极坐标与参数方程题型三:最值问题

合集下载

极坐标与参数方程取值范围问题

极坐标与参数方程取值范围问题

极坐标与参数方程取值范围问题一.解答题(共12小题)1.已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为,曲线C1、C2相交于A、B两点.(p∈R)(Ⅰ)求A、B两点的极坐标;(Ⅱ)曲线C1与直线(t为参数)分别相交于M,N两点,求线段MN的长度.2.【坐标系与参数方程】设直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=.(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l与曲线C交于A、B两点,求|AB|.3.(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是(φ为参数,a>0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.(Ⅰ)求曲线C普通方程;(Ⅱ)若点在曲线C上,求的值.4.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为,定点,F1,F2是圆锥曲线C的左、右焦点.直线经过点F1且平行于直线AF2.(Ⅰ)求圆锥曲线C和直线的直角坐标方程;(Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.5.在平面直角坐标系xoy中,曲线C1的参数方程为(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点对应的参数ϕ=,射线θ=与曲线C2交于点.(Ⅰ)求曲线C1,C2的方程;(Ⅱ)若点A(ρ1,θ),在曲线C1上,求的值.6.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.7.在平面直角坐标系xOy中,曲线C1为(1<a<6,φ为参数).在以O为原点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=6cosθ,射线为θ=α,与C1的交点为A,与C2除极点外的一个交点为B.当α=0时,|AB|=4.(1)求C1,C2的直角坐标方程;(2)设C1与y轴正半轴交点为D,当时,设直线BD与曲线C1的另一个交点为E,求|BD|+|BE|.8.极坐标系中,圆C方程ρ=2cosθ﹣2sinθ,A(,2π),以极点作为直角坐标系的原点,极轴作为x轴的正半轴,建立直角坐标系,并在两种坐标系中取相同的长度单位.(Ⅰ)求圆C在直角坐标系中的标准方程;(Ⅱ)设P为圆C上的任意一点,圆心C为线段AB中点,求|PA|•|PB|的最大值.9.(选修4﹣4:极坐标系与参数方程)极坐标系中,求圆ρ=上的点到直线ρcos(θ+)=1的距离的取值范围.10.已知直线C1:(t为参数),曲线C2:ρ+=2sin(θ+).(1)求直线C1的普通方程与曲线C2的直角坐标方程;(2)求直线C1被曲线C2所截的弦长.11.已知直线l是过点P(﹣1,2),方向向量为=(﹣1,)的直线,圆方程ρ=2cos(θ+)(1)求直线l的参数方程(2)设直线l与圆相交于M,N两点,求|PM|•|PN|的值.12.已知点P的极坐标为,曲线C的极坐标方程为ρ=﹣4cosθ,过点P 的直线l交曲线C与M、N两点,求|PM|+|PN|的最大值.极坐标与参数方程取值范围问题参考答案与试题解析一.解答题(共12小题)1.已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为,曲线C1、C2相交于A、B两点.(p∈R)(Ⅰ)求A、B两点的极坐标;(Ⅱ)曲线C1与直线(t为参数)分别相交于M,N两点,求线段MN的长度.【解答】解:(Ⅰ)由得:,∴ρ2=16,即ρ=±4.∴A、B两点的极坐标为:或.(Ⅱ)由曲线C1的极坐标方程ρ2cos2θ=8化为ρ2(cos2θ﹣sin2θ)=8,得到普通方程为x2﹣y2=8.将直线代入x2﹣y2=8,整理得.∴|MN|==.2.【坐标系与参数方程】设直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=.(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l与曲线C交于A、B两点,求|AB|.【解答】解:(1)由ρ=得ρsin2θ=8cosθ,∴ρ2sin2θ=8ρcosθ,∴y2=8x,∴曲线C表示顶点在原点,焦点在x上的抛物线.(2),即y=2x﹣4,代入y2=8x得x2﹣6x+4=0,∴x1+x2=6,x1•x2=4,∴|AB|=•|x1﹣x2|=•=•=10.3.(选修4﹣4:坐标系与参数方程)已知曲线C的参数方程是(φ为参数,a>0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.(Ⅰ)求曲线C普通方程;(Ⅱ)若点在曲线C上,求的值.【解答】解:(Ⅰ)∵直线l的参数方程是(t为参数),消去参数t得x+y=2,令y=0,得x=2.∵曲线C的参数方程是(φ为参数,a>0),消去参数φ得,把点(2,0)代入上述方程得a=2.∴曲线C普通方程为.(Ⅱ)∵点在曲线C上,即A(ρ1cosθ,ρ1sinθ),,在曲线C上,∴====+=.4.已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为,定点,F1,F2是圆锥曲线C的左、右焦点.直线经过点F1且平行于直线AF2.(Ⅰ)求圆锥曲线C和直线的直角坐标方程;(Ⅱ)若直线与圆锥曲线C交于M,N两点,求|F1M|•|F1N|.【解答】解:(I)圆锥曲线C的极坐标方程为,即3ρ2+(ρsinθ)2=12,可得直角坐标方程:3x2+4y2=12,即=1.∴F1(﹣1,0),F2(1,0).==.∴要求的直线方程为:y=(x+1).(II)由(I)可得直线的参数方程为:(t为参数).代入椭圆方程可得:5t2﹣4t﹣12=0,∴t1t2=﹣.∴|F1M|•|F1N|=|t1t2|=.5.在平面直角坐标系xoy中,曲线C1的参数方程为(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点对应的参数ϕ=,射线θ=与曲线C2交于点.(Ⅰ)求曲线C1,C2的方程;(Ⅱ)若点A(ρ1,θ),在曲线C1上,求的值.【解答】解:(I)∵曲线C1上的点对应的参数ϕ=,∴,解得,∴曲线C1的直角坐标方程为:=1.∵曲线C2是圆心在极轴上,且经过极点的圆,射线θ=与曲线C2交于点.∴圆的直径2R==2,∴曲线C2的方程为(x﹣1)2+y2=1.(II)把代入曲线C1的直角坐标方程:=1.可得.∴=+===.6.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(,),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.【解答】解:(1)圆C的圆心的极坐标为C(,),∴x==1,y==1,∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)点P的极坐标为(2,π),化为直角坐标P(﹣2,0).当直线l与圆C相切于等D时,则|PD|2=|PC|2﹣r2=(﹣2﹣1)2+(0﹣1)2﹣=8.∴|PA|•|PB|=|PD|2=8.7.在平面直角坐标系xOy中,曲线C1为(1<a<6,φ为参数).在以O为原点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=6cosθ,射线为θ=α,与C1的交点为A,与C2除极点外的一个交点为B.当α=0时,|AB|=4.(1)求C1,C2的直角坐标方程;(2)设C1与y轴正半轴交点为D,当时,设直线BD与曲线C1的另一个交点为E,求|BD|+|BE|.【解答】解:(1)由ρ=6cosφ,得ρ2=6ρcosφ,所以C2的直角坐标方程是x2+y2﹣6x=0由已知得C1的直角坐标方程是,当α=0时射线与曲线C1,C2交点的直角坐标为(a,0),(6,0),∵|AB|=4,∴a=2,C1的直角坐标方程是①(2)联立x2+y2﹣6x=0与y=x得B(3,3)或B(0,0),∵B不是极点,∴B(3,3).又可得D(1,0),∴,∴BD的参数方程为(t为参数)②将②带入①得,设D,E点的参数是t1,t2,则,.8.极坐标系中,圆C方程ρ=2cosθ﹣2sinθ,A(,2π),以极点作为直角坐标系的原点,极轴作为x轴的正半轴,建立直角坐标系,并在两种坐标系中取相同的长度单位.(Ⅰ)求圆C在直角坐标系中的标准方程;(Ⅱ)设P为圆C上的任意一点,圆心C为线段AB中点,求|PA|•|PB|的最大值.【解答】解:(Ⅰ)∵ρ=2cosθ﹣2sinθ,∴ρ2=2ρcosθ﹣2ρsinθ则x2+y2=2x﹣2y,即圆C在直角坐标系中的标准方程为(x﹣)2+(y+1)2=4;(Ⅱ)A(,2π)的直角坐标为(,0),圆C的圆心坐标为(,﹣1),∵圆心C为线段AB中点,∴点B的坐标为(,﹣2),AC=BC=1,设∠ACP=θ,而PC=2,则PA==,同理PB=,∴|PA|•|PB|=•=≤5,当且仅当cosθ=0时取等号,∴|PA|•|PB|的最大值为5.9.(选修4﹣4:极坐标系与参数方程)极坐标系中,求圆ρ=上的点到直线ρcos(θ+)=1的距离的取值范围.【解答】解:圆化为直角坐标方程得:x2+y2=2直线,即ρcosθ﹣ρsinθ=1,化为直角坐标方程为:x﹣y=1,即x﹣y﹣2=0∴圆心(0,0)到直线的距离d==1故圆上动点到直线的最大距离为+1,最小距离为0故圆上动点到直线的距离的取值范围为[0,+1]10.已知直线C1:(t为参数),曲线C2:ρ+=2sin(θ+).(1)求直线C1的普通方程与曲线C2的直角坐标方程;(2)求直线C1被曲线C2所截的弦长.【解答】解:(1)由,得3x﹣4y=0.由ρ+=2sin(θ+),得=2sinθ+2cosθ.即ρ2+1=2ρsinθ+2ρcosθ,∴x2﹣2x+y2﹣2y+1=0;(2)由x2﹣2x+y2﹣2y+1=0,得(x﹣1)2+(y﹣1)2=1.∴曲线C2是以(1,1)为圆心,以1为半径的圆.圆心到直线3x﹣4y=0的距离为.∴直线C1被曲线C2所截的弦长为2.11.已知直线l是过点P(﹣1,2),方向向量为=(﹣1,)的直线,圆方程ρ=2cos(θ+)(1)求直线l的参数方程(2)设直线l与圆相交于M,N两点,求|PM|•|PN|的值.【解答】解:(1)∵,∴直线的倾斜角α=,∴直线的参数方程为,(t为参数)即(t为参数)(2)∵ρ=2(cosθ﹣sinθ)=cosθ﹣sinθ,∴ρ2=ρcosθ﹣ρsinθ,∴x2+y2﹣x﹣y=0,将直线的参数方程代入得t2+2t+6﹣2=0,∴|t1t2|=6﹣2.12.已知点P的极坐标为,曲线C的极坐标方程为ρ=﹣4cosθ,过点P 的直线l交曲线C与M、N两点,求|PM|+|PN|的最大值.【解答】解:P的直角坐标为(0,2)…(2分)曲线C的直角坐标方程为x2+y2+4x=0…(4分)直线l的参数方程为…(6分)带入曲线C的方程t2+4t(sinθ+cosθ)+4=0…(8分)∵t1t2=4>0,∴|PM|+|PN|=(12分)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

