极坐标与参数方程基础知识附重点题型

合集下载

极坐标与参数方程知识点总结大全及经典试题

极坐标与参数方程知识点总结大全及经典试题

极坐标与参数方程1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧=='y y xx μλϕ:的作用下,点P(x,y)对应到点()y x p '',,称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例如:122=+y x 在变换⎩⎨⎧='='yy xx 23:ϕ(即横坐标伸长为原来3倍,纵坐标伸长为原来的2)得到14922=+y x 2.极坐标系的概念 (1)极坐标系如图所示,定点O 叫做 ,自极点O 引一条射线Ox ,叫做 ;再选定一个长度单位,一个角度单位及其正方向,这样就建立了一个极坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的 ,记为ρ;以极轴Ox 为始边,射线OM 为终边的角MOx ∠叫做点M 的 ,记为θ.有序数对 叫做点M 的极坐标,记作()θρ,M .一般地,不作特殊说明时,我们认为可取任意实数.3.极坐标和直角坐标的互化互化公式:设M 是坐标平面内任意一点,它的直角坐标是()y x ,,极坐标是()θρ, (0≥ρ),于是极坐标与直角坐标的互化公式如表:二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数①⎩⎨⎧==)()(t g y t f x ,并且对于t 的每一个允许值,由方程组①所确定的点()y x M ,都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 3.常见曲线的参数方程①经过点()000,y x M ,倾斜角为α的直线l 的普通方程为 ,参数方程为 。

高中数学选修极坐标与参数方程知识点与题型

高中数学选修极坐标与参数方程知识点与题型

选做题部分 极坐标系与参数方程一、极坐标系1.极坐标系与点的极坐标(1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化点M 直角坐标(x ,y )极坐标(ρ,θ)互化公式题型一 极坐标与直角坐标的互化1、已知点P 的极坐标为)4,2(π,则点P 的直角坐标为 ( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32,)4π B .5(32,)4π- C .5(3,)4π D .3(3,)4π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( )A .ρ=cos θB .ρ=sin θC .ρcos θ=1D .ρsin θ=15.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标.题型二 极坐标方程的应用由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.1.在极坐标系中,已知圆C 经过点P(2,π4),圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的直角坐标方程.2.圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝ ⎛⎭⎪⎫4,π3,则|CP|=________.3.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝ ⎛⎭⎪⎫1,π4,圆的半径为1.(i)则圆C 的极坐标方程是________; (ii)直线l 被圆C 所截得的弦长等于________.4.在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π6=a 截得的弦长为23,则实数a 的值是________.二、参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f ?t ?,y =g ?t ?就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程 参数方程直线 y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)圆 x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数) 题型一 参数方程与普通方程的互化 【例1】把下列参数方程化为普通方程: (1)⎩⎨⎧x =3+cos θ,y =2-sin θ; (2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .题型二 直线与圆的参数方程的应用1、已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.2、曲线C 的极坐标方程为:ρ=acos θ(a >0),直线l 的参数方程为:(1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相切,求a 值. 3、在直角坐标系xoy 中,曲线C 1的参数方程为,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(Ⅱ)设P 为曲线C 1上的动点,求点P 到C 2上点的距离最小值. 综合应用 1、曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A 21(0,)(,0)52、 B 11(0,)(,0)52、 C (0,4)(8,0)-、 D 5(0,)(8,0)9、3、参数方程222sin sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数)化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤3.判断下列结论的正误.(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是(2,-π3)( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线( )4.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线5.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2x C .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x 15.参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 所表示的曲线是 ( )A .直线B .两条射线C .线段D .圆16.下列参数方程(t 是参数)与普通方程y x 2=表示同一曲线的方程是: ( )A .x t y t ==⎧⎨⎩2B .x t y t ==⎧⎨⎩sin sin 2C .x t y t ==⎧⎨⎪⎩⎪D .⎪⎩⎪⎨⎧=+-=ty t t x tan 2cos 12cos 1 3.由参数方程()⎪⎭⎫⎝⎛<<-⎩⎨⎧=-=202tan 21sec 22ππθθθ为参数,y x 给出曲线在直角坐标系下的方程是。

