八年级上期末数学试卷(有答案)(新课标人教版)

合集下载

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。

最新部编人教版八年级数学上册期末考试题及答案【新版】

最新部编人教版八年级数学上册期末考试题及答案【新版】

最新部编人教版八年级数学上册期末考试题及答案【新版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.一次函数的图象经过原点, 则k的值为()A. 2B.C. 2或D. 32.将抛物线向上平移3个单位长度, 再向右平移2个单位长度, 所得到的抛物线为().A. ;B. ;C. ;D. .3. 下列说法不一定成立的是()A. 若, 则B. 若, 则C. 若, 则D. 若, 则4.《孙子算经》中有一道题, 原文是: “今有木, 不知长短.引绳度之, 余绳四足五寸;屈绳量之, 不足一尺.木长几何?”意思是: 用一根绳子去量一根长木, 绳子还剩余尺.将绳子对折再量长木, 长木还剩余尺, 问木长多少尺, 现设绳长尺, 木长尺, 则可列二元一次方程组为()A. B. C. D.5.已知可以被在0~10之间的两个整数整除, 则这两个数是()A. 1.3B. 3.5C. 6.8D. 7、96.某市从2017年开始大力发展“竹文化”旅游产业.据统计, 该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元, 据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%7.若a=+ 、b=﹣, 则a和b互为()A. 倒数B. 相反数C. 负倒数D. 有理化因式8. 如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 809.将一副三角板和一张对边平行的纸条按如图摆放, 两个三角板的一直角边重合, 含30°角的直角三角板的斜边与纸条一边重合, 含45°角的三角板的一个顶点在纸条的另一边上, 则∠1的度数是()A. 15°B. 22.5°C. 30°D. 45°10.已知:如图, ∠1=∠2, 则不一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD. ∠BDA=∠CDA二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ________.2. 因式分解: __________.3.在数轴上表示实数a 的点如图所示, 化简+|a-2|的结果为____________.4. 如图, 正方形ABCD中, 点E、F分别是BC.AB边上的点, 且AE⊥DF, 垂足为点O, △AOD的面积为, 则图中阴影部分的面积为________.5. 我国古代数学家赵爽的《勾股圆方图》, 它是由四个全等的直角三角形与中间的小正方形拼制成一个大正方形(如下图), 设勾a=3, 弦c=5, 则小正方形ABCD的面积是_______。

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2x1-有意义,则x的取值范围是▲.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D5、D6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、x 1≥.3、3m ≤.4、﹣2<x <25、49136、132三、解答题(本大题共6小题,共72分)1、2x =2、112x -;15.3、(1)12,32-;(2)略.4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、单选题(每小题3分,共30分;每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,63.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 4.如图,∠1=()A.40°B.50°C.60°D.70°5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC 7.化简的结果是()A.﹣x B.x C.x﹣1D.x+18.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.710.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=.13.计算:3a4•(﹣2a)=.14.如果一个正n边形的每一个外角都是72°,那么n=.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.18.因式分解:am2﹣6ma+9a.19.解方程:=﹣1.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案.【解答】解:B、C、D都是轴对称图形,A不是轴对称图形,故选:A.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,6【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、2+2=4,不能组成三角形,故本选项不符合题意;B、3+4=7>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不符合题意;D、2+3=5<6,不能组成三角形,故本选项不符合题意.故选:B.3.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.如图,∠1=()A.40°B.50°C.60°D.70°【分析】根据三角形的外角的性质计算即可.【解答】解:∠1=130°﹣60°=70°,故选:D.5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.【分析】根据过三角形的顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.化简的结果是()A.﹣x B.x C.x﹣1D.x+1【分析】根据分式的运算法则即可求出答案.【解答】解:原式===x,故选:B.8.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,由此进行判断即可.