极坐标参数方程经典易错题型带答案

极坐标参数方程经典易错题型带答案

极坐标参数方程一、解答题(本大题共19小题,共228.0分)1. 在直角坐标系xOy 中,曲线C 的参数方程为{y =sinθx=3cosθ,(θ为参数),直线l 的参数方程为{y =1−t x=a+4t,(t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a .【答案】解:(1)曲线C 的参数方程为{y =sinθx=3cosθ(θ为参数),化为标准方程是:x 29+y 2=1;a =-1时,直线l 的参数方程化为一般方程是:x +4y -3=0; 联立方程{x 29+y 2=1x +4y −3=0, 解得{y =0x=3或{x =−2125y =2425,所以椭圆C 和直线l 的交点为(3,0)和(-2125,2425).(2)l 的参数方程{y =1−t x=a+4t(t 为参数)化为一般方程是:x +4y -a -4=0,椭圆C 上的任一点P 可以表示成P (3cosθ,sinθ),θ∈[0,2π), 所以点P 到直线l 的距离d 为: d =|3cosθ+4sinθ−a−4|√17=|5sin(θ+φ)−a−4|√17,φ满足tanφ=34,且的d 的最大值为√17.①当-a -4≤0时,即a ≥-4时,|5sin (θ+φ)-a -4|≤|-5-a -4|=|5+a +4|=17 解得a =8和-26,a =8符合题意. ②当-a -4>0时,即a <-4时|5sin (θ+φ)-a -4|≤|5-a -4|=|5-a -4|=17, 解得a =-16和18,a =-16符合题意.【解析】(1)将曲线C 的参数方程化为标准方程,直线l 的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C 上的点可以表示成P (3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P 到直线l 的距离,再结合距离最大值为√17进行分析,可以求出a 的值. 本题主要考查曲线的参数方程、点到直线距离和三角函数的最值,难点在于如何根据曲线C 上的点到直线l 距离的最大值求出a .2. 在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθy =2+2sinθ(θ为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程;(2)设M 的极坐标为(√2,π4),过点M 的直线l 与曲线C 相交于A ,B 两点,若|MA |=2|MB |,求AB 的弦长.【答案】解:(1)∵曲线C 的参数方程为{x =2cosθy =2+2sinθ(θ为参数).∴曲线C 的直角坐标方程为x 2+y 2-4y =0, ∴曲线C 的极坐标方程为ρ2-4ρsinθ=0, 即曲线C 的极坐标方程为ρ=4sinθ.(2)由点M 的极坐标为(√2,π4),设直线l 的参数方程是{x =1+t ⋅cosθy =1+t ⋅sinθ(θ为参数)①,曲线C 的直角坐标方程是x 2+y 2-4y =0,②, ①②联立,得t 2+2(cosθ-sinθ)t -2=0, ∴t 1t 2=-2,且|MA |=2|MB |,∴t 1=-2t 2, 则t 1=2,t 2=-1或t 1=-2,t 2=1, ∴AB 的弦长|AB |=|t 1-t 2|=3.【解析】本题考查曲线的极坐标方程的求法,考查线段长的求法,是中档题,解题时要认真审题,注意极坐标方程与直角坐标方程的互化公式的合理运用.(1)由曲线C 的参数方程先求出曲线C 的直角坐标方程,由此能求出曲线C 的极坐标方程.(2)先求出直线l 的参数方程,与曲线C 的直角坐标方程联立,得t 2+2(cosθ-sinθ)t -2=0,由此能求出AB 的弦长.3. 在平面直角坐标系xOy 中,圆C 的参数方程为{x =−5+√2costy =3+√2sint,(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=−√2,A ,B 两点的极坐标分别为A(2,π2),B(2,π). (1)求圆C 的普通方程和直线l 的直角坐标方程; (2)点P 是圆C 上任一点,求△PAB 面积的最小值.【答案】解:(1)由{x =−5+√2cost y =3+√2sint ,化简得:{x +5=√2costy −3=√2sint ,消去参数t ,得(x +5)2+(y -3)2=2, ∴圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-√2,化简得√22ρcosθ-√22ρsinθ=-√2,即ρcosθ-ρsinθ=-2,即x -y +2=0, 则直线l 的直角坐标方程为x -y +2=0;(Ⅱ)将A (2,π2),B (2,π)化为直角坐标为A (0,2),B (-2,0), ∴|AB |=√(0+2)2+(2−0)2=2√2,设P 点的坐标为(-5+√2cos t ,3+√2sin t ), ∴P 点到直线l 的距离为d =|−5+√2cost−3−√2sint+2|√2=|−6+2cos(t+π4)|√2,∴d min =4√2=2√2,则△PAB 面积的最小值是S =12×2√2×2√2=4.【解析】(1)由圆C 的参数方程消去t 得到圆C 的普通方程,由直线l 的极坐标方程,利用两角和与差的余弦函数公式化简,根据x =ρcosθ,y =ρsinθ转化为直角坐标方程即可; (2)将A 与B 的极坐标化为直角坐标,并求出|AB |的长,根据P 在圆C 上,设出P 坐标,利用点到直线的距离公式表示出P 到直线l 的距离,利用余弦函数的值域确定出最小值,即可确定出三角形PAB 面积的最小值.此题考查了圆的参数方程,以及简单曲线的极坐标方程,熟练掌握参数方程与普通方程间的转换是解本题的关键.4. 已知直线l :{x =1+12ty =√36t(t 为参数),曲线C 1:{x =cosθy =sinθ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的√32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 的距离的最大值. 【答案】解:(1)l 的普通方程y =√33(x −1),C 1的普通方程x 2+y 2=1,联立方程组{y =√33(x −1)x 2+y 2=1, 解得l 与C 1的交点为A (1,0),B(−12,−√32),则|AB|=√3;(2)C 2的参数方程为{x =12cosθy =√32sinθ(θ为参数),故点P 的坐标是(12cosθ,√32sinθ),从而点P 到直线l 的距离是|12cosθ−32sinθ−1|2=|√102sin(θ−φ)+1|2,由此当sin (θ-φ)=1时,d 取得最大值,且最大值为√104+12.