专题:极坐标与参数方程知识点及对应例题

专题:极坐标与参数方程知识点及对应例题

极坐标及参数方程一、极坐标知识点 1.极坐标系的概念:2.有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 3.极坐标与直角坐标的互化: (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合 ③两种坐标系中取相同的长度单位. (2)互化公式二、参数方程知识点(1)圆222)()(r b y a x =-+-的参数方程可表示为 )(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .(2)椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .(3)经过点),(o o O y x M ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.sin ,cos o o ααt y y t x x (t 为参数).三、点到直线的距离公式、直线与圆、圆与圆位置关系 极坐标方程典型例题1.点()22-,的极坐标为 。

2.已知圆C :22(1)(3)1x y ++-=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 5.极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆6.极点到直线()cos sin 3ρθθ+________ 。

7.在极坐标系中,点3(2,)2π到直线l :3cos 4sin 3ρθρθ-=的距离为 .8.在极坐标系中,点π(1,)2P 到曲线π3:cos()242l ρθ+=上的点的最短距离为 .9.已知直线4sin cos :=-θρθρl ,圆θρcos 4:=C ,则直线l 与圆C 的位置关系是________.(相交或相切或相离?)10.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值。

极坐标和参数方程知识点+典型例题及其详解

极坐标和参数方程知识点+典型例题及其详解

极坐标和参数方程知识点+典型例题及其详解极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论. ○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB=AB t t -=BA AB t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +.2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 0⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标和参数方程知识点+典型例题与详细讲解

极坐标和参数方程知识点+典型例题与详细讲解

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标及参数方程知识点及高考题汇编DOC.doc

极坐标及参数方程知识点及高考题汇编DOC.doc

极坐标及参数方程知识点及例题一、极坐标知识点1.极坐标系的概念:在平面内取一个定点 O,从 O 引一条射线 Ox,选定一个单位长度以及计算角度的正方向 (通常取逆时针方向为正方向 ),这样就建立了一个极坐标系, O 点叫做极点,射线 Ox 叫做极轴①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可 .2.点 M 的极坐标:设 M 是平面内一点,极点 O 与点 M 的距离| OM |叫做点 M 的极径,记为;以极轴Ox 为始边,射线OM 为终边的xOM 叫做点M 的极角,记为。

有序数对(,) 叫做点M 的极坐标,记为M ( ,) .极坐标( , )与( , 2k )(k Z) 表示同一个点。

极点O 的坐标为(0, )( R ) .3.极坐标与直角坐标的互化:(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与 x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式2 x2 y 2 , x cos ,y sin , tan y( x 0) x4.曲线的极坐标方程:1.直线的极坐标方程:若直线过点M ( 0 , 0 ) ,且极轴到此直线的角为,则它的方程为:sin()0 sin(0)几个特殊位置的直线的极坐标方程( 1)直线过极点(2)直线过点M(a,0)且垂直于极轴(3)直线过M (b,) 且平2 行于极轴方程:( 1)(R )或写成及(2)cos a(3)ρsinθ=b2.圆的极坐标方程: 若圆心为 M ( 0 , 0 ) ,半径为 r 的圆方程为:22 0 cos()2 r 2几个特殊位置的圆的极坐标方程( 1)当圆心位于极点, r 为半径 (2)当圆心位于 C (a,0) (a>0),a 为半径 ( 3) 当圆心位于 C(a,) (a 0) , a 为半径2 方程: (1) r (2)2acos (3)2asin5.在极坐标系中, (0) 表示以极点为起点的一条射线;(R)表示过极点的一条直线 .极坐标方程典型例题考点一 极坐标与直角坐标的互化1.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为( )A . (2,)B . (2,)C .(2,2)D . (2, 2k),( k Z) 33332.点 2, 2 的极坐标为。

(完整版)极坐标与参数方程知识点、题型总结

(完整版)极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结一、伸缩变换:点是平面直角坐标系中的任意一点,在变换),(y x P 的作用下,点对应到点,称伸缩变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ),(y x P ),(y x P '''一、1、极坐标定义:M 是平面上一点,表示OM 的长度,是,则有序实数实ρθMOx ∠数对,叫极径,叫极角;一般地,,。

