大学物理大作业

合集下载

大学物理大作业

大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在空中的技术迈纳斯效应—完全抗磁性零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。

是否转变为超导态,必须综合这两种测量结果,才能予以确定。

如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。

根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。

内部B=0,故m超导体与理想导体在抗磁性上是不同的。

若在临界温度以上把超导样品放入磁场中,这时样品处于正常态,样品中有磁场存在。

当维持磁场不变而降低温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。

超导体内部的磁场总为零,这一现象称为迈纳斯效应。

超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的,由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。

下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。

是否转变为超导态,必须综合这两种测量结果,才能予以确定。

如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。

根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。

超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

大学物理力学作业

大学物理力学作业

力学作业一、填空题1、按匀速圆周运动计算,地球公转(公转半径为1.5×1011m )的速度值为 ,公转的加速度值为 。

2、一质量为M 的小平板车,以速率v 在光滑水平面上滑行。

另外有一质量为m 的物体从高h 处,由静止竖直下落到小车里并与车子粘在一起前进,它们合在一起的速度大小为 ,方向为 。

3、若有一个三星系统:三个质量都是M 的星球沿同一圆形轨道运动,轨道半径为R 则每个星球受的合力方向 ,大小为 。

4、质量为m 的物体以速率v 向北运动,突然受到外力打击而向西运动,速率v 不变,物体受此力的冲量大小为 ,方向为 。

5、空中飞舞的五彩缤纷的烟火忽略阻力和风力,其质心运动 轨迹是 ,空中烟火以球形扩大的原因是 。

6、质点的运动学方程是j t i t r ˆ)925(ˆ52-+=ρ,这个质点的速度公式表达为 ,质点运动轨道方程为 。

7、质量为m 的人造地球卫星,以速率υ绕地球做匀速圆周运动,当绕过半个圆周时,卫星的动量改变量的量值为 ,当转过整个圆周时,卫星的动量改变量量值为 。

8、当一质点系所受的合外力 时,其质心速度保持不变。

高台跳水运动员的质心运动轨迹应是 。

(忽略空气阻力) 9、一质点沿X 轴做直线运动,其坐标X 与t 的关系是X =1.5t 3(m )。

这个质点在0到2s 的平均速度大小是 ;在t=2s 时刻的瞬时速度大小是 。

10、有质量为m 的单摆挂在架上,架子固定在小车上。

若小车以匀加速度a 向右运动,则摆线的方向要偏离竖直方向一个角度,该角为 ;绳的张力为 。

11、一质点在xy 平面上运动,运动函数为x =2t ,y =4t 2-8,则这个质点的速度公式表达为 ,质点运动的轨道方程为 。

12、某滑轮的转动惯量为25m kg ⋅,以s rad /2的角速度匀速转动,转动动能为 焦耳,角动量为千克米2/秒。

13、质点的运动为532-+=t t x ,t y 2=则质点的速度表达式为 ,位矢表达式为 轨道方程为 。

大学物理学 大作业参考解答

大学物理学 大作业参考解答
大学物理学
静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质

大学物理作业

大学物理作业
R3
Q2 Q1
(1)求球壳内部空间的场强E1
在球壳内部空间作一半径为r 的球面为 高斯面S1,如右图所示;则S1面上各点
S1 r
R2 R1
的 E 大小相等,方向与各点对应面积矢量元 dS 的方向相同 2 E dS (r R1 ) 所以,1 E 4 r 1
S
y
B A F H D G
(4)对于AFDC平面(类似于BGHO平面), O dS dSk E (E1 kx)i E2 j z C 所以, AFDC E dS 0 (5)对于ABGF平面, E (E1 kx)i E2 j 所以, ABGF E dS
R3 R2 R1

S3
rr
(4)求球面外空间的场强E4 在球壳与球面间作一半径为r的球面为高斯面S4,如上图所示; 类似(1)的分析,得到: 4 E dS E4 4 r 2 ( R3 r )