【解析】本题考查参数方程与普通方程的转化,考查参数方程的运用,考查学生分析解决问题的能力,属于中档题.(1)设l 与C 1相交于A ,B 两点,利用普通方程,求出A ,B 的坐标,即可求|AB |; (2)点P的坐标是(12cosθ,√32sinθ),点P 到直线l 的距离是|12cosθ−32sinθ−1|2=|√102sin(θ−φ)+1|2,即可求它到直线l 的距离的最大值.5. 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C 1的参数方程为{y =sinαx=cosα,(α为参数,且α∈[0,π)),曲线C 2的极坐标方程为ρ=-2sinθ.(1)求C 1的极坐标方程与C 2的直角坐标方程;(2))若P 是C 1上任意一点,过点P 的直线l 交C 2于点M ,N ,求|PM |•|PN |的取值范围.【答案】解:(1)消去参数可得x 2+y 2=1,因为α∈[0,π),所以-1≤x ≤1,0≤y ≤1, 所以曲线C 1是x 2+y 2=1在x 轴上方的部分,所以曲线C 1的极坐标方程为ρ=1(0≤θ≤π).…(2分) 曲线C 2的直角坐标方程为x 2+(y +1)2=1…(5分) (2)设P (x 0,y 0),则0≤y 0≤1,直线l 的倾斜角为α,则直线l 的参数方程为:{y =y 0+tsinαx=x 0+tcosα(t 为参数).…(7分)代入C 2的直角坐标方程得(x 0+t cosα)2+(y 0+t sinα+1)2=1, 由直线参数方程中t 的几何意义可知|PM |•|PN |=|1+2y 0|,因为0≤y 0≤1,所以|PM |•|PN |=∈[1,3]…(10分)【解析】(1)求出C 1的普通方程,即可求C 1的极坐标方程,利用极坐标方程与直角坐标方程的互化方法得出C 2的直角坐标方程;(2)直线l 的参数方程为:{y =y 0+tsinαx=x 0+tcosα(t 为参数),代入C 2的直角坐标方程得(x 0+t cosα)2+(y 0+t sinα+1)2=1,由直线参数方程中t 的几何意义可知|PM |•|PN |=|1+2y 0|,即可求|PM |•|PN |的取值范围.本题考查三种方程的互化,考查参数方程的运用,考查学生分析解决问题的能力,属于中档题.6. 在直角坐标系xOy 中,曲线C 的参数方程为{y =sinα−cosαx=sinα+cosα(α为参数).(1)求曲线C 的普通方程;(2)在以O 为极点,x 正半轴为极轴的极坐标系中,直线l 方程为√2ρsin(π4−θ)+12=0,已知直线l 与曲线C 相交于A 、B 两点,求|AB |.【答案】解:(1)曲线C 的参数方程为{y =sinα−cosαx=sinα+cosα(α为参数). 由已知sinα=x+y 2,cosα=x−y 2,整理得:普通方程为(x+y 2)2+(x−y 2)2=1,化简得x 2+y 2=2.(2)由√2ρsin (π4-θ)+12=0,知ρ(cosθ−sinθ)+12=0,化为普通方程为x -y +12=0 圆心到直线l 的距离h =√24,由垂径定理|AB|=√302. 【解析】(1)直接把参数方程转化为直角坐标方程.(2)首先把极坐标方程转化为直角坐标方程,进一步利用点到直线的距离和垂径定理求出结果.本题考查的知识要点:直角坐标方程与参数方程的互化,极坐标方程和直角坐标方程的互化,点到直线的距离公式的应用,垂径定理得应用.7. 在直角坐标系xoy 中,已知点P (0,√3),曲线C 的参数方程为{x =√2cosφy =2sinφ(φ为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ=√32cos(θ−π6).(Ⅰ)判断点P 与直线l 的位置关系并说明理由;(Ⅱ)设直线l 与曲线C 的两个交点分别为A ,B ,求1|PA|+1|PB |的值. 【答案】解:(Ⅰ)点P 在直线l 上,理由如下:直线l :ρ=√32cos(θ−π6),即2cos(θ−π6)=√3,亦即√3ρcosθ+ρsinθ=√3,∴直线l 的直角坐标方程为:√3x +y =√3,易知点P 在直线l 上. (Ⅱ)由题意,可得直线l 的参数方程为{x =−12ty =√3+√32t (t 为参数),曲线C 的普通方程为y 24+x 22=1. 将直线l 的参数方程代入曲线C 的普通方程,得5t 2+12t -4=0, 设两根为t 1,t 2, ∴t 1+t 2=-125,t 1•t 2=-45,∴|PA |+|PB |=|t 1-t 2|=√(t 1+t 2)2−4t 1t 2=4√145, ∴1|PA|+1|PB|=|PA |+|PB ||PA|⋅|PB|=4√145|−45|=√14.【解析】(Ⅰ)点P 在直线l 上,理由如下:直线l :ρ=√32cos(θ−π6),展开可得√3ρcosθ+ρsinθ=√3,可得直线l 的直角坐标方程即可验证. (Ⅱ)由题意,可得直线l 的参数方程为{x =−12t y =√3+√32t(t 为参数),曲线C 的普通方程为y 24+x 22=1.将直线l 的参数方程代入曲线C 的普通方程,得5t 2+12t -4=0,可得|PA |+|PB |=|t 1-t 2|=√(t 1+t 2)2−4t 1t 2,即可得出.本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程及其应用,考查了推理能力与计算能力,属于中档题.8. 在直角坐标系xOy 中,直线l 的参数方程为{y =2+tsinαx=tcosα(t 为参数,0≤α<π),曲线C 的参数方程为{y =2+2sinβx=2cosβ(β为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设C 与l 交于M ,N 两点(异于原点),求|OM |+|ON |的最大值. 【答案】解:(1)∵曲线C 的参数方程为{y =2+2sinβx=2cosβ(β为参数), ∴消去参数β,得曲线C 的普通方程为x 2+(y -2)2=4, 化简得x 2+y 2=4y ,则ρ2=4ρsinθ, 所以曲线C 的极坐标方程为ρ=4sinθ.(2)∵直线l 的参数方程为{y =2+tsinαx=tcosα(t 为参数,0≤α<π),∴由直线l 的参数方程可知,直线l 必过点(0,2),也就是圆C 的圆心,则∠MON =π2, 不妨设M(ρ1,θ),N(ρ2,θ+π2),其中θ∈(0,π2),则|OM|+|ON|=ρ1+ρ2=4sinθ+4sin(θ+π2)=4(sinθ+cosθ)=4√2sin(θ+π4), 所以当θ=π4,|OM |+|ON |取得最大值为4√2.【解析】本小题考查曲线和圆的极坐标方程、参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等.