【解答】解:A、(2x+y)(y﹣2x),能用平方差公式进行计算,故本选项符合题意;B、(x+2)(2+x),不能用平方差公式进行计算,故本选项不符合题意;C、(﹣a+b)(a﹣b),不能用平方差公式进行计算,故本选项不符合题意;D、(x﹣2)(x+1)不能用平方差公式进行计算,故本选项不符合题意;故选:A.9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.7【分析】由“SAS”可证△DBE≌△DAC,可得CD=DE=2,即可求解.【解答】解:∵AD⊥BC,BF⊥AC,∴∠ADC=∠ADB=∠BFC=90°,∴∠C+∠DAC=90°=∠C+∠DBF,∴∠DAC=∠DBF,在△DBE和△DAC中,,∴△DBE≌△DAC(SAS),∴CD=DE=2,∴AE=AD﹣DE=3,故选:C.10.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°【分析】由题中条件,可得△ACE≌△BCD,得出∠DBC=∠CAE,进而再通过角之间的转化,可最终求解出结论.【解答】解:∵△ABC和△CDE都是正三角形,∴AC=BC,CE=CD,∠ACB=∠ECD =60°,又∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,△ACE≌△BCD,∴∠DBC=∠CAE,即62°﹣∠EBC=60°﹣∠BAE,即62°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=60°+60°﹣62°=58°,∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣58°=122°.故选:B.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7,则n=﹣7.故答案为:﹣7.13.计算:3a4•(﹣2a)=﹣6a5.【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:3a4•(﹣2a)=﹣6a5.故答案为:﹣6a5.14.如果一个正n边形的每一个外角都是72°,那么n=5.【分析】根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【解答】解:n=360°÷72°=5.故答案为:5.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为4.【分析】过D作DE⊥AB于E,根据角平分线性质得出CD=DE,求出CD长即可.【解答】解:如图,过点D作DE⊥AB于E.∵BC=12,BD=8,∴CD=BC﹣BD=4.又∵∠C=90°,AD平分∠BAC交BC于点D,∴DE=CD=4.故答案为:4.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是31.5.【分析】观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:∵OB1=1,∠ODB1=60°,∴OD==,B1(1,0),∠OB1D=30°,∴D(0,﹣),如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A6的横坐标是=31.5,故答案为:31.5.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.【分析】直接利用完全平方公式以及单项式乘多项式计算得出答案.【解答】解:原式=a2﹣2a﹣(a2﹣2a+1)=a2﹣2a﹣a2+2a﹣1=﹣1.18.因式分解:am2﹣6ma+9a.【分析】先提公因式,然后利用公式法分解因式.【解答】解:原式=a(m2﹣6m+9)=a(m﹣3)2.19.解方程:=﹣1.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同时乘以(x﹣2)得,x﹣3=﹣3﹣(x﹣2),2x=4,x=2.检验:当x=2时,x﹣3≠0,故x=2是原分式方程的解.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可,写出各个点的坐标即可.(3)连接BA1交Y轴于点P,连接AP,点P即为所求.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2的即为所求作.A2(﹣3,﹣2)、B2(﹣4,3)、C2(﹣1,﹣1).(3)如图,点P即为所求作.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC =∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?【分析】设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【解答】解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N 运动的时间为20秒.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列式子中,是分式的是()A .1πB .3xC .11x -D .25x3.如图,在△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,则∠ACD=()A .10°B .60°C .70°D .130°4.下列计算正确的是()A .333•2b b b =B .2336ab a b ()=C .3249•a a a ()=D .2224a a (﹣)=﹣5.数据0.000000005用科学记数法表示为()A .5×10﹣8B .5×10﹣9C .0.5×10﹣8D .0.5×10﹣96.下列长度的三条线段中,能组成三角形的是()A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .3cm ,3cm ,5cmD .3cm ,4cm ,8cm 7.若221()4y a y by -=-+,则a 的值可能是()A .14B .14-C .12D .188.在如图所示的钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架,这样实际上可以得到△ABD ≌△ACD ,理由不可能是()A .AAAB .ASAC .SASD .SSS9.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为()A .4B .6C .8D .1010.如图,在△ABC 中,CA 的平分线交BC 于点D ,过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接EF ,则下列结论中,不正确的是()A .