催化裂化的工艺特点及基本原理

合集下载

催化裂化原理

催化裂化原理

催化裂化原理催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃的过程。

其原理是在催化剂的作用下,长链烷烃分子发生裂解,生成短链烷烃和烯烃。

这种工艺可以将原油中的重质烃转化为汽油和柴油等轻质烃,是炼油过程中不可或缺的一环。

催化裂化的原理主要包括以下几个方面:1. 催化剂的作用。

催化裂化过程中,催化剂起着至关重要的作用。

催化剂可以降低裂解反应的活化能,加速反应速率,提高产物选择性,延长催化剂寿命等。

常用的催化剂包括硅铝比较高的沸石类催化剂和钼、镍等金属氧化物催化剂。

2. 裂化反应。

在催化裂化反应中,长链烷烃分子在催化剂的作用下发生裂解,生成短链烷烃和烯烃。

裂化反应是一个烷烃分子内部发生的裂解反应,主要包括碳-碳键的断裂和碳-碳键的重排。

裂化反应的产物主要是烷烃、烯烃和芳烃。

3. 反应条件。

催化裂化的反应条件包括温度、压力、催化剂种类和用量等。

通常情况下,催化裂化反应需要在较高的温度下进行,以提高反应速率和产物选择性。

此外,适当的压力和催化剂的选择也对裂化反应的效果有重要影响。

4. 产物分离。

催化裂化反应产生的混合气体需要进行分离和纯化,以得到所需的轻质烃产品。

通常采用的分离技术包括精馏、萃取、吸附等,以获得高纯度的汽油和柴油产品。

5. 催化剂再生。

在催化裂化过程中,催化剂会因受到焦炭和烃类物质的污染而失活,需要进行再生。

催化剂再生是通过热氧化或化学氧化等方法将焦炭烧除,恢复催化剂的活性和选择性,延长催化剂的使用寿命。

总的来说,催化裂化是一种重要的炼油工艺,通过催化剂的作用将重质烃分子裂解成轻质烃,可以提高原油的利用率,生产出更多的汽油和柴油产品。

催化裂化的原理涉及催化剂的作用、裂化反应、反应条件、产物分离和催化剂再生等多个方面,需要综合考虑和控制,以实现高效、稳定的生产过程。

催化裂化工艺与工程

催化裂化工艺与工程

催化裂化工艺与工程引言催化裂化工艺与工程是石油炼制领域中的重要技术,其通过催化剂的作用,将重油分子裂解为较轻的产品。

催化裂化工艺在石油化工行业中具有广泛应用,可以生产出汽油、液化气和轻质石脑油等产品,对石油资源的高效利用具有重要意义。

催化裂化反应原理1.催化裂化反应介质:常见的催化剂是硅铝酸盐,其具有高的表面积和一定的酸性。

催化剂通过提供活性中心,促进了重油分子的裂解反应。

2.催化裂化反应机理:重油中的长链烷烃在催化剂的作用下发生裂解,产生较短的烷烃和芳烃。

裂解过程中产生了大量的烯烃和芳烃,这些物质是石油下游加工的重要原料。

催化裂化工艺流程1.原料预处理:重油首先需要进行预处理,包括去除硫、氮等杂质,以减小对催化剂的毒化作用。

2.催化裂化反应:重油在裂化装置中与催化剂接触,发生裂解反应。

在裂化过程中,需要严格控制反应温度、压力和催化剂的用量,以提高产品的收率和质量。

3.分离工序:裂化反应产生的产物包括汽油、液化气、轻质石脑油等组分,这些组分需要经过分离工序进行提取。

主要包括精馏、吸附和深度处理等步骤。

4.催化剂再生:经过一段时间的使用,催化剂表面会产生积炭和失活,需要进行再生。

催化剂再生的过程包括热氧化和酸洗等步骤,以恢复催化剂的活性。

5.产品处理:裂化产物需要进一步进行加工和改性,以获得符合市场需求的成品。

催化裂化工程设计1.反应器设计:反应器是催化裂化装置的核心部分,设计合理的反应器可以提高反应效率和产物质量。

反应器设计考虑因素包括反应器类型、反应器尺寸、反应器温度和压力等。

2.催化剂选择:催化剂的选择是催化裂化工程设计中的重要一环。

催化剂的性能直接影响反应的效果和产物的质量。

选择合适的催化剂需要考虑其活性、稳定性和成本等因素。

3.热力学和动力学模型:对催化裂化反应进行热力学和动力学模拟,可以预测反应过程中的表现和优化操作条件。

4.安全性考虑:催化裂化工程设计需要考虑装置的安全性。

石油化工装置涉及高温、高压和易燃易爆物质,需要进行安全分析和设计,以确保操作的安全性和稳定性。

催化裂解工艺(DCC)