(1)曲线C 的参数方程消去参数β,得曲线C 的普通方程,由此能求出曲线C 的极坐标方程.(2)由直线l 的参数方程可知,直线l 必过圆C 的圆心(0,2),则∠MON =π2,设M(ρ1,θ),N(ρ2,θ+π2),则|OM |+|ON |=4√2sin(θ+π4),当θ=π4,|OM |+|ON |取得最大值为4√2.9. 在直角坐标系xOy 中,曲线C 1的参数方程为{y =2sinαx=2+2cosα(α为参数),曲线C 2的参数方程为{y =2+2sinβx=2cosβ(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和曲线C 2的极坐标方程;(2)已知射线l 1:θ=α(0<α<π2),将射线l 1顺时针旋转π6得到射线l 2;θ=α-π6,且射线l 1与曲线C 1交于O ,P 两点,射线l 2与曲线C 2交于O ,Q 两点,求|OP |•|OQ |的最大值.【答案】解:(1)曲线C 1的参数方程为{y =2sinαx=2+2cosα(α为参数),利用平方关系消去参数可得:曲线C 1的普通方程为(x -2)2+y 2=4,展开可得:x 2+y 2-4x =0,利用互化公式可得:ρ2-4ρcosθ=0, ∴C 1极坐标方程为ρ=4cosθ.曲线C 2的参数方程为{y =2+2sinβx=2cosβ(β为参数),消去参数可得: 曲线C 2的普通方程为x 2+(y -2)2=4,展开利用互化公式可得C 2极坐标方程为ρ=4sinθ. (2)设点P 极点坐标(ρ1,4cosα),即ρ1=4cosα.点Q 极坐标为(ρ2,4sin(α−π6)),即ρ2=4sin(α−π6).则|OP|⋅|OQ|=ρ1ρ2=4cosα⋅4sin(α−π6)=16cosα⋅(√32sinα−12cosα)=8sin(2α−π6)−4.∵α∈(0,π2),∴2α−π6∈(−π6,5π6), 当2α−π6=π2,即α=π3时,|OP |•|OQ |取最大值4.【解析】(1)曲线C 1的参数方程为{y =2sinαx=2+2cosα(α为参数),利用平方关系消去参数可得曲线C 1的直角坐标方程,利用互化公式可得曲线C 1极坐标方程.曲线C 2的参数方程为{y =2+2sinβx=2cosβ(β为参数),消去参数可得:曲线C 2的普通方程,利用互化公式可得C 2极坐标方程.(2)设点P 极点坐标(ρ1,4cosα),即ρ1=4cosα.点Q 极坐标为(ρ2,4sin(α−π6)),即ρ2=4sin(α−π6).代入|OP |•|OQ |,利用和差公式、三角函数的单调性与值域即可得出.本题考查了参数方程化为普通方程、直线与曲线相交弦长公式、直角坐标方程与极坐标方程的互化,考查了推理能力与计算能力,属于中档题.10. 在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{y =1+sint x=cost(t 为参数),曲线C 2的直角坐标方程为x 2+(y -2)2=4.以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=α,(0<α<π)(1)求曲线C 1、C 2的极坐标方程;(2)设点A 、B 为射线l 与曲线C 1、C 2除原点之外的交点,求|AB |的最大值. 【答案】解(1)由曲线C 1的参数方程{y =1+sint x=cost(t 为参数)消去参数t 得x 2+(y -1)2=1,即x 2+y 2-2y =0,∴曲线C 1的极坐标方程为ρ=2sinθ.由曲线C 2的直角坐标方程x 2+(y -2)2=4,得x 2+y 2-4y =0, ∴曲线C 2的极坐标方程ρ=4sinθ.(2)联立{ρ=2sinθθ=α,得A (2sinα,α),∴|OA |=2sinα, 联立{ρ=4sinθθ=α,得B (4sinα,α),∴|OB |=4sinα. ∴|AB |=|OB |-|OA |=2sinα.∵0<α<π,∴当α=π2时,|AB |有最大值2.【解析】(1)由曲线C 1的参数方程消去参数t 得x 2+(y -1)2=1,由此能求出曲线C 1的极坐标方程;由曲线C 2的直角坐标方程转化为x 2+y 2-4y =0,由此能求出曲线C 2的极坐标方程.(2)联立{ρ=2sinθθ=α,得A |OA |=2sinα,联立{ρ=4sinθθ=α,得|OB |=4sinα.由此能求出|AB |的最大值.本题考查曲线的极坐标方程的求法,考查弦长的最大值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.11. 在直角坐标系xOy 中,将曲线C :{x =1+costy =12sint(t 为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C 1;以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2ρcos(θ−π6)=3√3. (1)求曲线C 1的极坐标方程;(2)已知点M (1,0),直线l 的极坐标方程为θ=π3,它与曲线C 1的交点为O ,P ,与曲线C 2的交点为Q ,求△MPQ 的面积.【答案】解:(1)∵曲线C :{x =1+costy =12sint (t 为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C 1,∴由题意知,曲线C 1的参数方程为{y =sint x=1+cost(t 为参数), ∴曲线C 1的普通方程为(x -1)2+y 2=1,即x 2+y 2-2x =0, ∴曲线C 1的极坐标方程为ρ2-2ρcosθ=0,即ρ=2cosθ (2)设点P ,Q 的极坐标分别为(ρ1,θ1),(ρ2,θ2), 则由{θ1=π3ρ1=2cosθ1,得P 的极坐标为P (1,π3),由{θ2=π32ρ2cos(θ2−π6)=3√3,得Q 的极坐标为Q (3,π3).∵θ1=θ2,∴|PQ |=|ρ1-ρ2|=2, 又M 到直线l 的距离为√32,∴△MPQ 的面积S △MPQ =12×√32×2=√32.【解析】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,是中档题,解题时要认真审题,注意极坐标方程、直角坐标方程、参数方程的互化公式的合理运用. (1)由题意求出曲线C 1的参数方程,从而得到曲线C 1的普通方程,由此能求出曲线C 1的极坐标方程.(2)设点P ,Q 的极坐标分别为(ρ1,θ1),(ρ2,θ2),由直线l 的极坐标方程为θ=π3,它与曲线C 1的交点为O ,P ,与曲线C 2的交点为Q ,分别求出P ,Q 的极坐标,从而求出|PQ |=|ρ1-ρ2|=2,再由M 到直线l 的距离为√32,能求出△MPQ 的面积.12. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2√2sin (θ-π4),直线l 的参数方程为{y =1+t x=−tt 为参数,直线l 和圆C 交于A ,B 两点. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设l 上一定点M (0,1),求|MA |•|MB |的值. 【答案】(本小题满分10分) 解:(Ⅰ)∵圆C 的极坐标方程为:ρ=2√2sin (θ-π4)=2√2(sinθcos π4-cosθsin π4)=2sinθ-2cosθ, ∴ρ2=2ρsinθ-2ρcosθ,∴圆C 的直角坐标方程x 2+y 2=2y -2x ,即(x +1)2+(y -1)2=2. (Ⅱ)直线l 的参数方程为{y =1+t x=−t,t 为参数, 直线l 的参数方程可化为{x =−√22t ′y =1+√22t ′,t ′为参数,代入(x +1)2+(y -1)2=2,得(-√22t ′+1)2+(√22t ′)2=2, 化简得:t '2-√2t ′-1=0, ∴t 1′⋅t 2′=-1,∴|MA |•|MB |=|t 1′⋅t 2′|=1.【解析】(Ⅰ)圆C 的极坐标方程转化为ρ2=2ρsinθ-2ρcosθ,由此能求出圆C 的直角坐标方程.(Ⅱ)直线l 的参数方程化为{x =−√22t ′y =1+√22t ′,t ′为参数,代入(x +1)2+(y -1)2=2,得t '2-√2t ′-1=0,由此能求出|MA |•|MB |.本题考查圆的直角坐标方程的求法,考查两线段乘积的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.13. 在直角坐标系xOy 中,圆C 的参数方程{y =1+sinϕx=cosϕ(其中φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设直线l 极坐标方程是ρsin (θ+π3)=2,射线OM :θ=π6与圆C 的交点为P ,与直线l 的交点为Q ,求线段PQ 的长.【答案】解:(Ⅰ)∵圆C 的参数方程{y =1+sinϕx=cosϕ(其中φ为参数). ∴圆C 的普通方程为x 2+(y -1)2=1,又x =ρcosθ,y =ρsinθ,∴圆C 的极坐标方程为ρ=2sinθ.…………(5分) (Ⅱ)∵直线l 极坐标方程是ρsin (θ+π3)=2,射线OM :θ=π6与圆C 的交点为P ,与直线l 的交点为Q , ∴把θ=π6代入圆的极坐标方程可得ρP =1, 把θ=π6代入直线l 极坐标方程可得ρQ =2, ∴|PQ |=|ρP -ρQ |=1.…………(10分)【解析】(Ⅰ)先求出圆C 的普通方程,由此能求出圆C 的极坐标方程.(Ⅱ)把θ=π6代入圆的极坐标方程可得ρP =1,把θ=π6代入直线l 极坐标方程可得ρQ =2,由此能求出|PQ |.本题考查曲线的极坐标方程的求法,考查线段长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14. 在平面直角坐标系xOy 中曲线C 1的参数方程为{y =2t x=2t2(其中t 为参数)以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C 2的极坐标方程为ρsin (θ−π4)=-√22.(1)把曲线C 1的方程化为普通方程,C 2的方程化为直角坐标方程;(2)若曲线C 1,C 2相交于A ,B 两点,AB 的中点为P ,过点P 作曲线C 2的垂线交曲线C 1于E ,F 两点,求|EF||PE|⋅|PF|.【答案】解:(1)曲线C 1的参数方程为{y =2t x=2t 2(其中t 为参数), 转换为直角坐标方程为:y 2=2x .曲线C 2的极坐标方程为ρsin (θ−π4)=-√22.转换为直角坐标方程为:x -y -1=0.(2)设A (x 1,y 1),B (x 2,y 2),且中点P (x 0,y 0), 联立方程为:{y 2=2x x −y −1=0,整理得:x 2-4x +1=0 所以:x 1+x 2=4,x 1x 2=1, 由于:x 0=x 1+x 22=2,y 0=1.所以线段AB 的中垂线参数方程为{x =2−√22ty =1+√22t (t 为参数),代入y 2=2x ,得到:t 2+4√2t −6=0,故:t 1+t 2=−4√2,t 1•t 2=-6,所以:EF =|t 1-t 2|=√(t 1+t 2)2−4t 1t 2=2√14, |PE ||PF |=|t 1•t 2|=6 故:|EF||PE|⋅|PF|=2√146=√143.【解析】(1)直接利用参数方程直角坐标方程和极坐标方程之间的转换求出结果. (2)利用(1)的结论,进一步利用点到直线的距离公式和一元二次方程根和系数关系的应用求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.15. 在直角坐标系xOy 中,曲线C 1的参数方程为{y =2+sinαx=2+cosα,(α为参数),直线C 2的方程为y =√3x ,以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA|+1|OB|.【答案】解:(1)曲线C 1的参数方程为{y =2+sinαx=2+cosα(α为参数),直角坐标方程为(x -2)2+(y -2)2=1,即x 2+y 2-4x -4y +7=0,极坐标方程为ρ2-4ρcosθ-4ρsinθ+7=0 直线C 2的方程为y =√3x ,极坐标方程为tanθ=√3;(2)直线C 2与曲线C 1联立,可得ρ2-(2+2√3)ρ+7=0,设A ,B 两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2√3,ρ1ρ2=7, ∴1|OA|+1|OB|=|ρ1+ρ2||ρ1ρ2|=2+2√37.【解析】(1)利用三种方程的转化方法,即可得出结论; (2)利用极坐标方程,结合韦达定理,即可求1|OA|+1|OB|.本题考查三种方程的转化方法,考查极坐标方程的运用,属于中档题.16. 设直线l 的参数方程为{x =1+12ty =t +1,(t 为参数),若以直角坐标系xOy 的原点O为极点,x 轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ.(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,并指出曲线C 是什么曲线; (Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|AB |. 【答案】解:(Ⅰ)由于ρsin 2θ=4cosθ, 所以ρ2sin 2θ=4ρcosθ,即y 2=4x ,因此曲线C 表示顶点在原点,焦点在x 轴上的抛物线. (Ⅱ){x =1+12ty =t +1,化为普通方程为y =2x -1,代入y 2=4x ,并整理得4x 2-8x +1=0,所以|AB|=√1+k 2|x 2−x 1|, =√1+22⋅√(x 2+x 1)2−4x 1x 2, =√5×√22−4×14=√15.