50°,则∠BPC的度数是度.13.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积Sn= 度.14.如图,等腰直角三角形ABC直角边长为1,以它的斜边上的高AD为腰做第一个等腰直角三角形ADE;再以所作的第一个等腰直角三角形ADE的斜边上的高AF 为腰做第二个等腰直角三角形AFG;…以此类推,这样所作的第n个等腰直角三角形的腰长为.15.图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤…,则第n个等腰直角三角形的斜边长为.16.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是.17.等腰直角三角形的腰长为 2 ,则底边长为.18.等腰直角三角形的底角为度.19.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D点到直线AB的距离是 cm.(第19题)(第21题)(第22题)20.已知直角三角形的两条边长为3和4,则第三边的长为.21.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.22.下图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.(第23题)(第24题)(第25题)23.如图,一束光线从y轴上点A(0,1)发出,经过x轴上点C反射后,经过点B(6,2),则光线从A点到B点经过的路线的长度为.(精确到0.01)24.把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是 cm2.(第26题)(第27题)25.如图,△ABC和△DCE都是边长为2的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为.26.如图,在△ABC中,AB=BC=2,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,则BD′=.27.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a、b,那么(a+b)2的值是.(第28题)(第29题)28.如图,所有的四边形都是正方形,所有三角形都是直角三角形,其中最大的正方形的边长是a,则图中四个小正方形A、B、C、D的面积之和是.29.如图,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形的边长是.30.如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是 cm2.答案:选择题1.故选A.考点:勾股定理的证明.专题:压轴题.分析:先根据勾股定理求出AD的长度,再根据角平分线上的点到角的两边的距离相等的性质解答.解答:解:过D点作DE⊥BC于E.∵∠A=90°,AB=4,BD=5,∴AD=BD2−AB2 =52−42 =3,∵BD平分∠ABC,∠A=90°,∴点D到BC的距离=AD=3.故选A.点评:本题利用勾股定理和角平分线的性质.2.故选C.考点:勾股定理;实数与数轴.分析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.解答:解:图中的直角三角形的两直角边为1和2,∴斜边长为:12+22 = 5 ,∴-1到A的距离是 5 ,那么点A所表示的数为: 5 -1.故选C.点评:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离.填空题3.故答案为2 2 .考点:实数与数轴;勾股定理.专题:数形结合.分析:由图可知OE与OD、AC的长,再由勾股定理可得圆的半径OC的大小,进而可得半圆的直径AB的值.解答:解:连接OC,由图可知:OD=CD=1,由勾股定理可知,OC=OD2+CD2 =12+12 = 2 ,故半圆的直径为2 2 ,故答案为2 2 .点评:此题很简单,解答此题关键是熟知勾股定理,理解题意.4.故填6厘米.考点:截一个几何体;勾股定理.专题:压轴题.分析:由图可知:所得的截面的周长=AC+BC+AB,正方体中,AC=BC=AB,所以只要求出正方体一面的对角线长度即可得出截面的周长,根据勾股定理,AB=( 2 2)+( 2 2) =2,因此,截面的周长=AB+BC+AC=3AB=6cm.解答:解:根据勾股定理,AB=( 2 )2+( 2 )2 =2,∴截面的周长=AB+BC+AC=3AB=6cm,即截面的周长为6厘米.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.要利用本题中截面的特殊性求解.5.故答案为:60.考点:垂线;直角三角形的性质.专题:应用题.分析:将∠1的一边延长,找∠1的对顶角与30°,90°的关系,再根据对顶角相等求∠1.解答:解:如图,要使CB⊥AB,则在△ABC中,∠CBA=90°,∴∠1=∠ACB=90°-30°=60°.故答案为:60.点评:解答本题的关键是构造直角三角形,利用直角三角形的性质求解.6.故答案为:75°.考点:三角形的外角性质;直角三角形的性质.分析:此题主要考查外角的性质和直角三角形的性质.解答:解:由图可知,∠ACD=∠B+∠BAC=45°∴∠BAC=45°-30°=15°∴∠α=90°-15°=75°.点评:解决此题的关键是熟练运用直角三角形的性质.7.故填6.考点:角平分线的性质;全等三角形的判定与性质;勾股定理.分析:分析已知条件,根据勾股定理可求得CA的长,△CAD≌△EAD,则DE=DC,在△BED中,BE=AB-AE,DE=DC,△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB.解答:解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3 2 ,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3 2 ,DE=CD∴EB=AB-AE=6-3 2故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6-3 2 +3 2 =6.点评:此题考查了全等三角形的判定及性质,应用了勾股定理,三角形周长的求法,范围较广.8.底边上的高为4.考点:等腰三角形的性质;勾股定理.分析:根据等腰三角形三线合一的性质及勾股定理不难求得底边上的高.解答:解:根据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再根据勾股定理得:底边上的高为4.点评:考查等腰三角形的三线合一及勾股定理的运用.9.故应填8.考点:等腰三角形的性质;勾股定理.分析:由已知可以得到等腰三角形被它的顶角的平分线,平分成两个全等的直角三角形,可以利用勾股定理来求解.解答:解:如图,由等腰三角形的“三线合一”性质,知AD⊥BC,且BD=CD,在Rt△ABD中,∵AB=10,BD=12BC=6,∴AD=AB2−BD2 =102−62 =8(cm).故应填8.点评:命题立意:此题主要考查等腰三角形的“三线合一”性质及勾股定理.10.故应填 3 cm..考点:等边三角形的性质;勾股定理.专题:压轴题.分析:根据等边三角形的性质:三线合一,利用勾股定理可求解高.解答:解:根据等边三角形:三线合一,所以它的高为:22−12 = 3 cm.点评:考查等边三角形的性质及勾股定理,较为简单.11.故填答案:6.考点:直角三角形的性质.分析:根据直角三角形的性质即可解答.解答:解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴BCAB =12,∵BC=3cm,∴AB=2×3=6cm.故填答案:6.点评:此题较简单,只要熟记30°角所对的直角边等于斜边的一半即可解答.12.故填130°.考点:直角三角形的性质;三角形内角和定理;三角形的外角性质.分析:根据直角三角形的两个锐角互余和三角形的一个外角等于和它不相邻的两个内角和的性质计算.解答:解:∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠AEB=90°∴∠ABE=90°-50°=40°∴∠BPC=∠ABE+∠BDP=40+90=130°.故填130°.点评:本题考查了直角三角形的性质,及三角形的内角和定理及其三角形外角的性质.13.故应填2n-2. 考点:等腰直角三角形.专题:压轴题;规律型.分析:本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般化规律,进而可得出S n 的表达式.解答:解:根据直角三角形的面积公式,得S 1=解答:解:根据直角三角形的面积公式,得S 1=12=2-1; 根据勾股定理,得:AB= 2 ,则S 2=1=20;A 1B=2,则S 3=21,依此类推,发现:S n =2n -2.点评:本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.14.故应填( 2 2 )n . 考点:等腰直角三角形. 专题:压轴题;规律型.分析:通过直角三角形的性质特点,斜边上的高等于斜边的一半,再分析规律,便能计算出答案了.解答:解:∵等腰直角△ABC 直角边长为1, ∴斜边长为12+12 = 2 .斜边上的高也是斜边上的中线,应该等于斜边的一半. 那么第一个等腰直角三角形的腰长为 2 2; ∴第二个等腰直角三角形的斜边长=2×( 2 2 )2 =1. ∴第二个等腰直角三角形的腰长=12 =( 2 2)2, 那么第n 个等腰直角三角形的腰长为( 2 2)n . 故第n 个等腰直角三角形的腰长为( 2 2)n . 点评:解决本题的关键是根据等腰直角三角形的性质得到其他等腰直角三角形的表示规律.15.故答案为:2n.考点:等腰直角三角形.专题:压轴题;规律型.分析:利用勾股定理,分别把图中直角三角形的斜边求出,从中即可发现规律.解答:解:根据勾股定理,在①中,斜边是 2 ,在②中,斜边是2+2 =22,在③中,斜边是4+4 =23,以此类推,则第n个等腰直角三角形中的斜边是2n.点评:此题要结合图形熟练运用勾股定理计算几个具体值,从中发现规律.16.故答案为:等腰直角三角形.考点:等腰直角三角形.分析:已知△ABC是轴对称图形,则△ABC是等腰三角形,且三条高的交点恰好是C点,故△ABC是直角三角形;故△ABC的形状是等腰直角三角形.解答:解:△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是等腰直角三角形.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.17.故答案为:2.考点:等腰直角三角形.分析:已知等腰直角三角形的腰长为 2 ,则根据等腰直角三角形的性质及直角三角形的性质即可求得底边的长.解答:解:∵等腰直角三角形的腰长为 2 ,∴底边长为( 2 )2+( 2 )2 =2.点评:主要考查等腰三角形的性质及直角三角形的性质.18.故答案为:45°.考点:等腰直角三角形.分析:根据等腰直角三角形的性质和三角形内角和定理解答.解答:解:∵∠C=90°,AC=AB∴∠A=∠B=45°.点评:此题较简单,只要熟知根据等腰直角三角形的两底角相等且互余即可解答.19.故答案为:6cm.考点:勾股定理;角平分线的性质.分析:首先根据勾股定理求得CD的长,再根据角平分线上的点到角两边的距离相等,得D到AB得距离等于CD的长.解答:解:∵AD=10cm,AC=8cm∴CD=6cm∵AD平分∠CAB∴D点到直线AB的距离=CD=6cm点评:运用了勾股定理以及角平分线的性质.20.故答案为:5或7 .考点:勾股定理.专题:压轴题;分类讨论.分析:本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.