催化裂解工艺(DCC)

催化裂解工艺(DCC)1.工艺原理:催化裂解工艺(DCC)是以重质油为原料、利用择形催化反应制取气体烯烃的新技术。

其中催化裂解Ⅰ型(DCC-Ⅰ)以生产最大量丙烯为主要目的,催化裂解Ⅱ型(DCC-Ⅱ)以生产最大量异丁烯和异戊烯、兼产丙烯和高辛烷值优质汽油为目的。

它们所加工的原料可以是蜡油、蜡油掺渣油或二次加工油以及常压渣油,实现了炼油工艺向石油化工的延伸,开创了一条以重质油为原料直接制取低碳烯烃的新途径,达到国际先进水平。

由于目的产品不同,DCC-Ⅰ和DCC-Ⅱ两者采用的反应器型式、催化剂类型和工艺操作条件都不相同,其差别列于表1。

从表1可见,DCC-Ⅱ的反应时间、反应温度、剂油比及注水量均低于DCC-Ⅰ。

表1:DCC-Ⅰ和DCC-Ⅱ工艺的主要差别DCC-ⅠDCC-Ⅱ反应器型式提升管十床层提升管催化剂CRP CIP反应温度,℃540-580500-530剂油比9-156-9注水量,m%15-256-10产品分布,m%H2~C211.91 5.59C3~C442.2234.49C5+汽油26.6039.00柴油 6.609.77重油 6.07 5.84焦炭 6.00 4.31损失0.60 1.00合计100.00100.00烯烃产率,m%丙烯21.0314.29总丁烯14.0314.65异丁烯 5.13 6.13总戊烯--9.77异戊烯-- 6.77异丁烯/总丁烯0.360.42异戊烯/总戊烯--0.69汽油性质RONC99.396.4MONC84.782.5催化裂解利用择形催化反应原理,将重质原料油选择性裂化成低碳气体烯烃,其丙烯产率是常规FCC的3倍以上。

异丁烯和异戊烯产率也达到FCC的3倍以上。

催化裂解工艺开辟了一条制取低碳烃的新途径。

1.1催化裂解的一般特点①催化裂解是碳正离子反应机理和自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。

②在一定程度上,催化裂解可以看作是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。

催化裂化机理及特点

催化裂化机理及特点

催化裂化机理及特点催化裂化是一种通过加热和催化剂的作用将长链烃分子裂解为短链烃分子的重要工艺。

催化裂化机理及特点主要包括以下几个方面:一、催化裂化机理1.构造反应:长链烃分子在裂化过程中首先发生构造反应,通过裂解碳-碳键,形成相对较短的碳链碳烃和烯烃。

2.重排反应:长链烃分子中的骨架碳骨架会经历一系列重排反应,使得产物中更多的是相对稳定的异构体和环状化合物。

3.脱氢反应:重排反应过程中,长链分子中的烃基可能失去氢原子,从而形成烯烃,增加了催化裂化的产物中烯烃的含量。

4.脱氢裂解反应:在高温高压下,部分碳链碳烃可以发生脱氢裂解反应,形成更短的链长烃烃烃烃、烯烃和芳香烃。

二、催化裂化特点1.催化裂化具有高选择性:在催化剂的影响下,催化裂化反应主要发生在长链烃分子中的弱键和缺陷位置,使得产物中的碳链长度相对较短,同时产生更多的异构体和环状化合物。