【解析】(Ⅰ)直接把极坐标方程转化为直角坐标方程.(Ⅱ)首先把参数方程转化为直角坐标方程,进一步利用直线和圆锥曲线的位置关系,建立方程组利用弦长公式求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线与圆锥曲线的位置关系的应用,弦长公式的应用.17. 在平面直角坐标系xoy ,已知椭圆的方程为:x 220+y 212=1,动点P 在椭圆上,O 为原点,线段OP 的中点为Q .(Ⅰ)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点Q 的轨迹的极坐标方程;(Ⅱ)设直线l 的参数方程为{x =12t y =√32t ,(t 为参数),l 与点Q 的轨迹交于M 、N两点,求弦长|MN |.【答案】解:(Ⅰ)设点Q 的坐标为(x ,y ),则点P 的坐标为(2x ,2y ), 由点P 在椭圆上得(2x)220+(2y)212=1,化解可得:x 25+y 23=1①.由x =ρcosθ,y =ρsinθ,代入①得ρ2cos 2θ5+ρ2sin 2θ3=1,化简可得点Q 轨迹的极坐标方程为ρ2(3+2sin 2θ)=15. (Ⅱ)(法一)把直线l 参数方程{x =12t y =√32t (t 为参数)代入①得t 245+3t 243=1化简得:t 2=103. 所以t 1=√303,t 2=−√303, ∴弦长|MN|=|t 1−t 2|=2√303;(法二)由直线l 参数方程{x =12ty =√32t(t 为参数)知,直线l 过极点,倾斜角为π3,∴直线l 的极坐标方程为θ=π3(ρ∈R)).由{θ=π3ρ2(3+2sin 2θ)=15解得:{θ=π3ρ1=√303或{θ=π3ρ2=−√303.. ∴弦长|MN|=|ρ1−ρ2|=2√303. (法三)由直线l 参数方程{x =12ty =√32t (t 为参数)知,直线l 的普通方程为y =√3x ,联立①解得{x 1=√306y 1=√102,{x 2=−√306y 2=−√102.弦长|MN|=√(x 1−x 2)2+(y 1−y 2)2=2√303.【解析】(Ⅰ)设点Q 的坐标为(x ,y ),则点P 的坐标为(2x ,2y ),然后将点P 的坐标代入椭圆的方程可得出有关点Q 的坐标所满足的方程,即为点Q 的轨迹方程;(Ⅱ)解法一是将直线l 的参数方程与椭圆C 的方程联立,消去x 、y ,得到关于t 的二次方程,并列出韦达定理,并利用弦长公式|MN |=|t 1-t 2|结合韦达定理可求出答案; 解法二是将直线l 的方程化为普通方程,将直线l 的普通方程与椭圆C 的方程联立,列出韦达定理,结合韦达定理与弦长公式可计算出|MN |;解法三是写出直线l 与椭圆C 的极坐标方程,将直线l 的极坐标方程与椭圆的极坐标方程联立,列出有关ρ的二次方程,列出韦达定理,结合韦达定理以及|MN |=|ρ1-ρ2|可计算出答案.本题考查直线与椭圆的综合问题,同时也考查了参数方程与极坐标方程的应用,考查计算能力与变形能力,属于中等题.18. 在直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ-2cosθ-6sinθ+1ρ=0,直线l 的参数方程为{x =3+12t y =3+√32t(t 为参数).(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,点P 的坐标为(3,3),求|PA |+|PB |的值.【答案】解:(1)曲线C 的极坐标方程为ρ-2cosθ-6sinθ+1ρ=0, 可得:ρ2-2ρcosθ-6ρsinθ+1=0, 可得x 2+y 2-2x -6y +1=0,曲线C 的普通方程:x 2+y 2-2x -6y +1=0. (2)由于直线l 的参数方程为{x =3+12t y =3+√32t (t 为参数).把它代入圆的方程整理得t 2+2t -5=0,∴t 1+t 2=-2,t 1t 2=-5, |PA |=|t 1|,|PB |=|t 2|,|PA |+|PB |=|t 1|+|t 2|=√(t 1+t 2)2−4t 1t 2=2√6. ∴|PA |+|PB |的值2√6.【解析】(1)利用极坐标与直角坐标化简公式化简求解即可.(2)把直线方程代入圆的方程化简可得t 的二次方程,利用根与系数的关系,以及|PA |=|t 1|,|PB |=|t 2|求出|PA |•|PB |.本题考查参数方程化普通方程,考查极坐标方程化直角坐标方程,考查了直线的参数方程中参数t 的几何意义,是基础题.19. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =a +√3costy =√3sint(t 为参数,a >0).以坐标原点O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 1上一点A 的极坐标为(1,π3),曲线C 2的极坐标方程为ρ=cosθ. (Ⅰ)求曲线C 1的极坐标方程;(Ⅱ)设点M ,N 在C 1上,点P 在C 2上(异于极点),若O ,M ,P ,N 四点依次在同一条直线l 上,且|MP |,|OP |,|PN |成等比数列,求l 的极坐标方程. 【答案】解:(Ⅰ)曲线C 1的参数方程为{x =a +√3costy =√3sint(t 为参数,a >0).转换为直角坐标方程为:(x -a )2+y 2=3, 化简为:x 2+y 2-2ax +a 2-3=0,转换为极坐标方程为:ρ2-2a ρcosθ+a 2-3=0,把曲线C 1上一点A 的极坐标(1,π3),代入曲线得极坐标方程得到:a 2-a -2=0, 解得:a =2或a =-1(舍去).所以曲线的极坐标方程为:ρ2-4ρcosθ+1=0.(Ⅱ)由题意知:设直线l 的极坐标方程为θ=α(ρ∈R ), 设点M (ρ1,α),N (ρ2,α),P (ρ3,α), 则:ρ1<ρ2.联立{ρ2−4ρcosθ+1=0θ=α得到:ρ2-4ρcosα+1=0,所以:ρ1+ρ2=4cosα,ρ1•ρ2=1. 联立:{ρ=cosθθ=α,得到:ρ3=cosα.由于|MP|,|OP|,|PN|成等比数列,所以:ρ32=(ρ3−ρ1)(ρ2−ρ3),则:2cos2α=4cos2α-1,,解得:cosα=√22所以直线l的极坐标方程为θ=π4(ρ∈R).【解析】(Ⅰ)直接利用转化关系,把参数方程和极坐标方程与直角坐标方程进行转化.(Ⅱ)利用(Ⅰ)的结论,建立方程组,进一步利用一元二次方程根和系数的关系,利用等比中项求出结果.本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,一元二次方程根与系数的关系的应用,等比中项的应用.。