S4
高斯面S4内的电荷q为:q Q1 Q2
由高斯定理,得到场强E4为: 1 Q1 Q2 E4 (r R3 ) 4 0 r 2 电场强度分布为:
O
dx
1 2
L
P
x
dq 4 0 (r x) 2 Q dx dE 即, dE 的大小dE为: 4 0 L (r x)2 dE 的方向为: 沿x轴正向; r x 应用电场强度的叠加原理, dx 1 O 1 L 2 L 2 得到总场强的大小E为:
Q
L 2
dE dq在P点的场强 dE 的大小dE为:
[( E1 kx )i E2 j ] ( dSj )
S

大学物理标准化作业答案

大学物理标准化作业答案

x)
Acos 2p( t x 2 L)
, 则入射波的表达式为y1 = __________________.
O
L
Bx
三、1(5519)在绳上传播的入射波表达式为 y1 Acos(t 2p
,入射波在x = 0处绳端反射,反射端为自由端.设反射波不
x
)
衰减,求驻波表达式.
解:入射波在x = 0处引起的振动方程为 y10 Acost
2
22
波节:
2π x
p
2
(2n 1) p
2
xn
2
n 0,1,2,3
3 如图所示,一平面简谐波沿x轴正方向传播,BC为波密媒
质的反射面.波由P点反射,OP = 3 /4, DP 6在t = 0时,O处质
(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零[ C ]
二、填空题 3、在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,
则这两列波的振幅之比是A1 / A2 = _______4__________.
一、选择题
(1) 反射波的表达式; (2) 合成的驻波的表达式;
(3) 波腹和波节的位置.
解: (1)
y10
A cos 2π t T
y20
A cos(2π t T
p)
y2
A cos[2π( t T
x)p]
(2)
xp
tp
y
y1
y2
2 A cos(2π
) cos(2π
2
T
) 2
(3) 波腹: 2π x p np x (n 1) n 1,2,3,4

大学物理大作业答案

大学物理大作业答案

第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A tωβωωωββsin 2cos e22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 0d 4d tt tv=2t 2 v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 2 4rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v ϖϖϖ二.计算题1.解:选取如图所示的坐标系,以V ϖ表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V ϖ的大小为: ()2cos 222222αgh u gh uy x ++=+=V V VV ϖ的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f ϖ和质量为m 的物块对它的拉力F ϖ的合力提供.当M 物块有离心趋势时,f ϖ和F ϖ的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v ϖ2. 解:球A 只受法向力N ϖ和重力g m ϖ,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/cos (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -gm ϖxf ϖFϖ a ϖ2021kx3. R GmM 32RGmM 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分xyal -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ρρ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m ρρv 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ·s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q m t ∆,这时矿砂动量的增量为(参看附图) 图1分12v v v ϖϖϖm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v ϖ 2分设传送带作用在矿砂上的力为F ϖ,根据动量定理)(v ϖϖm t F ∆=∆于是 N 2.213.98/)(==∆∆=m q t m F v ϖϖ 2分方向:︒==︒∆2975θ,sin sin )(θm m 2v v ϖϖ 2分 由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F ϖ大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;30︒15︒θ1v ϖm )(v ϖm ∆ 2v ϖm与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ·m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220 ==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 21210 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分T Tmga§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212mR J mr J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(lm l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90×102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A xx (m) ω ωπ/3π/3t = 0 t0.12 0.24 -0.12 -0.24 OA ϖA ϖ由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22cos(100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。

