浙教版八年级数学下册第四章《4.4 平行四边形的判定(第二课时)》公开课课件

合集下载

八下浙教版4.4平行四边形的判定(2)

八下浙教版4.4平行四边形的判定(2)
证明:在△AOD与△COB中
∵ AO=CO,DO=BO,∠AOD=∠COB ∴△AOD≌△COB ∴ AD=CB 同理:AB=CD O
A
B
∴四边形ABCD是平行四边形 (两组对边分别相等的四边形是平行四边形)
平行四边形判定定理3: 两条对角线互相平分的四边形是平行四边形. 几何语言: 如图∵OA=OC,OB=OD
E
B
变3:已知:如图,在
ABCD中,E,F是对角线BD
上的两点,且BE=DF.M,N分别是AD和BC边上的中点. 求证:四边形ENFM是平行四边形。 A E B N M F C D
练一练
1.如图:在 ABCD中,E,F是对角线AC上的两
个点;G,H是对角线B,D上的两点.已知
AE=CF,DG=BH,求证:四边形EHFG是平行四边形.
A D O C
B
∴四边形ABCD是平行四边形
(对角线互相平分的四边形是平行四边形)
平行四边形的五个判定方法
两组对边分别平行 从边看: 两组对边分别相等 一组对边平行且相等
的四边形是 平行四边形
从角看:
两组对角分别相等
两组对角线互相平分
从对角线看:
例1、已知:如图,E,F是 ABCD的对角线BD 上的两点,且∠BAE=∠DCF A D 求证:四边形AECF是平行四边形。 O F E
证明: 在平行四边形ABCD中,
D G E
O
C F H B
OA=OC,OB=OD
∵AE=CF,DG=BH A
∴OE=OF,OG=OH
∴四边形EHFG是平行四边形
练一练
2、已知线段a,b,∠α(如图),请用直尺和圆规 作一个平行四边形,使它的两条对角线长分别等于

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

平行四边形的判定(2)(课件)-八年级数学下册(人教版)

一组对边平行且相等的四边形是平行四边形吗?
如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵ AB∥CD
∴ ∠1=∠2
又∵ AB=CD,AC=CA
∴ △ABC≌△CDA (SAS)
∴ BC=DA
∴ 四边形ABCD的两组对边分别相等,它是平行四边形.
BQ=_________cm;CQ=_________cm.
15-2t
(3)当t为何值时,四边形PDCQ是平行四边形?
解:(3)∵AD//BC
∴当DP=CQ时,四边形PDCQ是平行四边形.
∴12-t=2t
解得t=4
∴t=4s时,四边形PDCQ是平行四边形.
平行四边形判定定理4:一组对边平行且相等的四边形是平行四边形.
t
12-t
AP=_________cm;DP=_________cm;
BQ=_________cm;CQ=_________cm.
2t
15-2t
(1)用含t的代数式表示:
12-t
t
AP=_________cm;DP=_________cm;
2t
BQ=_________cm;CQ=_________cm.
4.如图,在□ABCD中,E,F分别是边BC,AD上的点,有下列条件:
①AE//CF;②BE=FD;③∠1=∠2;④AE=CF.若要添加其中一个条件,使四边
形AECF一定是平行四边形,则添加的条件可以是( B )
A.①②③④
B.①②③
C.②③④
D.①③④
5.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC// AD;④

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2

浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的一个重要内容。

本节课主要让学生掌握平行四边形的判定方法,并通过相应的例题和练习题来巩固所学知识。

教材从学生的实际出发,通过直观的图形和生动的例题,引导学生探索和发现平行四边形的判定定理,培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识,具备了一定的几何思维能力。

然而,对于一些具体判定定理的理解和应用,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,针对不同学生的学习情况,采取合适的教学策略。

三. 教学目标1.知识与技能:让学生掌握平行四边形的判定方法,能够运用判定定理解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:对平行四边形判定定理的理解和应用。

五. 教学方法1.情境教学法:通过直观的图形和生动的例题,引发学生的兴趣,激发学生的思考。

2.引导发现法:引导学生观察、操作、交流,发现平行四边形的判定定理。

3.实践操作法:让学生通过动手操作,加深对平行四边形判定定理的理解。

4.巩固练习法:通过有针对性的练习题,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示相关图形和例题。