2.催化裂化反应速度快:催化剂的存在提高了反应活性,使得裂化反应可以在相对低的温度和压力下进行,加快了反应速度。

3.催化裂化可以产生高附加值的产品:催化裂化使得重质燃料油转化为轻质烃类产品,其中包括汽油、炼厂气、润滑油基础油等,这些产品有较高的附加值。

4.催化裂化可以降低能源消耗:通过催化裂化将重质原油转化为较轻质产品,如汽油和炼厂气,不仅提供了更多的高附加值产品,还减少了对原油的需求,降低了能源消耗。

5.催化裂化可以调节产品分布:通过不同的催化剂组合和反应条件,可以调节催化裂化产物的碳链长度分布,以满足市场需求,提高产品经济效益。

总之,催化裂化是一种高效、高选择性的炼油工艺,通过加热和催化剂的作用,将长链烃分子裂解为短链烃分子,产生高附加值产品,并降低能源消耗。

催化裂化机理和特点的深入研究对于提高炼油工艺的效率和降低能源消耗具有重要意义。

催化催化裂化技术

催化催化裂化技术

催化催化裂化技术催化裂化技术是一种重要的炼油工艺,可以将重质石油馏分转化为高附加值的轻质产品。

本文将从催化裂化技术的原理、应用和发展前景等方面进行探讨,以期为读者提供对该技术的全面了解。

一、催化裂化技术的原理催化裂化技术是通过催化剂的作用将重质石油馏分分解为较轻的产品。

其主要原理是在高温和高压的条件下,将原料油与催化剂接触,使其发生裂化反应。

这种反应可以将长链烃分子裂解成短链烃分子,从而提高汽油和燃料油的产率。

催化裂化反应主要分为两个阶段:热裂化和催化裂化。

在热裂化阶段,原料油在高温下分解成烃气和液体烃。

然后,在催化剂的作用下,烃气和液体烃进一步反应,生成较轻的产品,如汽油、液化气和柴油等。

二、催化裂化技术的应用催化裂化技术在炼油行业中具有广泛的应用。

首先,它可以提高汽油的产率。

由于汽车的普及,对汽油的需求量不断增加。

催化裂化技术可以将重质石油馏分转化为轻质的汽油,从而满足市场需求。

催化裂化技术可以生产出高质量的柴油。

在催化裂化过程中,石油馏分中的硫、氮和金属等杂质可以得到有效去除,从而提高柴油的质量。

这对于减少柴油排放的污染物具有重要意义。

催化裂化技术还可以生产出液化气、石脑油和石化原料等产品。

这些产品在化工、冶金和化肥等行业中具有广泛的应用。

三、催化裂化技术的发展前景随着能源需求的增加和石油资源的日益枯竭,催化裂化技术在未来的发展前景十分广阔。

一方面,随着汽车工业的高速发展,对汽油的需求将持续增加,催化裂化技术将成为满足市场需求的重要手段。

另一方面,随着环境保护意识的提高,对燃料油质量的要求也越来越高。

催化裂化技术可以提高燃料油的质量,减少对环境的污染,因此在未来的发展中具有重要的作用。

随着科技的不断进步,催化剂的研发和改进也将推动催化裂化技术的发展。

新型的催化剂可以提高反应的选择性和活性,从而提高产品的产率和质量。

催化裂化技术作为一种重要的炼油工艺,在提高石油产品产率和质量方面具有重要的作用。

催化裂化的工艺特点及基本原理

催化裂化的工艺特点及基本原理

催化裂化的工艺特点及基本原理催化裂化是一种重要的石油加工工艺,其开发和应用对于提高石油产业发展水平具有重要的意义。

催化裂化工艺的特点和基本原理如下:一、工艺特点:1.高选择性:催化裂化工艺可以将石油馏分中的大分子烃化合物按照其碳数分解为较低碳数的烃化合物,其中可选择的烃化合物主要是汽油和液化气。

因此,催化裂化可以提高汽油和液化气产率,达到更好的操作经济效益。

2.产物分布广:催化裂化反应不仅可以生成汽油和液化气,还可以生成较低碳数的烃化合物,如乙烯、丙烯等。

因此,催化裂化反应可以提供多种不同碳数的烃化合物,满足不同需求。

3.增塔体积积极:催化裂化工艺采用固定床反应器,反应器内填充了催化剂颗粒,因此反应器体积较大。

大体积的反应器可以增加催化裂化反应的容量,提高石油裂解速率,并且还可以增加反应过程的稳定性和可控性。

4.废气利用:催化裂化反应产生的废气中含有非常丰富的烃化合物和能量,可以通过适当的处理和回收利用,从而得到更好的经济效益,并减少对环境的污染。

二、基本原理:催化裂化反应是通过催化剂的作用来进行的,其基本原理如下:1.裂解反应:石油中的长链烃化合物在催化剂的作用下发生热裂解反应,将大分子烷烃分解成较小分子的烃化合物。