解答:解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x=7 ;所以第三边的长为5或7 .点评:本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.21.故答案为:4cm.考点:勾股定理.专题:压轴题.分析:先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.解答:解:根据等腰三角形的三线合一可得:BD=12BC=12×6=3cm,在直角三角形ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=AB2−BD2 =52−32 =4cm.点评:本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.22.故答案为:76.考点:勾股定理.专题:压轴题.分析:通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.解答:解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.点评:本题主要考查勾股定理的应用及识图能力.23.故答案为:6.71,考点:勾股定理;全等三角形的判定与性质;轴对称的性质.专题:压轴题;跨学科.分析:要求从A到B光线经过的路线的长度利用光学反射原理得到∠ACO=∠BCX,这样找出A关于x轴的对称点D,则D、C、B在同一条直线上,再过B作BE⊥DE 于E,构造直角三角形,然后利用勾股定理就可以求出.解答:解:延长BC交y轴于D,过B作BE⊥DE于E,根据光学反射原理得∠ACO=∠BCX,而∠BCX=∠DCO∴∠ACO=∠DCO∴△ACO≌△DCO∴AC=DC∴OD=OA=1.在直角△DBE中,BE=6,DE=2+1=3,∴DB=BE2+DE2 =62+32 =45 ≈6.71,∴光线从A到B经过的路线的长度约是6.71.点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键,属于中等题目.24.故答案为:27.考点:勾股定理;含30度角的直角三角形.专题:压轴题.分析:本题考查直角三角形的性质和勾股定理,利用直角三角形的性质和勾股定理解答.解答:解:∵两块三角尺是有30°的相同的直角三角尺,∠ABC=∠EBD=30°,AC AB =12,cos∠ABC=cos30°=BCAB=32,∴AB=BE=2AC=2DE=2×6=12,BC = 32×AB=32×12 = 6 3 ,∴BD=6 3 ,过D作DF⊥BE,在Rt△BDF中,∠DBE=30°,∴DFBD = DF6 3=12, DF=3 3 ,∴S△B C D=12BC•DF=12×6 3 ×3 3 =27cm2.故答案为:27.点评:本题是一道根据直角三角形的性质结合勾股定理求解的综合题,求高DF 除上述方法外,还可根据面积法列方程解答.25.故答案为:2 3 .考点:勾股定理;等边三角形的性质.专题:压轴题.分析:作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.解答:解:过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1.在直角三角形CDF中,根据勾股定理,得:DF2=3.在直角三角形BDF中,BF=BC+CF=2+1=3,根据勾股定理得:BD=9+3 =2 3 .点评:熟练运用等腰三角形的三线合一和勾股定理.26.故答案为: 5 .考点:勾股定理;轴对称的性质.专题:压轴题.分析:根据已知条件发现等腰直角三角形ABC,再根据轴对称的性质得到等腰直角三角形DCD′,最后根据勾股定理计算B D′的长.解答:解:根据题意,得∠ACB=45°再根据轴对称的性质,得△CDD′是等腰直角三角形.则CD′=CD=1,在直角三角形BCD′中,根据勾股定理,得BD′= 5 .点评:此题考查了勾股定理,以及轴对称的基本性质,难易程度适中.27.故答案为:25.考点:勾股定理.专题:压轴题.分析:根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.解答:解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×12ab=13-1,∴2ab=12,联立解得:(a+b)2=13+12=25.故答案为:25.点评:注意观察图形:发现各个图形的面积和a,b的关系.28.故答案为:a2.考点:勾股定理.专题:压轴题.分析:根据勾股定理知,以两条直角边为边作出的两个正方形面积和等于以斜边为边的正方形面积.解答:解:如图,由勾股定理可知,正方形A与B 的面积和等于正方形M的面积.正方形C与D的面积和等于正方形N的面积.并且正方形M与N的面积和等于最大的正方形的面积.因此A、B、C、D的面积之和是为最大正方形的面积=a2.点评:本题考查了勾股定理的意义及应用.29.故答案为: 5 .考点:勾股定理;直角三角形全等的判定.专题:压轴题.分析:两直角三角形的斜边是正方形的两边,相等;有一直角对应相等;再根据正方形的角为直角,可得到有一锐角对应相等,易得两直角三角形全等,由三角形全等的性质可把2,1,正方形的边长组合到直角三角形内得正方形边长为22+12 = 5 .解答:解:如图,∵四边形ABCD是正方形,∴AB=CD,∠ABM+∠CBN=90°,而AM⊥MN,CN⊥BN,∴∠BAM=∠CBN,∠AMB=∠CNB=90°,∴△AMB≌△BCN,∴BM=CN,∴AB为22+12 = 5 .点评:本题考查勾股定理及三角形全等的性质应用.30.故答案为:30cm2.考点:勾股定理.分析:直角三角形的面积的计算方法是两直角边乘积的一半,因而由勾股定理先求出另外一条直角边,再求面积.解答:解:∵另一条直角边长=12cm∴三角形的面积是=12×12×5=30cm2.点评:本题考查了勾股定理,面积的计算公式是解题的关键.。