面向新世纪课程教材大学物理大作业答案——刚体力学作业

面向新世纪课程教材大学物理大作业答案——刚体力学作业

L2

L1
=
J 2ω2

J1ω1
质点的动量定理
dpr
=
r F

dt
∫ r
I
=
tr F ⋅ dt =
t0
pr − pr0 = mvr − mvr0
三、刚体的角动量守恒定律
1. 角动量守恒定律
∫ 由角动量定理
r M

r M外
=
0
时,

d
t r
ΔL
= =
Δ 0
r L
r L
=
恒矢量
P.6
1
区分两类冲击摆
(1)
大作业题解
刚体力学
第3章 刚体力学基础
一、对转轴的力矩
r M
=
rr
×
r F
单位:N·m
r M
=
rr
×
r F⊥
r M
=
rr
×
r F
大小: 方向:
M = Frsinϕ
rr

r F
右旋前进方向
二、定轴转动定律
M z = Jβ
P.2
转动惯量(moment of inertia)
∑ 1. 定义 J = iri2mi 单位: kg ⋅ m 2
l/4 O
[ A]
mg l = 1 Jω 2 J = 7 ml 2
22
48
⇒ ω = 4 3g 7l
P.11
9.如图所示,一人造卫星到地球中心C的最大距离和
最小距离分别为RA和RB。设人造卫星对应的角动量分
别为LA和LB,动能分别为EkA和EkB,则有
(A) LB > LA,EkB > EkA

东北大学2021 2021 第二学期 大学物理(上) 作业(1)

东北大学2021 2021 第二学期 大学物理(上) 作业(1)

东北大学2021 2021 第二学期大学物理(上)作业(1)东北大学2021-2021第二学期大学物理(上)作业(1)2022-2022学年第二学期大学物理(第一部分)作业第一章粒子运动学作业一、教材:选择问题1-4填空;计算题:9,13,14,17 2。

附加问题(1),多项选择题1。

物体的运动规律是DV/dt??KVT,其中k是大于零的常数?当0时,初始速度为V0,那么速度V 和时间t之间的函数关系为【】12a、v?2kt?v0;212b、v??2公斤?v01kt21c、v?2?v0;1kt21d、v??2.v02、某质点作直线运动的运动学方程为x?3t?5t3?6(si),则该质点作[]a、加速度以匀速直线运动。

加速度沿X轴的正方向B以均匀加速度沿直线移动。

加速度沿X轴负方向C以可变加速度直线移动。

加速度沿X轴正方向D以可变加速度直线移动。

加速度沿X轴负方向3以可变加速度直线移动。

粒子在t中?在时间0从原点开始,以速度v0沿x轴移动2a??kv运动,其加速度与速度的关系为,k为正常计数这个粒子的速度V和距离x之间的关系是1[a、v?v0e?kxx;b、v?v0(1-2v2)02v?v1?xc、0;d、条件不足不能确定4.当粒子在平面上移动时,粒子的位置向量表是已知的22示式为r?ati?btj(其中a、b为常量),则该质点作[]a、匀速直线运动B、变速直线运动C、抛物线运动D、一般曲线运动(II)、计算问题1、已知质点沿x轴运动,其加速度和坐标的关系为二a=2+6x(si),且质点在x=0处的速率为10m/s,求该质点的速度v与坐标x的关系。

2.粒子沿半径为r的圆运动,其距离s在任何时候都是12间t变化的规律为s?bt?2ct(si)其中B和C大于零的常量,求在t时刻,质点的切向加速度at和法向加速度an各为多少?3.已知在x轴上以可变加速度直线运动的粒子的初始运动2速度是V0,初始位置是x0,加速度是a?CT2(其中C为常数),求出:1)粒子速度与时间之间的关系;2)质点运动方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在
空中的技术
迈纳斯效应—完全抗磁性
零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。

是否
转变为超导态,必须综合这两种测量结果,才能予以确定。

如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的
表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,
使超导体内部的磁场为零。

根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。

内部B=0,故
m
超导体与理想导体在抗磁性上是不同的。

若在临界温度以上把超导样品放
入磁场中,这时样品处于正常态,样品中有磁场存在。

当维持磁场不变而降低
温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产
生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。

超导体内部的磁
场总为零,这一现象称为迈纳斯效应。

超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的,
由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。

下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。

是否转变为超导态,必须综合这两种测量结果,才能予以确定。

如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。

根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。

超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

相关文档
最新文档