这种反应是一个链状反应过程,会生成一系列的短链烃化合物和碳氢烃中间体。

2.重排反应:短链烃化合物和碳氢烃中间体在催化剂的作用下发生重排反应,重新组合成不同碳数的烃化合物。

3.芳构化反应:在催化裂化过程中,由于催化剂特殊的性质,烃化合物还会发生芳构化反应,生成芳烃类化合物,如苯、甲苯等。

4.积碳反应:由于裂化过程产生的碳元素会在催化剂表面析出,形成碳黑,导致催化剂失活。

因此,催化裂化还需要定期对催化剂进行再生,以保持其活性。

综上所述,催化裂化工艺具有高选择性、广泛的产物分布、增塔体积积极和废气利用等特点。

其基本原理包括裂解反应、重排反应、芳构化反应和积碳反应。

催化裂化工艺的开发和应用有助于提高石油产业的经济效益和环境可持续性。

简述催化裂化工艺原理

简述催化裂化工艺原理

简述催化裂化工艺原理催化裂化工艺是一种重要的石油炼制工艺,用于将重质石油原料转化为高附加值的轻质石油产品。

该工艺的原理是通过在催化剂的作用下,将长链烃分子断裂为较短链的烃分子,从而提高产品的产率和质量。

催化裂化工艺的原理主要包括两个方面:烷烃分子的吸附和裂化反应。

烷烃分子在催化剂表面发生吸附。

催化剂通常采用硅铝比较高的沸石类分子筛,具有高表面积和孔隙结构。

当烷烃分子接触到催化剂表面时,由于催化剂表面的静电作用和分子筛的微孔结构,烷烃分子会被吸附在催化剂表面,形成吸附物种。

吸附物种的形成是催化裂化反应的前提条件。

接下来,吸附在催化剂表面的烷烃分子在裂化反应的作用下发生断裂。

裂化反应是一个烷烃分子内部碳-碳键的断裂过程。

在催化剂的作用下,吸附在催化剂表面的烷烃分子发生碳-碳键的断裂,形成较短链的烃分子。

裂化反应的产物主要是烃烃分子和烃芳分子,其中烃烃分子可以进一步转化为汽油和液化气等轻质石油产品,而烃芳分子可以用于生产石化原料和化工产品。

催化裂化工艺的反应条件对于产品的产率和质量有着重要的影响。

一般来说,反应温度高、压力低、催化剂活性好和反应时间短都有利于提高产品的产率。

此外,催化裂化工艺还需要添加适量的催化剂再生剂,以保证催化剂的活性和稳定性。

催化裂化工艺在石油炼制中具有广泛的应用。

通过该工艺可以将重质石油原料转化为高附加值的轻质石油产品,如汽油、柴油和液化气等。

同时,催化裂化工艺还可以提高石油产品的产率和质量,减少燃料的消耗和环境污染。

催化裂化工艺是一种重要的石油炼制工艺,通过在催化剂的作用下将重质石油原料转化为轻质石油产品。

该工艺的原理是在催化剂表面发生烷烃分子的吸附和裂化反应,从而提高产品的产率和质量。

催化裂化工艺在石油炼制中具有广泛的应用,为能源行业的发展做出了重要的贡献。

简述催化裂化工艺原理

简述催化裂化工艺原理

简述催化裂化工艺原理催化裂化是一种重要的炼油工艺,被广泛应用于原油重质组分的转化和高效能汽油的生产。

其基本原理是通过在高温条件下将长链烃分子断裂成短链烃分子,从而提高汽油的辛烷值和产量。

催化裂化工艺原理主要包括两个方面:烃分子断裂和催化剂作用。

首先是烃分子的断裂机理。

石蜡状烃分子在裂化过程中会发生碳-碳键的断裂,产生短链烃烷、烯烃和芳烃等组分。

这些短链烃烷具有较高的辛烷值,适合作为汽油组分。

短链烯烃和芳烃通过进一步的加氢处理可以转化为烷烃,提高汽油得率。

其次是催化剂的作用。

在催化裂化过程中,催化剂起到了至关重要的作用。

催化剂通常由沸石矿物组成,主要有分子筛和粉状催化剂两种类型。

分子筛催化剂具有较大的孔径和表面积,可以提供足够的催化活性位点和通道,促进烃分子断裂和转化。

粉状催化剂则通过提供催化活性金属来加速反应速率。

催化裂化工艺一般包括三个主要步骤:预热、化学反应和产品分离。

在预热阶段,将在石蜡状物料和氢气中预热至反应温度。

这一步骤的目的是提高物料的反应性和降低粘度,以便于后续的裂化反应。

同时,通过与石蜡和氢气的热量交换,可以在一定程度上实现能量的回收,提高能源利用效率。