16.第三期 极坐标与参数方程 (试题)

16.第三期 极坐标与参数方程 (试题)
2 直线 l 交圆 C 于 A , B 两点, P 为 AB 中点. (1)求点 P 轨迹的极坐标方程; (2)若 | AB | | OP | 3 ,求 的值.
7
2.(惠州市 2020 届高三第三次调研考试,理 22)在平面直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴的
正半轴为极轴建立极坐标系,曲线 M 的极坐标方程为 2 cos ,若极坐标系内异于 O 的三点 A 1, ,
C2
的极坐标方程为
2
3
9 2cos2.
.
(1)写出 C1 的普通方程和 C2 的直角坐标方程;
1
(2)若 C1 与 y 轴交于点 M , C1 与 C2 相交于 A 、 B 两点,求 | MA | | MB | 的值.
x 1 t
4(. 浏阳市一中
2020
届高三第六次月考试题)在直角坐标系
xOy
(I)求 C1 的直角坐标方程;
(II)曲线
C2
的参数方程为
x
y
t cos 6
t sin 6

t
为参数)求
C1

C2
的公共点的极坐标.
考点五 综合问题
1.(2020 届宁德市毕业班第一次质量检查,理 22)在平面直角坐标系 xOy 中,圆 C : (x 1)2 ( y 1)2 1.以坐 标原点 O 为极点, x 轴正半轴为极轴,直线 l 的极坐标方程为 (0 ) ,
(0, π) .以直角坐标系的原点 O 为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2
2 (3 sin2 ) 12 .
(Ⅰ)写出直线 l 的参数方程和曲线 C 的直角坐标方程,并判断曲线 C 是什么曲线; (Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,当 | PM | | PN | 2 时,求 的值.

高考极坐标与参数方程题型及解题方法

高考极坐标与参数方程题型及解题方法

高考极坐标与参数方程题型及解题方法1. 引言在高考数学考试中,极坐标与参数方程是比较常见的题型。

掌握这些题型的解题方法对于考生来说非常重要。

本文将针对高考中常见的极坐标与参数方程题型进行介绍,并给出相应的解题方法。

2. 极坐标题型及解题方法2.1 求曲线方程在给定了极坐标方程$r=f(\\theta)$的情况下,求曲线的方程是比较常见的题型。

要解决这类题目,一般有以下步骤:•首先,观察函数$f(\\theta)$的性质,判断是否是一个周期函数,通过实例来确定周期。

•根据这个周期,可以得到对应的关系式。

•使用关系式消去r和$\\theta$,得到曲线的直角坐标方程。

•最后,通过画图或其他方式,验证所得方程是否正确。

2.2 求曲线的长度求曲线的长度也是一个常见的问题,一般分为以下几步:•根据给定的极坐标方程$r=f(\\theta)$,利用弧长公式进行求解。

公式为:$$L=\\int_{\\alpha}^{\\beta}\\sqrt{[f'(\\theta)]^2+f^2(\\theta)}d\\theta$$ •其中$\\alpha$和$\\beta$为曲线所在区间,$f'(\\theta)$为导数。

•确定曲线所在区间,并计算导数$f'(\\theta)$。

•将上述求得的值带入弧长公式中,进行计算。

2.3 求曲线与极轴的夹角有时候,我们需要求出曲线与极轴的夹角。

对于这类问题,一般可以按照以下步骤进行求解:•首先,通过给定的极坐标方程$r=f(\\theta)$求出曲线与极轴的交点。

•然后,求出曲线在交点处的切线斜率k。

斜率的求解公式为:$$k=\\tan(\\pi/2-\\theta)=-\\frac{dr}{d\\theta}/r$$•最后,利用切线的斜率k求出曲线与极轴的夹角。