∠AEF=∠AFEB .EF ∥BC C .AD 垂直平分EFD .S △BDF :S △CED=BF :CE二、填空题11.分解因式:25x 2﹣16y 2=_____.12.要使分式3m m +有意义,则m 的取值应满足__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.14.如图,ABN ACM ≌,∠B=35°,∠BAM=25°,则∠ANB=____________.15.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且OA 平分∠BAC ,OD=2,则OE=____________.16.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_____度.17.如图,等边△ABC 中,BD ⊥AC 于D ,QD =1.5,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为_____.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题19.计算:434224()(2)x x x x x ⋅⋅++-.20.先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.21.如图,已知∠AOB ,直线MN ∥OA .请根据以下步骤完成作图过程.(1)尺规作图(保留作图痕迹,不写作法);①以点O 为圆心,任意长为半径画弧,交OA ,OB 于点P 、Q ;②以P ,Q 为圆心,大于12PO 长为半径画弧,交于一点K ,连接OK ,交MN 于点L .(2)直接写出∠BOL 和∠AOL 的数量关系.22.小明利用一根长3m 的竿子来测量路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使3m BP =,并测得70APB ∠=︒,然后把竖直的竿子(3m)CD CD =在BP 的延长线上左右移动,使20CPD ∠=︒,此时测得11.2m BD =.请根据这些数据,计算出路灯AB 的高度.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥.求证:AE CE =.24.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.25.如图,某中学校园内有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,学校计划在中间留一块边长为(a+b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.27.超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵3元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料同一价格销售,两批全部售完后,获利不少于3000元,则销售单价至少为多少元?28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1.A2.C3.D4.B5.B6.C7.C8.A9.A10.B11.(54)(54)x y x y +-12.3m ≠-【分析】分母不为零时,分式有意义,利用分母不为零列不等式即可.【详解】解: 分式3m m +有意义,30,m ∴+≠3.m ∴≠-故答案为: 3.m ≠-【点睛】本题考查的是分式有意义的条件,利用分式有意义列不等式是解题的关键.13.6【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=2×360°,解得n=6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.60°【分析】根据ABN ACM △≌△可知35C B ∠=∠=︒,25CAN BAM ∠=∠=︒,根据ANB CAN C ∠=∠+∠计算求解即可.【详解】解:∵ABN ACM△≌△∴35C B ∠=∠=︒,BAN CAM∠=∠∴BAN MAN CAM MAN∠-∠=∠-∠∴25CAN BAM ∠=∠=︒∴60ANB CAN C ∠=∠+∠=︒故答案为:60°.【点睛】本题考查了全等三角形的性质,三角形外角的性质.解题的关键在于找出角度的数量关系.15.2【分析】证明△AOE ≌△AOD (AAS ),得OE=OD=2即可.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ODA=∠OEA=90°,∵OA 平分∠BAC ,∴∠1=∠2,在△AOE 和△AOD 中,21OEA ODA OA OA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOE ≌△AOD (AAS ),∴OE=OD=2,故答案为:2.【点睛】本题考查了全等三角形的判定与性质以及角平分线定义等知识,证明△AOE ≌△AOD 是解题的关键.16.30【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,∵AB 的垂直平分线MN 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=40°,∴∠DBC=∠ABC -∠ABD=70°-40°=30°.故答案为:3017.5【分析】作点Q 关于BD 的对称点Q′,连接PQ′交BD 于E ,连接QE ,此时PE+QE 的值最小,最小值PE+QE=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=2+1.5=3.5,∴AB=AC=2AD=7,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+QE的值最小,最小值为PE+QE=PE+EQ′=PQ′,∴QD=DQ′=1.5,∴AQ′=AD+DQ′=3.5+1.5=5,∵BP=2,∴AP=AB-BP=7-2=5,∴AP=AQ′=5,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5,∴PE+QE的最小值为5.∴答案为5.