,点P 的直角坐标、(,)ρθρθ[0,2)θπ∈0ρ≥极坐标分别为(x ,y )和(ρ,θ)2、直角坐标极坐标 2、极坐标直角坐标⇒cos sin x y ρθρθ=⎧⎨=⎩⇒222tan (0)x y yx xρθ⎧=+⎪⎨=≠⎪⎩3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确y x ,t ⎩⎨⎧==),(),(t g y t f x t 定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数),(y x M 的变数叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的y x ,t 方程叫做普通方程。

(二).常见曲线的参数方程如下:直线的标准参数方程1、过定点(x 0,y 0),倾角为α的直线:(t 为参数)ααsin cos 00t y y t x x +=+=(1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上对应的参数是。

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结知识点和题型总结:一、伸缩变换伸缩变换是指点P(x,y)在变换作用下对应到点P'(x',y'),其中x' = λx (λ。

0),y' = μy (μ。

0)。

这个变换称为伸缩变换。

二、极坐标和直角坐标的转换1、极坐标定义在平面上,点M的极坐标表示为(ρ,θ),其中ρ表示OM 的长度,θ表示∠MOx的角度,且θ∈[0,2π),ρ≥0.点P的直角坐标为(x,y),极坐标为(ρ,θ)。

2、直角坐标转换为极坐标x = ρcosθ,y = ρsinθ。

3、极坐标转换为直角坐标ρ = √(x²+y²),tanθ = y/x (x≠0),x = ρcosθ,y = ρsinθ。

4、直线和圆的极坐标方程方法一:先求出直角坐标方程,再把它化为极坐标方程。

方法二:1)若直线过点M(ρ,θ),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α) = ρsin(θ-α)。

2)若圆心为M(ρ,θ),半径为r的圆方程为ρ²-2ρrcos(θ-θ)+ρ²-r² = 0.三、参数方程1、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,且对于t的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2、常见曲线的参数方程1)直线的标准参数方程过定点(x,y),倾角为α的直线:x = x+tcosα,y = y+tsinα (t为参数)。

其中参数t的几何意义是点P(x,y),点M对应的参数为t,则PM = |t|。

直线上P1,P2对应的参数是t1,t2.|P1P2| = |t1-t2| = √((x1-x2)²+(y1-y2)²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学回归课本校本教材24(一)基础知识参数极坐标1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。

2.常见的曲线的极坐标方程(1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系:正弦定理sin sin OP OMOMP OPM=∠∠,0OMP παθ∠=-+OPM αθ∠=-;(2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理;(3)圆锥曲线极坐标:1cos epe ρθ=-,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。

极坐标方程324cos ρθ=-表示的曲线是双曲线3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22221x y a b+=的参数方程:cos ,sin x a x b θθ==(3)直线过点M 00(,)x y ,倾斜角为α的参数方程:即00cos sin x x y y t θθ--==, 即00cos sin x x t y y t αα=+⎧⎨=+⎩注:0cos x x t θ-=,0sin y y tθ-=据锐角三角函数定义,T 几何意义是有向线段MP 的数量00000()00.t l M M x y M M M M M M t M M t ><其中表示直线上以定点为起点,任意一点,为终点的有向线段的数量,当点在的上方时,;当点在的下方时,;如:将参数方程为参数)化为普通方程为2(23)y x x =-≤≤将2sin y θ=代入22sin x θ=+即可,但是20sin 1θ≤≤;4. 极坐标和直角坐标互化公式: 或,θ的象限由点(x,y)所在象限确定. (1)它们互化的条件则是:极点及原点重合,极轴及x 轴正半轴重合.(2)将点(,)ρθ变成直角坐标(cos ,sin )ρθρθ,也可以根据几何意义和三角函数的定义获得。

5. 极坐标的几个注意点:(1)极坐标和直角坐标转化的必要条件是具有共同的坐标原点(极点)如:已知圆C 的参数方程为 (θ为参数),若P 是圆C 及y 轴正半轴的交点,以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线的极坐标方程。

5cos()26πρθ-= 如:已知抛物线24y x =,以焦点F 为极点,x 轴的正半轴为极轴建立极坐标系,求抛物线的极坐标方程。

即21cos ρθ=-。

(2)对极坐标中的极径和参数方程中的参数的几何意义认识不足如:已知椭圆的长轴长为6,焦距1242F F =过椭圆左焦点F 1作一直线,交椭圆于两点M 、N ,设21(0)F FM ααπ∠=≤<,当α为何值时,MN 及椭圆短轴长相等?566ππα=或()()222420()21x pt y px p t y pt y t x t ⎧==>⎨=⎩=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.(3)直角坐标和极坐标一般不要混合使用:如:已知某曲线的极坐标方程为222sin()204πρρθ-+-=。