勾股定理进阶版公式(一)

勾股定理进阶版公式(一)

勾股定理进阶版公式(一)勾股定理进阶版公式1. 勾股定理简介勾股定理是一条几何定理,描述了直角三角形之间边长关系的准确公式。

根据勾股定理,如果一个三角形的两个边长的平方的和等于第三边长的平方,那么这个三角形就是直角三角形。

2. 传统勾股定理公式传统的勾股定理公式可以表示为:c2=a2+b2。

其中,a、b表示直角三角形的两个直角边的长度,c表示假设的斜边的长度。

例子:假设直角三角形的直角边a的长度为3,直角边b的长度为4。

根据勾股定理,可以计算斜边c的长度:c2=32+42=9+16=25则c=√25=5。

因此,直角三角形的斜边长度为5。

3. 勾股定理进阶版公式除了传统的勾股定理公式外,还存在勾股定理的进阶版公式,可以解决一些特殊情况下的问题。

邻边和斜边求另一条邻边这个公式可以表示为:a=√c2−b2。

例子:假设直角三角形的斜边c的长度为5,直角边b的长度为3。

根据进阶版公式,可以计算直角边a的长度:a=√52−32=√25−9=√16=4因此,直角三角形的直角边a的长度为4。

斜边和一条邻边求另一条邻边这个公式可以表示为:b=√c2−a2。

例子:假设直角三角形的斜边c的长度为5,直角边a的长度为4。

根据进阶版公式,可以计算直角边b的长度:b=√52−42=√25−16=√9=3因此,直角三角形的直角边b的长度为3。

总结勾股定理进阶版公式提供了更加灵活的求解方法,可以根据已知条件求解直角三角形的边长。

在实际应用中,这些公式可以帮助我们计算建筑、工程等领域中的各种角度和边长的问题,提高精度和效率。

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

小学五年级奥数之勾股定理(1)