【点睛】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,解题的关键是学会利用轴对称解决最短问题.18.7【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【详解】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点睛】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.19.818x 【分析】首先利用同底数幂的乘法法则、幂的乘方与积的乘方法则计算,再合并同类项即可.【详解】解:原式88816x x x =++818x =【点睛】本题主要考查了整式的混合运算,熟练掌握同底数幂的乘法法则、幂的乘方与积的乘方法则是解题关键.20.1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+⎛⎫-÷ ⎪+++⎝⎭,=()22112x x x x -+⋅+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.21.(1)见解析(2)∠BOL=∠AOL【分析】(1)根据作图过程即可解决问题;(2)根据作图过程可得OL 平分∠AOB ,进而可得结论.(1)解:如图所示即为所求.(2)解:由作图可知:OL 平分∠AOB ,∴∠BOL=∠AOL .22.路灯AB 的高度是8.2m【分析】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB-PB 求出即可.【详解】解:∵20CPD ∠=︒,70APB ∠=︒,90CDP ABP ∠=∠=︒,∴70DCP APB ∠=∠=︒,20BAP DPC ∠=∠=︒在CPD △和PAB △中,CDP PBA CD PB DCP BPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()CPD PAB ASA ≌,∴DP AB =.∵11.2m BD =,3m BP =,∴8.2m DP BD BP =-=,即8.2m AB =.答:路灯AB 的高度是8.2m .23.见解析【分析】此题根据已知条件及对顶角相等的知识先证得△AED ≌△CEF ,则易求证AE =CE .【详解】证明:∵AB ∥FC ,∴∠ADE =∠CFE ,在△AED 和△CEF 中,ADE CFE DE FE AED CEF ∠⎪∠⎧⎩∠⎪∠⎨===,∴△AED ≌△CEF (ASA ),∴AE =CE .【点睛】主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.24.(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB 是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【详解】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD﹣∠PAB=30°﹣15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=12PB=3.5>3∴没有危险25.(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.26.(1)见解析(2)120°【分析】(1)根据“AAS”证明ABC FEC ≌,即可证明AB FE =;(2)根据∥AB CE 得到B FCE ∠=∠,进而证明E FCE B ACB ∠∠=∠=∠=,利用直角三角形性质得到90∠+∠+∠=︒E FCE ACB ,即可求出30ACB ∠=︒,30B ∠=︒,即可求出120A ∠=︒.(1)证明:∵CB 为ACE ∠的角平分线,∴ACB FCE ∠=∠,在ABC 与FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴() ≌ABC FEC AAS ,∴AB FE =;(2)解:∵∥AB CE ,∴B FCE ∠=∠,∴E FCE B ACB ∠∠=∠=∠=,∵ED AC ⊥,即90CDE ∠=︒,∴90∠+∠+∠=︒E FCE ACB ,即390ACB ∠=︒,∴30ACB ∠=︒,∴30B ∠=︒,∴1801803030120∠=︒-∠-∠=︒-︒-︒=︒A B ACB .27.(1)第一批饮料进货单价为6元;(2)销售单价至少为12元.【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y 元,根据利润=销售收入-进货成本,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元.依题意,得:5400120033x x =⨯+.解得:6x =.经检验,6x =是原方程的解,且符合题意.答:第一批饮料进货单价为6元.(2)第一批饮料进货数量为12006200÷=第二批饮料进货数量为5400(63)600÷+=.设销售单价为y 元,依题意,得:(200600)(12005400)3000y +-+.解得:y =12元答:销售单价至少为12元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.28.问题背景:EF=BE+DF ;探索延伸:仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为320海里【分析】问题背景:延长FD 到点G ,使DG=BE ,连接AG ,证明△ABE ≌△ADG ,得到△AEF ≌△AGF ,证明EF=FG ,得到答案;探索延伸:连接EF ,延长AE ,BF 相交于点C ,利用全等三角形的性质证明EF=AE+FB .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,首先证明,∠FOE=12∠AOB ,利用结论EF=AE+BF 求解即可.【详解】解:问题背景:由题意:△ABE ≌△ADG ,△AEF ≌△AGF ,∴BE=DG ,EF=GF ,∴EF=FG=DF+DG=BE+FD .故答案为:EF=BE+FD .探索延伸:EF=BE+FD 仍然成立.理由:如图2,延长FD 到点G ,使DG=BE ,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG ,又∵AB=AD ,在△ABE 和△ADG 中,AB ADB ADG BE DG=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG(SAS),∴AE=AG ,∠BAE=∠DAG ,又∵∠EAF=12∠BAD ,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD ﹣∠EAF ,=∠BAD ﹣12∠BAD=12∠BAD ,∴∠EAF=∠GAF .在△AEF 和△AGF 中,AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF(SAS),∴EF=FG ,又∵FG=DG+DF=BE+DF ,∴EF=BE+FD .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。