3. 参数方程题型及解题方法3.1 求曲线方程对于给定的参数方程x=f(t)和y=g(t),求曲线的方程也是常见的高考题型。

高考数学极坐标与参数方程题型归纳

高考数学极坐标与参数方程题型归纳

高考数学极坐标与参数方程题型归纳在高考数学试题中,关于极坐标与参数方程的题型占据着重要的位置。

理解和掌握这部分知识点,不仅有助于应对考试,也对于深入理解数学的概念和应用有着重要意义。

下面我们来归纳总结一些常见的高考数学极坐标与参数方程题型。

极坐标题型1.求一点在极坐标系中的坐标给定一点在极坐标系中的表示形式,要求将其转换为直角坐标系中的坐标表示。

2.求极坐标下的函数表达式已知一函数在直角坐标系中的表达式,要求将其转换为极坐标下的函数表达式。

3.求曲线在极坐标系中的方程已知函数在极坐标系中的表达式,要求确定其对应的曲线在极坐标系下的方程式。

4.求曲线与极轴、极径的交点给定曲线在极坐标系下的方程,要求求解其与极轴或者极径的交点。

参数方程题型1.极坐标与参数方程的互相转化给定一个曲线的参数方程,要求将其转换为极坐标系的方程表示,或者反之。

2.参数方程求切线斜率已知曲线的参数方程,要求求解某点处的切线的斜率。

3.参数方程求曲线间的距离给定两条曲线的参数方程,要求确定其之间的距离。

4.参数方程求曲线的长度已知曲线的参数方程,要求确定其在一定区间内的弧长。

解题技巧1.理解极坐标与参数方程的基本概念在解题时,首先要对极坐标、参数方程的定义及基本性质有清晰的理解。

2.熟练运用坐标转换公式对于极坐标与直角坐标系之间的转换,可以根据公式进行相应的转化,这是解题的基本技巧。

3.掌握参数方程的运算方法参数方程的运算方法在解题时非常重要,要善于利用参数方程的特点进行计算。

4.多练习,熟悉题型通过多练习不同类型的题目,熟悉题型变形和解题技巧,提高解题效率。

高考数学中的极坐标与参数方程题型涵盖了数学的多个重要概念,需要认真理解和掌握。

通过不断的练习和积累,相信在高考数学中能够取得优异的成绩。

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法

极坐标与参数方程题型及解题方法极坐标与参数方程题型及解题方法高考数学中,极坐标与参数方程主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。

这些题目通常属于中等难度,要求掌握基本概念、基本知识和基本运算。

这类题目常以选考题的形式出现,也有可能出现在高考数学的选择题和填空题中。

极坐标与直角坐标的互化1.曲线的极坐标方程化成直角坐标方程:对于简单的曲线,我们可以直接代入公式ρcosθ=x,ρsinθ=y,ρ²=x²+y²,但有时需要作适当的变化,如将式子的两边同时平方,或两边同时乘以ρ等。

2.直角坐标(x,y)化为极坐标(ρ,θ)的步骤:1) 运用ρ²=x²+y²,tanθ=y/x;2) 在[0,2π)内,由tanθ=y/x求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置)。

解题时必须注意:①确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可。

②平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一。

当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点。

③进行极坐标方程与直角坐标方程互化时,应注意两点:Ⅰ注意ρ、θ的取值范围及其影响。

Ⅱ重视方程的变形及公式的正用、逆用、变形使用。

例1:在直角坐标系xOy中,直线I) 求C1,C2的极坐标方程;II) 若直线C3的极坐标方程为θ=π/4,设C2与C3的交点为M和N,求C2MN的面积。

解:(I) 因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ²-2ρcosθ-4ρsinθ+4=0.II) 将θ=π/4代入ρ²-2ρcosθ-4ρsinθ+4=0,得ρ1=2√2,ρ2=2/√2.故MN=ρ1-ρ2=2.由于C2的半径为1,所以C2MN的面积为2π/8-1/2=π/8-1/2.参数方程是一种表示曲线的方式,其中x和y都是关于一个参数t的函数。

高考数学极坐标与参数方程题型归纳

高考数学极坐标与参数方程题型归纳
(2)若点P是曲线C2上任意一点,P点的直角坐标为(x,y),求x+y的最大值和最小值.
(3)P为曲线C2上任意一点,求点P到直线l的距离的最值及此时P的直角坐标.
7.在坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线C2的极坐标方程为ρsin =2 .
极坐标系与参数方程
题型一与圆有关的问题
1.已知曲线C1的参数方程为 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
2.在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈ .(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.
题型二 根据椭圆参数方程求最值
6.曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的 倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(1)求曲线C2和直线l的普通方程.
9.以平面直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为 ,若直线l的极坐标方程为 ,曲线 的参数方程是 ,( 为参数).
(1)求直线l的直角坐标方程和曲线 的普通方程;
(2)设直线l与曲线 交于 两点,求 .
10.在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线 的极坐标方程为 ,曲线 的极坐标方程为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程题型二:最值问题
13.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1) 求曲线的普通方程与曲线的直角坐标方程;
(2) 设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标.
14、已知曲线C :x 24+y 29=1,直线l :⎩
⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程、直线l 的普通方程;
(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.
15、以原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知某圆的极坐标方程为064cos 242=+⎪⎭
⎫ ⎝⎛-
-πθρρ (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(2)若点()y x P ,在该圆上,求y x +的最大值和最小值.
16、已知曲线C 的极坐标方程θρsin 2=,直线l 的参数方程)(22223为参数t t y t x ⎪⎪⎩
⎪⎪⎨⎧=+=,
以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系;
(1)求曲线l C 与直线的直角坐标方程.
(2)若M 、N 分别为曲线l C 与直线上的两个动点,求||MN 的最小值.
17、已知直线l
的参数方程为1212
x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的参数方程为
2cos sin x y θθ
=+⎧⎨=⎩(θ为参数)。

(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,
)3π,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值与最大值。

18、以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧=+=α
αsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=. (Ⅰ)求曲线C 的直角坐标方程;
(Ⅱ)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.
19、在直角坐标系xOy 中,l 是过定点(4,2)P 且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为4cos ρθ=.
(I)写出直线l 的参数方程;并将曲线C 的方程化为直角坐标方程;
( II)若曲线C 与直线相交于不同的两点,M N ,求PM PN +的取值范围.
20、已知曲线C 的参数方程为2cos sin x y θ
θ=+⎧⎨=⎩(θ为参数)。

(Ⅰ)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以
x 轴正半轴为极轴)中,点P 的极坐标为(4,)3π
,写出曲线C 的极坐标方程和点P 的直角坐标。

(Ⅱ)设点Q(x,y)是曲线C 上的一个动点,求y x t +=的最小值与最大值。

相关文档
最新文档