小学五年级奥数之勾股定理(1)

小学五年级奥数之勾股定理(1)勾股定理:一个直角三角形中,构成直角的两边叫做直角边;直角所对的边叫做斜边。

直角边的平方和等于斜边的平方。

设直角边为a和b,斜边为c,那么有:a²+b²=c²。

其中斜边是直角三角形中最长的边。

一般∠A对应的边是a,∠B对应的边是b,∠C 对应的边是c。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。

一、基础训练1、在直角三角形ABC中,∠C=90度,如果a=6、b=8,那么c=();2、在直角三角形中,∠C=90度,如果a=5,c=13,那么b=();3、在直角三角形中,∠c=90度,如果c=625,b=20,求a=();4、以下各组数为边长,可以构成直角三角形的是()。

A 6、7、8B 8、10、12C 10 24 26 D、20 、15、6245、一个直角三角形的一条直角边是12厘米,斜边是13厘米,问这个直角三角形的面积是多少平方厘米?6、下面正方形ABCD中,∠BAD=90°,∠CBD=90°,AD=8厘米、AB=6厘米,BC=20厘米,问正方形ABCD的面积是多少平方厘米?7、下面大正方形ABCD中,由4个一样的直角三角形和一个小正方形拼成,其中AF=3厘米、CE=7厘米,大正方形ABCD的面积是多少平方厘米?小正方形的面积是多少平方厘米?8、如图,四边形ABCD,EFGH,NHMC都是正方形,边长分别是a、b、c;A、B、N、E、F五点在同一直线上,则正方形CNHM的面积是多少?单位:厘米),用含有a、b、c、d的字母来表示。

9、如图,正方形网状格子组成的图中,AB、CD、EF、GH四条线段,其中可以构成直角三角形的三边的线段是()?10、一个圆拄形的杯子中放着一根吸管,最多可以露出4厘米,最少可以露出2厘米,这个吸管的长度是12厘米,问玻璃杯底面直径是多少厘米?11、一根绳子在一个圆柱上从一端到另外一端绕了4整圈,如下图所示,圆柱底面周长4米,长12米,你可以算出绳子的长度吗?12、右图是美丽的人造平面珊瑚礁图案。

勾股定理1(3)

勾股定理1(3)
9 个单位面积。
正方形B的面积是
9 个单位面积。 正方形C的面积是
(图中每个小方格代表一个单位面积)
个单位面积。
你是怎样得到上面的结 果的?与同伴交流交流。
C A
B 图2-1
(2)你能发现图中 三个正方形A,B, C的面积之间有什 么关系吗?
SA+SB=SC
(图中每个小方格代表一个单位面积)
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
ab 2
+(b- a)2
∵ c2= 4• ab +(b-a)2
2
=2ab+b2-2ab+a2
c
a
=a2+b2
b
∴a2+b2=c2
c a
b
c a
b
c a
b
赵爽弦图
“赵爽弦图”表现了我国古代人对 数学的钻研精神和聪明才智,它是我国 数学的骄傲。 中国古代的数学家们不 仅很早就发现并应用勾股定理,而且很 早就尝试对勾股定理作理论的证明。最 早对勾股定理进行证明的,是三国时期 吴国的数学家赵爽。正因为此,这个图 案被选为2002年在北京召开的国际数学 家大会会徽。
A
在Rt△ABC中,根据勾股定理,
17
15
BC2=AC2-AB2=172-152=64
∴BC=√64= 8
B
C
想一想
1、下图中的三角形是直角三角形,其余是正 方形,求下列图中字母所表示的正方形的面 积.
A =625
225
400
81
B =144
225Biblioteka 2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。

勾股定理(一)

勾股定理(一)