人教版八年级上册数学期末考试试题及答案

人教版八年级上册数学期末考试试题及答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.﹣2的绝对值是()A .2B .12C .12-D .2-3.在下列长度的各组线段中,能组成三角形的是()A .1,2,4B .1,4,9C .3,4,5D .4,5,94.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为()A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯5.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是()A .2B .3C .4D .56.下列计算中正确的是()A .()236ab ab =B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是()A .237442a a -+B .237164a a -+C .237442a a ++D .237164a a ++8.等腰三角形的两边长分别为8cm 和4cm ,则它的周长为()A .12cmB .16cmC .20cmD .16cm 或20cm9.下列条件中,不能判定两个直角三角形全等的是()A .两个锐角对应相等B .一条边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等10.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=6cm ,AB=8cm ,则△EBC 的周长是()A .14cmB .18cmC .20cmD .22cm二、填空题11.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.12.若一个多边形的内角和是900º,则这个多边形是_____边形.13.如图,在△ABC 中,已知AD 是角平分线,DE ⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.14.二元一次方程组128x y x y -=⎧⎨+=⎩的解为_________.15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.16.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()22()()x y x y x y -++,若取9x =,9y =时则各个因式的值是:0x y -=,18x y +=,22162x y +=,把这些值从小到大排列得到018162,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10x =,10y =时,请你写出用上述方法产生的密码_________.三、解答题17.计算:102|3|(2----+;18.解方程:32122x x x =---19.先化简,再求值:2()()()x y x y x y x ⎡⎤-+-+÷⎣⎦,其中x =1-,12y =.20.计算:221369324a a a a a a a +--+-÷-+-.21.如图所示,在ABC ∆,A ABC CB =∠∠.(1)尺规作图:过顶点A 作ABC ∆的角平分线AD ,交BC 于D ;(不写作法,保留作图痕迹)(2)在AD 上任取一点E (不与点A 、D 重合),连结BE ,CE ,求证:EB EC =.22.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP 全等;此时点Q的运动速度为多少.24.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF ADF∠=∠.(1)求证:ADE∆≌BFE∆.(2)连接EG,判断EG与DF的位置关系并说明理由.25.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.A【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2xπ-不是分式,是整式.6.D 【分析】根据幂的乘除运算法则运算即可.【详解】A.()2326ab a b =,该选项错误B.34a a a ÷=,该选项错误C.246a a a ⋅=,该选项错误D.()326a a -=-,该选项正确故选D.【点睛】本题考查幂的乘除的运算,关键在于熟悉乘除、乘方的运算规律.7.D 【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.C 【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm 和4cm ,∴它的三边长可能为8cm ,8cm ,4cm 或4cm ,4cm ,8cm ,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.9.A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB,即可得出结论.【详解】中AC边的垂直平分线,DE是ABC∴=,AE CE∴+==,CE BE AB8cm,=BC6cmEBC ∴ 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.-2【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S△ADC =12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.14.32 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解128x yx y-=⎧⎨+=⎩①②,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩,故答案为:32 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.101030【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到101030.