在化学反应阶段,预热后的物料进入反应器,在催化剂的作用下进行断裂和转化反应。

反应温度通常在450-550°C之间,压力在1-5MPa之间。

通过调整反应器的催化剂和操作条件,可以达到调控产物质量和产率的目的。

最后,在产品分离阶段,通过一系列的分离操作,将裂化产物中的不同组分分离出来。

主要的分离方式包括蒸馏、吸附和萃取等。

其中,蒸馏是最主要的分离手段,可以将产物按烃碳数分为不同的馏分,进一步提纯和精制。

催化裂化工艺具有许多优点。

首先,可以将重质石油产品转化为高辛烷值的汽油,提高产品附加值和经济效益。

其次,可以通过调整催化剂和操作条件,实现灵活生产不同品质和组分的汽油。

再者,催化裂化可以与其他炼油工艺相结合,如加氢裂化、重整和烷基化等,进行综合重整和分子设计,进一步提高汽油产率和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案叶蔚君5.1催化裂化的工艺特点及基本原理[引入]:先提问复习,再从我国催化裂化汽油产量所占汽油总量的比例引入本章内容。

[板书]:催化裂化一、概述1、催化裂化的定义、反应原料、反应产物、生产目的[讲述]:1.催化裂化的定义(重质油在酸性催化剂存在下,在470~530O C的温度和0.1~0.3MPa的条件下,发生一系列化学反应,转化成气体、汽油、柴油等轻质产品和焦炭的过程。

)、反应原料:重质油;(轻质油、气体和焦炭)、(轻质油);[板书]2.催化裂化在炼油厂申的地位和作用:[讲述]以汽油为例,据1988年统计,全世界每年汽油总消费量约为6.5亿吨以上,我国汽油总产量为1750万吨,从质量上看,目前各国普通级汽油一般为90-92RON、优质汽油为96-98RON,我国1988年颁布车用汽油指标有两个牌号,其研究法辛烷值分别为不低于90和97。

但是,轻质油品的来源只靠直接从原油中蒸馏取得是远远不够的。

一般原油经常减压蒸馏所提供的汽油、煤油和柴油等轻质油品仅有10-40%,如果要得到更多的轻质产品以解决供需矛盾,就必须对其余的生质馏分以及残渣油进行二次加工。

而且,直馏汽油的辛烷值太低,一般只有40-60MON,必须与二次加工汽油调合使用。

国内外常用的二次加工手段主要有热裂化、焦化、催化裂化和加氢裂化等。

而热裂化由于技术落后很少发展,而且正逐渐被淘汰,焦化只适用于加工减压渣油,加氢裂化虽然技术上先进、产品收率高、质量好、灵活性大,但设备复杂,而且需大量氢气,因此,技术经济上受到一定限制,所以,使得催化裂化在石油的二次加工过程中占居着重要地位(在各个主要二次加工工艺中居于首位)。

特别是在我国,车用汽油的组成最主要的是催化裂化汽油,约占近80%。

因此,要改善汽油质量提高辛烷值,首先需要把催化裂化汽油辛烷值提上去。

目前我国催化裂化汽油辛烷值RON偏低,必须采取措施改进工艺操作,提高催化剂质量,迅速赶上国际先进水平。

[板书]3催化裂化过程具有以下几个特点[讲述](1)轻质油收率高,可达70%-80%,而原料初馏的轻质油收率仅为10%~40%。

所说轻质油是指汽抽、煤油和柴油的总和。

(2)催化汽油的辛烷值较高,研究法辛烷值可达85以上。

汽油的安定性也较好。

(3)催化柴油的十六烷值低,常与直馏柴油调合使用或经加氢精制提高十六烷值。

(4)催化裂化气体产品产率约为10%~20%左右,其中90%左右是C3,C4(称为液化石油气)。

C3、C4组分中合大量烯烃。

因此这部分产品是优良的石油化工原料及生产高辛烷值汽油组分的原料。

气体产率为10%~20%,汽油产率为30%-50%,柴油产率不超过40%,焦炭产率在5%~7%左右。

催化裂化过程的主要目的是生产汽油,根据我国国情,交通运输和农业的发展,对柴油的需求量很大,通过调整操作条件或采用新的工艺技术,可在生产汽油的同时,尽可能提高柴抽的产率,这也是我国催化裂化技术的一大特点。