(1)将上述曲线方程化为普通方程;(2)若点(,)P x y 是该曲线上任意点,求x y +的取值范围。

[222,222]-+ (二)基本计算1.求点的极坐标:有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;如:点M 的直角坐标是(1,3)-,则点M 的极坐标为2(2,)3π提示:2(2,2),3k k Z ππ+∈都是点M 的极坐标. 2. 求曲线轨迹的方程步骤: (1)建立坐标系;(2)在曲线上取一点P (,)ρθ;(3)写出等式;(4)根据,ρθ几何意义用,ρθ表示上述等式,并化简(注意:,x y ρθ≠≠);(5)验证。

如:长为2a 的线段,其端点在Ox 轴和Oy 轴正方向上滑动,从原点作这条线段的垂线,垂足为M ,求点M 的轨迹的极坐标方程(Ox 轴为极轴),再化为直角坐标方程.解:设点M 的极坐标为(,)ρθ,则OBM AOM θ∠=∠=,且||2sin OA a θ=,||cos 2sin cos sin2OA a a ρθθθθ===,∴点M的轨迹的极坐标方程为sin 2(0)2a πρθθ=<<.由sin2a ρθ=可得322sin cos a ρρθθ=,∴3222()2x y axy +=其直角坐标方程为3222()2(0,0)x y axy x y +=>>. 3.求轨迹方程的常用方法:⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹最基本的方法. ⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回方程⑶代入法(相关点法或转移法).如:从极点作圆2cos a ρθ=的弦,求各弦中点的轨迹方程.解:设所求曲线上的动点M 的极坐标为(,)ρθ,圆2cos a ρθ=上的动点的极坐标为11(,)ρθ由题设可知,,将其代入圆的方程得:cos ()22a ππρθθ=-≤≤.⑷定义法:如果能够确定动点轨迹满足某已知曲线定义,则可由曲线定义直接写出方程.⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.4.参数和极径的几何意义的运用:ρ表示OM 的长度;T 几何意义是有向线段MP 的数量;如:已知过点(9,3)P 的直线l 及x 轴正半轴、y 轴正半轴分别交于A B 两点,则AB 最小值为83提示:设倾斜角为α,则12AB t t =-或AB=12||||t t +,,则,29sin 3cos ()cos l αααα-'=-+令()0l α'=,所以,,min93()(150)83cos150l l α==-+=注意:本题可以取倾斜角的补角为α如 过抛物线28y x =的焦点F 作倾斜角为4π的直线,交抛物线于,A B 两点,求线段AB 的长度.解:对此抛物线有1,4e p ==,所以抛物线的极坐标方程为41cos ρθ=-,,A B 两点的极坐标分别为4π和54π,||4(1cos 4)4(22)FA π=-=+, ||4(1cos54)4(22)FB π=-=-,∴||||||16AB FA FB =+=.∴线段AB 的长度为16.5.参数方程的应用----求最值:如:已知点(,)P x y 是圆222x y y +=上的动点,(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围。

[51,51]-++.(2)cos sin 10x y a a θθ++=+++≥[21,)--+∞.如:在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值.解:设椭圆的参数方程为,4545cos 3sin 32cos()3553πθθθ=--=+- 当cos()13πθ+=,即53πθ=时,min 45d =,此时所求点为(2,3)-.C.选修4 – 4 参数方程及极坐标已知极坐标系的极点及直角坐标系的原点重合,极轴及x 轴的正半轴重合。