用上述方法产生的密码是:101030.故答案为:101030.【点睛】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.−1 2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】102|3|(2----=12−3−1+3=−1 2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.x =76【解析】【分析】观察可得方程最简公分母为2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴x =76,检验:当x =76时,2(x-1)≠0,∴x =76是原分式方程的解.【点睛】此题考查了解分式方程.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.2(x-y);-3.【分析】括号内先提取公因式(x-y),整理,再根据整式除法法则化简出最简结果,把x 、y 的值代入求值即可.【详解】2()()()x y x y x y x⎡⎤-+-+÷⎣⎦=(x-y)(x-y+x+y)÷x=2x(x-y)÷x=2(x-y).当x =1-,12y =时,原式=2(x-y)=2×(-1-12)=-3.【点睛】本题考查因式分解的应用——化简求值,正确找出公因式(x-y)是解题关键.20.33a -【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】221369324a a a a a a a +--+-÷-+-=()()2221332(3)a a a a a a a +-+--⋅-+-=1233a a a a +----=33a -.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC 的平分线交BC 于D ,则AD 为所求;(2)先证明△ABC 为等腰三角形,再根据等腰三角形的性质,由AD 平分∠BAC 可判断AD 垂直平分BC ,然后根据线段垂直平分线的性质可得EB =EC .【详解】(1)解:如图,AD 为所作;(2)证明:如图,∵∠ABC =∠ACB ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ,即AD 垂直平分BC ,∴EB =EC .【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.(1)甲单独20天,乙单独25天完成.(2)方案③最节省.【分析】(1)设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.(2)根据题意可得方案①、③不耽误工期,符合要求,再求出各自的费用,方案②显然不符合要求.【详解】(1)设规定日期x天完成,则有:415xx x+=+解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.(2)方案①:20×1.5=30(万元),方案②:25×1.1=27.5(万元),但是耽误工期,方案③:4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案③最节省.【点睛】本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.23.(1)△BPE与△CQP全等,理由见解析;(2)t=5 2 ,【分析】(1)根据SAS可判定全等;(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=12BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.【详解】(1)△BPE与△CQP全等.∵点Q的运动速度与点P的运动速度相等,且t=2秒,∴BP=CQ=2×2=4厘米,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,{BP CQ BE CP==,∴Rt△BPE≌Rt△CQP;(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=BP522=(秒)此时点Q的运动速度为CQ12t5QV==(厘米/秒).【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.24.(1)见解析;(2)EG DF⊥,见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE ,∵E 为AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,ADE BFE AED BEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BFE (AAS );(2)EG ⊥DF ,理由如下:连接EG,∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE ,∴DG =FG ,由(1)得:△ADE ≌△BFE∴DE =FE ,即GE 为DF 上的中线,又∵DG =FG ,∴EG ⊥DF .【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.(1)40°;(2)①补图见解析;②证明见解析.【详解】试题分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)①根据要求作出图形,如图2;②根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.试题解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.考点:三角形综合题.。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.若分式x y yx +中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的一半2.下列长度的三条线段,能构成三角形的是()A .8,8,15B .4,5,9C .5,5,11D .3,6,93.将数字0.000 005写成科学记数法得到()A .50.510⨯B .6510⨯C .50.510-⨯D .6510-⨯4.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A .