[板书]4.催化裂化的发展概况5.催化裂化的发展方向:[讲述]:继续改进工艺、设备、催化剂技术,尽可能多地转化劣质重油;提高轻质产品收率。

对我国而言,特别要在保证长周期运转上下功夫。

继续研究开发多产低碳烯烃的工艺,为发展石油化工和清洁燃料组分的生产提供原料。

利用其反应机理,继续研究开发能满足市场产品需求的催化裂化工艺和催化剂。

为清洁生产,研究开发减少排放的工艺、催化剂、添加剂以及排放物的无害化处理。

同步发展催化裂化与其它工艺的组合优化。

过程模拟和计算机应用。

新催化材料的开发和应用。

[引入]催化裂化汽油原料和产品[板书]二、催化裂化的原料和产品1、原料:馏分油、渣油[讲述]馏分油(直馏重馏分油/直馏减压馏分油VGO馏程是350~500o C、热加工产物——焦化蜡油/减粘裂化馏出油、润滑油溶剂精制的抽出油)、渣油(减压渣油、脱沥青的减压渣油、加氢处理重油等,常掺入到减压馏分油中进行加工,当减压馏分油中掺入渣油时则通称为RFCC)。

评价指标:馏分组成、烃类族组成、残炭、含硫含氮化合物、金属等。

[板书]2、产品:气体、液体产物、焦炭[讲述]气体(干气、液化气)、液体产物(汽油、柴油、重柴油/回炼油、油浆/澄清油)、焦炭。

[引入]催化裂化原料是如何进行反应而得到产品的?[板书]三、烃类的催化裂化反应[小结]:一、烃类的催化裂化基本反应:(一)烷烃(以分解反应为主);(二)烯烃(分解反应、异构化反应——骨架异构/双键位移异构/几何结构、氢转移反应、芳构化反应——脱氢);(三)环烷烃(分解、氢转移、异构化);(四)芳香烃(烷基侧链断裂、脱氢、焦化)[提问]:为什么催化的汽油辛烷值高,而柴油的十六烷值低呢?[回答]要点:从裂化可能进行的化学反应上看,可知异构成分、芳香烃较多,而正构烷烃少)再把辛烷值、十六烷值的概念重新复习一遍。

[板书]二、石油馏分的催化裂化反应机理各种烃类之间的竞争吸附和对反应的阻滞作用、复杂的平行-顺序反应。

不同烃类分子在催化剂表面上的吸附能力不同,其顺序如下: 稠环芳烃>稠环环烷烃>烯烃>单烷塞单环芳烃>单环环烷烃>烷烃同类分子,相对分予质量越大越容易被吸附。

按烃类化学反应速度顺序排列,大致如下:烯烃>大分子荜烷基侧链的单环芳烃>异构烷烃和环烷烃>小分子单烷基侧链的单环芳烃>正构烷烃>稠环芳烃[讨论]催化裂化的理想原料是什么?为什么?讨论结束请学生回答问题[小结]环烷烃有一定的吸附能力,又具适宜的反应速度,因此可以认为,富含环烃的石油馏分应是催化裂化的理想原料[引入]催化裂化反应的催化剂结构和组成如何?应该在使用中注意些什么? [板书]四、催化裂化催化剂1、裂化催化剂的种类(无定形硅酸铝、分子筛系列)、组成(活性中心Al2O3,Si02、其他添加剂)和结构(八面沸石笼);[板书]2.裂化催化剂的使用性质:活性、选择性、稳定性抗重金属污染性质。

[讲述]活性、选择性、稳定性抗重金属污染性质对催化剂的影响。

[板书]3.工业用分子筛裂化催化剂的种类:4.裂化催化剂的失活与再生:[讲述]失活原因(水热失活、结焦失活、中毒失活)、裂化催化剂的再生(主要是烧焦)再生操作的主要影响因素(T、氧分压、再生剂含碳量、再生器的结构形式、再生时间)[归纳、提问、总结]以提问的方式梳理本次课的内容5.2催化裂化工业装置(工艺流程)[引入]:先提问复习,再引入提问:催化裂化的工艺流程由哪几个部分组成、主要设备是什么、现有哪些新技术?[板书]5-2催化裂化工业装置(工艺流程)一、生产中几个常用的基本观念(一)转化率和回炼操作[版书并讲解]1转化率:原料转化为产品的百分率。