若曲线C 1的方程为28sin 15ρρθ=-,曲线C 2的方程为,(x y ααα⎧=⎪⎨=⎪⎩为参数)。

(1)将C 1的方程化为直角坐标方程;(2)若C 2上的点Q 对应的参数为,P 为C 1上的动点,求PQ 的最小值。

提示:(1)228150x y y +-+=.(2)当时,得(2,1)Q -,点Q 到1C,所以PQ1.在极坐标系中,求经过三点O (0,0),A (2,2π),B(4π)的圆的极坐标方程.解:设(,)P ρθ是所求圆上的任意一点,则cos()4OP OB θπ=-,故所求的圆的极坐标方程为)4ρθπ=-.已知极坐标系的极点及直角坐标系的原点重合,极轴及x 轴的正半轴重合.若直线l 的极坐标方程为. (1)把直线l 的极坐标方程化为直角坐标系方程;(2)已知P 为椭圆上一点(已知曲线C 的参数方程为,)求P 到直线l 的距离的最大值. 解:(1)直线lsin cos θθ-= 即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=; (2)P 为椭圆上一点,设(4cos 3sin )P αα,,其中[02)α∈π,,则P 到直线l的距离d 所以当cos()1αϕ+=时,d 的最大值为在极坐标系中,圆C 的方程为,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为(t 为参数),判断直线l 和圆C 的位置关系.解:消去参数t ,得直线l 的直角坐标方程为21y x =+; 即2(sin cos )ρθθ=+,两边同乘以ρ得22(sin cos )ρρθρθ=+,得⊙C 的直角坐标方程为:22(1)(1)2x x -+-=, 圆心C 到直线l的距离d ==<,所以直线l 和⊙C 相交. 已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是(t 为参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设直线l 及x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值. 解:(1)曲线C 的极坐标方程可化为22sin ρρθ=(图)又222,cos ,sin x y x y ρρθρθ+===, 所以曲线C 的直角坐标方程为2220x y y +-=(2)将直线l 的参数方程化为直角坐标方程,得4(2)3y x =--令0y =,得2x =,即M 点的坐标为(2,0).又曲线C 为圆,圆C 的圆心坐标为(1,0),半径1r =,则MC =所以1MN MC r +=≤3.1OPOQ =的距离为,()()()000000 1(20)0.1321121sin() 2.(,),(,).4.x A l x y A l d m l P Q m ρρρπρρθρθρθθθθθ-+===+=⎛==⎧ -=⇒⎨ =⎩ ==⎝:以极点为原点,极轴为轴的正半轴,建立直角坐标系,则点的直角坐标为,,直线的直角坐标方解程为因为到直线的距离,由得直线的方程为设所,则析以①()()()123123124sin ()4234cos (2)4224(0)212(4)2,0(0)242()t (a 2010)n Ox C C C C C C M N C C A B O AB MN ππρθθπππρθθθππρθπππθαρα=≤≤=≤≤<≤=≤≤=≥<<如图,在极坐标系中,已知曲线::;:或;:.求由曲线,,围成的区域的面积;设,,,射线,与曲线,分别交于,不同于极点两点.若线段的中点恰好落在直线上变,浙江 卷求式训练α的值.0220001()sin()221131()().()881642.sin()2441si 4n(44)2P l r Q x y Q πππρθθθρπρθ++--===-=-因为点,在直线上,所以②将①代入②,得,即.这就是点的轨迹方化为直角坐标方程为因此点的轨迹是以,为圆心,为程.半径的圆.()()22222111122 2.22(2)4422114246 4.422()2sin 2cos 2OSP A B S S S AB G ONG πππππππρρραϕραα=⨯⨯-⨯=-=⨯⨯--==⨯+⨯⨯-=-+∠===+弓形阴影部分由已知,所以,故所求面积设的中点解为,,,由题意知析:,,2sin cos sin sin 5522sin 2cos sin()sin sin 2sin cos sin()sin 2cos sin 3sin cos 0sin 0tan 3.ON OG OGN OGN ONG ϕϕααπαϕϕϕαααϕααααααα==∆=∠∠+=--+==++-=≠=在中,,即,所以,化简得,又因为,所以()()(6cos 3sin )()6,00,3C C G x y A B θθ:由动点在椭圆上运动,可设的坐标为,,点的坐标为,.依题意可知,,由重心坐标解析公式可知,()2222606cos 222cos cos 32033sin 1sin 1sin 3(2)114x x y y x y θθθθθθ++⎧-==+⎧⎪=⎪⎪⎨⎨++⎪⎪-===+⎩⎪⎩-++-=①,由此得,②①②,得即为所求.。

相关文档
最新文档