国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
大正方形的面积该怎样表示?
汉代赵爽的证法
c b a
c2 = b2 + a2
b
c
c b
a
a
1 方法(一): (a b)(a b) 2
对比两种方法, 1 1 方法(二): 2 ab c c 你能得到什么?
SA+SB=SC c
Aa
C
A a
B b
图乙
c C
b B
图甲 图甲 图乙 4 9 A的面积 4 16 B的面积 C的面积 8 25 SA+SB=SC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八章勾股定理18.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要。

在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志。

水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积。

几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具。

本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,A B让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4×21ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2右边S=(a+b )2左边和右边面积相等,即 4×21ab +c 2=(a+b )2 化简可证。

六、课堂练习 1.勾股定理的具体内容是: 。

2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: 。

3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°; 若满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B 是 角。

4.根据如图所示,利用面积法证明勾股定理。

七、课后练习1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= 。

(已知a 、b ,求c ) ⑵a= 。

(已知b 、c ,求a )bbbbaa A Bb EB⑶b= 。

(已知a 、c ,求b )2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来。

3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点P 从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直。

4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上。

求证:⑴AD 2-AB 2=BD ·CD⑵若D 在CB 上,结论如何,试证明你的结论。

八、参考答案课堂练习 1.略;2.⑴∠A+∠B=90°;⑵CD=21AB ;⑶AC=21AB ;⑷AC 2+BC 2=AB 2。

3.∠B ,钝角,锐角;4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯形ACDG =21(a+b )2, S △BCE = S △EDA =21 ab ,S △ABE =21c 2, 21(a+b )2=2×21 ab +21c 2。

课后练习1.⑴c=22a b -;⑵a=22c b -;⑶b=22a c +2.⎩⎨⎧+==+1222b c c b a ;则b=212-a ,c=212+a ;当a=19时,b=180,c=181。

3.5秒或10秒。

4.提示:过A 作AE ⊥BC 于E 。

18.1 勾股定理(二)一、教学目标DCB1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

二、重点、难点1.重点:勾股定理的简单计算。

2.难点:勾股定理的灵活运用。

3.难点的突破方法:⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。

⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。

⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。

三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

让学生明确在直角三角形中,已知任意两边都可以求出第三边。

并学会利用不同的条件转化为已知两边求第三边。

例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。

例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。

让学生把前面学过的知识和新知识综合运用,提高综合能力。

四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

五、例习题分析例1(补充)在Rt △ABC ,∠C=90°⑴已知a=b=5,求c 。

⑵已知a=1,c=2, 求b 。

⑶已知c=17,b=8, 求a 。

⑷已知a :b=1:2,c=5, 求a 。

⑸已知b=15,∠A=30°,求a ,c 。

分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。

⑴已知两直角边,求斜边直接用勾股定理。

⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。

⑷⑸已知一边和两边比,求未知边。

通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。

后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。

例2(补充)已知直角三角形的两边长分别为5和12,求第三边。

分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。

让学生知道考虑问题要全面,体会分类讨论思想。

例3(补充)已知:如图,等边△ABC 的边长是6cm 。

DB A⑴求等边△ABC 的高。

⑵求S △ABC 。

分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法。

欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=21AB=3cm ,则此题可解。

六、课堂练习 1.填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。

⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。

⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。

⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。

⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。

2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。

3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。

七、课后练习1.填空题在Rt △ABC ,∠C=90°,⑴如果a=7,c=25,则b= 。

⑵如果∠A=30°,a=4,则b= 。

⑶如果∠A=45°,a=3,则c= 。

⑷如果c=10,a-b=2,则b= 。

⑸如果a 、b 、c 是连续整数,则a+b+c= 。

⑹如果b=8,a :c=3:5,则c= 。

2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。

八、参考答案 课堂练习 1.17;7; 6,8; 6,8,10; 4或34; 3,3;2.8; 3.48。

课后练习1.24; 43; 32; 6; 12; 10; 2.332 18.1 勾股定理(三)A BB一、教学目标1.会用勾股定理解决简单的实际问题。

2.树立数形结合的思想。

二、重点、难点1.重点:勾股定理的应用。

2.难点:实际问题向数学问题的转化。

3.难点的突破方法:数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性。

相关文档
最新文档