总转化率=(气体+汽油+焦炭)/(新鲜原料油)x100%[讲述]真正意义的转化率应该是原料油量减去末转化油的量与原料油量之比,称为重油转化率,一般在实验室使用。

[版书]2.回炼操作[讲述]回炼操作又叫循环裂化。

由于新鲜原料经过一次反应后不能都变成要求的产品,还有一部分和原料油馏程相近的中间馏分。

把这部分中间馏分送回反应器重新进行反应就叫回炼操作。

这部分中间馏分油就叫做回炼油(或称循环油)。

如果这部分循环油不去回炼而作为产品送出装置,这种操作叫单程裂化。

[版书并讲解]单程转化率=(气体+汽油+焦炭)/(总进料)x100%=总转化率/(1+回炼化)式中回炼比是回炼油(包括回炼油浆)与新鲜原料质量之比,即: [版书并讲解]回炼比=(回炼油十回炼油浆)/新鲜原料回炼比的大小由原料性质和生产方案决定。

通常,多产汽油方案采用小回炼比,多产柴油方案用大回炼比。

[举例]总转化率、单程转化率的计算[板书](二)空速和反应时间[讲述]在床层流化催化裂化中?常用空速表示原料油与催化剂的接触时间。

其定义是每小时进入反应器的原料油量与反应器内催化剂藏量之比。

其定义是每小时进入反应器的原料油量与反应器内催化剂藏量之比[板书](三)剂油比:剂油比为5~10[讲述]催化剂循环量与总进料量之比称为剂油比,用c/o表示:在同一条件下,剂油比大,表明原料油能与更多的催化剂接触,单位催化剂上的积炭少,催化剂失活程度小,从而使转化率提高。

但剂油比增大会便焦炭产率增加,剂油比太小,增加热裂化反应的比例,使产品质量变差。

高剂油比操作对改善产品分布和产品质量都有利,实际生产中剂油比为5~10[板书](四)反应温度470~520o C[讲述]如前所述,石油馏分的催化裂化反应总体上是强吸热反应,欲便反应过程顺利进行,必须提供热量使之在一定温度条件下进行。

工业生产中石油馏分是在提升管反应器中进行的,由于反应过程申吸收热量和器壁散热,反应器进口和出口的温度是不相同的,进口温度高于出口大约20~30。

C。

所谓反应温度通常是指提升管出口温度,根据所加工的原料和生产方案的不同,反应温度在470~520。

C左右。

通常,原料越重应采用较高的反应温度,处理轻质原料采用较低的反应温度;以多产柴油为目的,应采用较低的反应温度,以生产汽油和液化气为主要目的则应采用较高的反应温度。

[版书]二、催化裂化装置的工艺流程(一)反应—再生系统[投影]高低并列式提升管催化裂化装置反应—再生系统的工艺流程。

[讲述]1.工艺流程新鲜原料(减压馏分油或重油)经过一系列换热后与回炼油混合,进入加热炉预热到200-300的温度,由原料油喷嘴以雾化状态喷入提升管反应器下部,与来自再生器的高温催化剂接触并立即气化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以5-8m/s的线速向上流保证催化剂在两器间按正常流向循环以及再生器有良好的流化状况是催化裂化装置的技术关键,除设计时准确无误外,正确操作也非常重要。

2、主要设备的结构和作用特点3、着重于反应-再生的新技术[板书](二)分馏系统[讲述]分馏系统的作用是将反应-再生系统的产物进行初步分离,得到部分产品和半成品。

由反应-再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱过热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。

富气和粗汽油去吸收稳定系统;轻、重柴油经提、换热或冷却后出装置;回炼油返回反应-再生系统进行回炼;油浆的一部分送反应-再生系统回炼,另一部分经换热后循环回分馏塔。

将轻柴油的一部分经冷却后送至再吸收塔作为吸收剂,吸收了C3、C4组分的轻柴油再返回分馏塔。

为了取走分馏塔的过剩热量以使塔内气、液负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流、一中段回流、二中段回流和油浆循环回流。

[板书]1工艺流程:吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备。

2主要设备的结构和作用特点[板书](三)吸收-稳定系统[板书]工艺流程[讲述]由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4的富吸收油由塔底抽出送至解吸塔顶部。

相关文档
最新文档