2.练习题:准备一些有关平行四边形判定定理的练习题,用于课堂巩固和课后作业。

3.教学道具:准备一些四边形模型,用于实践操作。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图形,如电梯、窗户等,引导学生关注平行四边形的特点。

提问:你们知道什么是平行四边形吗?平行四边形有哪些性质?2.呈现(10分钟)呈现教材中的例题,引导学生观察图形,思考问题。

平行四边形的判定课件(浙教版)(2)

平行四边形的判定课件(浙教版)(2)

∵E,F分别是AD,BC的中点,
∴ED=BF,即ED ﹦∥BF.
∴四边形EBFD是平行四边形(一组对边
平行并且相等的四边形是平行四边形)。
∴BE=DF(平行四边形的对边分别相等)。 www.czsxXX
课 2。已知:如图,CD是线段AB经平移所得的
内 像,连结AD,BC.
D
C
练 求证:四边形ABCD是平行四边形。
www.czsxXX
小结: 这节课你学会了什么? 知道了什么?
www.czsxXX
作业布置: 作业本
www.czsxXX
(3)
www.czsxXX
(5)
根据手中的拼图,画一画、量一量,寻找 一些等量关系或位置关系等,大家一起猜 想一下除了定义可以判定平行四边形外, 还会有其它的方法吗?小组同学讨论。
A
D
B
C
www.czsxXX
一般的,我们有下面判定一个四边形是平行 Nhomakorabea 边形的定理:
定理1 一组对边平行并且相等的四边形 是平行四边形。
习 证明:∵CD是AB经平移所得的像,
∴CD ﹦∥ AB,
A
B
∴四边形ABCD是平行四边形
(一组对边平行并且相等的四
边形是平行四边形)。
www.czsxXX
课 3.已知:如图,AD⊥AC,BD⊥AC,且AB=CD.
内 求证:AB∥CD.
A
C
练 证明:
习 ∵AD⊥AC, BC⊥AC,
B
D
∴AD∥BC, ∠BCA=∠DAC=90O,
∴四边形ABCD是平行四边形 (根平据行什四么边?形)的定义) ∴该命题是真命题
练习:证明定理2
www.czsxXX

浙教版八年级数学下册第四章《4.4 平行四边形的判定(第二课时)》公开课课件

浙教版八年级数学下册第四章《4.4 平行四边形的判定(第二课时)》公开课课件

练习1
如图:在 ABCD中,E,F是对角线AC上的两个点; G,H是对角线B,D上的两点.已知AE=CF,DG=BH, 求证:四边形EHFG是平行四边形.
证明: 在 ABCD中,
OA=OC,OB=OD
D G
O
C F
∵AE=CF,DG=BH
∴即AOEE-O=EO=OFC,-OOF,GO=DO-OHG=OB-OAH
的四边形是 平行四边形
一组对边平行且相等
从对角线看: 两组对角线互相平分
平行四边形的四个判定方法
两组对边分别平行 从边看: 两组对边分别相等
的四边形是 平行四边形
一组对边平行且相等
从对角线看: 两组对角线互相平分
例1 已知:如图,在 ABCD中,E,F是对角线BD 上的两点,且BE=DF.
求证:四边形AECF是平行四边形
A
D
F
O
E
B
C
讨论:根据现有条件,说说你准备选用哪种方法证明? 大概的步骤是怎样的?
∴O平分AC,O平分BD 连接对角线AC,BD则有
OA=OC,OB=OD
2
D
1 3
C
∴四边形ABCD是平行四边形
-1 o 1 3
x
-1
2
B
A
练习3
已知线段a,b,∠α(如图),请用直尺和圆规作一个平行 四边形,使它的两条对角线长分别等于线段a,b,两条对角 线的夹角等于∠α
a
b
α
D
C
Hale Waihona Puke OAB探究活动
•1、使教育过程成为一种艺术的事业。 •2、教师之为教,不在全盘授予,而在相机诱导。2021/10/252021/10/252021/10/2510/25/2021 6:37:48 PM •3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 •5、教育是一个逐步发现自己无知的过程。 •6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/252021/10/252021/10/2510/25/2021

浙教版数学八年级下册4.4《平行四边形的判定》教案1

浙教版数学八年级下册4.4《平行四边形的判定》教案1

浙教版数学八年级下册4.4《平行四边形的判定》教案1一. 教材分析《平行四边形的判定》是浙教版数学八年级下册4.4节的内容,本节课主要让学生掌握平行四边形的判定方法,培养学生运用几何知识解决实际问题的能力。

教材通过生活实例引入平行四边形的概念,接着引导学生探索平行四边形的判定方法,最后提供一些练习题让学生巩固所学知识。

二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识。

他们对几何图形的认知和观察能力逐渐提高,但部分学生对几何图形的判定方法仍存在困难。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与课堂活动,提高他们的空间想象能力和逻辑思维能力。

三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:如何运用平行四边形的判定方法解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的空间想象能力和逻辑思维能力。

3.小组合作学习:鼓励学生分组讨论,提高他们的沟通能力和团队协作精神。

4.练习法:提供适量练习题,让学生巩固所学知识。

六. 教学准备1.课件:制作课件,展示平行四边形的判定方法及实例。

2.练习题:准备一些练习题,用于巩固所学知识。

3.教学用具:直尺、三角板、剪刀等。

七. 教学过程1.导入(5分钟)利用课件展示一些生活实例,如教室里的桌子、篮球场上的篮板等,引导学生观察这些实例中的图形,提问:“这些图形是什么类型的四边形?”从而引出平行四边形的概念。

2.呈现(10分钟)展示平行四边形的判定方法,引导学生观察、操作、猜想、验证。

《平行四边形的判定》(公开课)ppt课件

《平行四边形的判定》(公开课)ppt课件

∵AB=CD AC=CA
∴△ABC≌△CDA (SAS)
∴BC=AD
A
D
∴四边形ABCD是平行四边形 B
C
(两组对边分别相等的四边形是平行四边形)
平行四边形的判定定理1:
一组对边平行且相等的四边形是平行四边 形
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
B
F
C
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
B
F
C
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
A
求证:EB=DF
E
D
证明:∵四边形ABCD
是平行四边形 B
F
C
∴AD BC
∵ED=1/2AD BF=1/2BC ∴ED BF ∴ห้องสมุดไป่ตู้边形EBFD是平行四边形
边有什么关系?
平行四边形的对边平行且相等,这种 关系可记作AB =//CD,
问题:请猜想“一组对边平行且相 等的四边形是平行四边形”这个命 1 题是真命题还是假命题?
已知:如图 ,在四边形ABCD中,AB=//CD 求证:四边形ABCD是平行四边形
A
D
B
C
证明:连接AC
∵ AB∥CD
∴∠BAC=∠DCA
19.2平行四边形的 判定
课前复习 新课讲授
例题解析
课堂练 习小 结
想一想:一个四边形只有当它具
备了哪些条件时才是平行四边形?
按图1说明:
M

全国优质课一等奖初中数学八年级下册《平行四边形的判定》公开课精美(课件)

全国优质课一等奖初中数学八年级下册《平行四边形的判定》公开课精美(课件)

于是,我们又得到平行四边形的一个 判定定理:
一组对边平行且相等的四边形是平行四 边形;
例4 如图,在 ABCD中,E,F分别是AB, CD的中点.求证:四边形EBFD是平行四边形.
随堂演练
1.如图,△ABC平移后得到△DEF,则图中的 平行四边形分别有____A_C__F_D__、_____A_B__E_D__、____B__C_F. E
2.如图,DB∥AC,DB= 1 AC,E是AC的中
点,求证:BC=DE.
2
证明:∵E为AC的中点,DB= 1AC ∴DB=CE. 又∵DB∥AC, 2
练习
1.如图,AB=DC=EF,AD=BC, DE=CF. 图中有哪些互相平行的线段?
解:AB∥CD∥EF,AD∥BC,DE∥CF.
知识点2 平行四边形判定定理的应用
例3 如图, ABCD的对角线AC,BD相交于点O,E, F是AC 上的两点,并且 AE=CF.求证:四边形BFDE 是平行四边形.
2.能用这些判定方法证明一个四边形是 平行四边形.
学习重、难点
重点:平行四边形的判定的归纳与论证. 难点:平行四边形的判定的应用及规范表述.
推进新课
知识点 1 平行四边形的判定定理
思考
我们知道,两组对边分别平行或相等的 四边形是平行四边形,如果只考虑四边形的 一组对边,他们满足什么条件时这个四边形 能成为平行四边形呢?
2.如图, ABCD的对角线AC,BD相交于点O,E, F分别是OA,OC的中点. 求证:BE=DF.
证明: ∵四边形ABCD是平行四边形, ∴DO=OB,AO=OC, 又E,F分别是OA,OC的中点, ∴EO=FO,在△DOF与△BOE中, DO=BO,FO=EO,∠DOF=∠BOE, ∴△DOF≌△BOE,∴BE=DF.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴四边形AECF是平行四边形
练习1
如图:在 ABCD中,E,F是对角线AC上的两个点; G,H是对角线B,D上的两点.已知AE=CF,DG=BH, 求证:四边形EHFG是平行四边形.
证明: 在 ABCD中, OA=OC,OB=OD ∵AE=CF,DG=BH ∴AE-OE=OC-OF,OD-OG=OB-OH A 即OE=OF,OG=OH ∴四边形EHFG是平行四边形
2 1
-1 o 1
B
C
3 3
x
∴四边形ABCD是平行四边形
A
-1 2
已知线段a,b,∠α(如图),请用直尺和圆规作一个平行 四边形,使它的两条对角线长分别等于线段a,b,两条对角 线的夹角等于∠α
a b
α
D
O A B
C
探究活动
发现:三角形一条边上的中 线的2倍小于另两条边的和。
任意画一个三角形和三角形一边上的中线。比较 这条中线的二倍与三角形另外两边的和的大小,你 发现了什么?再画几个三角形试一试,你发现的规律 A 仍然成立吗?试证明你的发现。 已知:如图,AD是⊿ABC的中线, 求证:2AD<AB+AC
平行四边形的四个判定方法
两组对边分别平行 从边看: 两组对边分别相等 一组对边平行且相等
的四边形是 平行四边形
从对角线看:
两组对角线互相平分
例1 已知:如图,在 ABCD中,E,F是对角线BD 上的两点,且BE=DF. 求证:四边形AECF是平行四边形
A
D
F
B E O C
讨论:根据现有条件,说说你准备选用哪种方法证明? 大概的步骤是怎样的?
问题:判定一个四边形是平行四边形是否还有其它的方法?
已知:在四边形ABCD中,对角线AC,BD交于点O, 且OA=OC,OB=OD, 求证:四边形ABCD是平行四边形 D
O
C B
A
平行四边形判定定理3: 两条对角线互相平分的四边形是平行四边形. 几何语言:∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形
证明: 如图,延长AD至E,使ED=AD.连
B
D
C
结BE,EC. ∵BD=CD, E ∴四边形ABEC是平行四边形(对角线互 相平分的四边形是平行四边形)。 ∴AB=CE(平行四边形的两组对边分别相等)。 ∵AC+CE>AE, ∴AB+AC>2AD, 即2AD<AB+AC.
本节课你学到什么?
平行四边形的四个判定方法
两组对边分别平行 从边看: 两组对边分别相等 一组对边平行且相等
的四边形是 平行四边形
从对角线看:
两组对角线互相平分
例2:已知:如图,E,F是 上的两点,且∠BAE=∠DCF
ABCD的对角线BD
求证:四边形AECF是平行四边形。 A E B O F C D 证明: 连结AC,交BD于点O 在 ABCD中,BO=DO, AO=CO ∵AB∥CD ∴∠ABE=∠CDF
又∵∠BAE=∠CDF,AB=CD ∴△ABE≌△CDF ∴BE=DF ∴BO-BE=DO-DF,即EO=FO
D
C
G E
O
F
H
B
如图 A(Leabharlann 3, 2 ), B( 1, 1), C( 3, 2 ), D(1, 1)
四边形ABCD是不是平行四边形?请给出证明.
3, 2 ) 与 C( 3, 2 )关于原点O对称
A(
y
D
B( 1, 1) 与 D(1, 1) 关于原点O 对称
∴O平分AC,O平分BD 连接对角线AC,BD则有 OA=OC,OB=OD
4.4 平行四边形的 判定(2)
A
D
平行四边形有哪些性质?
B
C
Ⅰ.边: 平行四边形对边平行且相等 Ⅱ.角:
平行四边形对角相等、邻角互补
Ⅲ. 对角线: 平行四边形对角线互相平分.
我们学过平行四边形有哪些判定方法?
两组对边分别平行 从边看: 两组对边分别相等 一组对边平行且相等 的四边形是平行 四边形
相关文档
最新文档