(a+b)2=a 2+2ab+b 2B .(a ﹣b)2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b)(a ﹣b)D .(a+b)(a ﹣2b)=a 2﹣ab ﹣2b 25.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A .50°B .30°C .20°D .15°7.如图,把一张长方形的纸,按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 是()A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.使分式1xx -有意义的x 的取值范围是()A .1x =B .1x ≠C .1x =-D .1x ≠-9.以下说法正确的是()①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A .①②B .②④C .①③D .①③④10.如图,在 ABC 中,边BC 的垂直平分线分别交AC ,BC 于点D ,E ,若 ABC 的周长为12,CE 52=,则 ABD 的周长为()A .10B .9C .8D .7二、填空题11.分解因式:2a 2﹣6a =______.12.a 2•a 3÷a 4=_____.13.如果102m =,103n =,那么10m n+=____________.14.在平面直角坐标系中,点M(1,2)关于y 轴对称点的坐标为_____.15.在△ABC 中,AB =5,BC =8,AC =6,AD 平分∠BAC ,则S △ABD :S △ACD =___.16.若a m =2,a n =3,则a m﹣n的值为_____.17.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.18.如图,已知线段2cm AB =,其垂直平分线CD 的作法如下:①分别以点A 和点B 为圆心,cm b 长为半径画弧,两弧相交于C ,D 两点;②作直线CD .上述作法中b 满足的条作为b ___1.(填“>”,“<”或“=”)19.如图,在ABC ∆中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,ABD ∆的周长为12,cm AC 的长为5cm ,那么ABC ∆的周长是___________cm三、解答题20.解分式方程:21133x x+=--21.化简:2x (x ﹣3y )+(5xy 2﹣2x 2y )÷y .22.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A (),'B (),'C (),(3)求出'''A B C ∆的面积23.如图,已知∠1=∠2,∠C=∠D,求证:△ABC≌△BAD.24.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?25.如图,在 ABC是等腰直角三角形,∠ACB=90°,点D、E分别是 ABC内的点,且EA=EB,BD=AC,BE平分∠DBC.(1)求证: DBE≌ CBE;(2)求证:∠BDE=45°.26.在△ABC 中,CA =CB ,∠ACB =120°,将一块足够大的三角尺PMN (∠M =90°,∠MPN =30°)按图示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角∠PCB =α,斜边PN 交AC 于点D .(1)当PN ∥BC 时,∠ACP =°(2)当α=15°时,求∠ADN 的度数.(3)在点P 滑动的过程中,△PCD 的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出α的大小.27.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .28.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D .(1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.参考答案1.C【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【详解】解:分式x y y x +中的x 、y 的值都变为原来的3倍,则此分式的值是原来的13,故选:C .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.2.A【分析】根据三角形的三边关系计算,判断即可.【详解】解:A 、∵15−8<8<15+8,∴长度为8,8,15的三条线段能构成三角形,本选项符合题意;B 、∵4+5=9,∴长度为4,5,9的三条线段不能构成三角形,本选项不符合题意;C 、∵5+5<11,∴长度为5,5,11的三条线段不能构成三角形,本选项不符合题意;D 、∵3+6=9,∴长度为3,6,9的三条线段不能构成三角形,本选项不符合题意;故选:A .【点睛】本题考查的是三角形的三边关系,掌握三角形两边之和大于第三边,三角形的两边差小于第三边是解题的关键.3.D【分析】按照小数科学记数法的原则表示即可.【详解】∵0.000005=6510-⨯故选D.【点睛】本题考查了小数的科学记数法,熟记小数的科学记数法中10的指数是负整数是解题的关键.4.C【分析】图甲中根据阴影部分面积等于大正方形减去小正方的面积,图乙中直接求长方形的即可,根据两个图形中阴影部分的面积相等,即可求解【详解】解:图甲阴影部分的面积为22a b -,图乙中阴影部分的面积等于()()a b a b +- 两个图形中阴影部分的面积相等,∴22a b -=()()a b a b +-故选C【点睛】本题考查了平方差公式与图形面积,正确的求出阴影部分面积是解题的关键.5.D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D .【点睛】此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.A【分析】根据三角尺可得330∠=︒,根据三角形外角的性质可得4∠13=∠+∠,根据直尺的两边平行,可得24∠∠=【详解】如图,3906030∠=︒-︒=︒,∠1=20°,∴4∠13=∠+∠203050=︒+︒=︒,直尺的两边平行,∴2450∠=∠=︒故选A【点睛】本题考查了三角形外角的性质,平行线的性质,直角三角形两个锐角互余,求得∠=︒是解题的关键.3307.C【分析】依据折叠即可得到AB=AC,进而得出△ABC的形状.【详解】解:由题可得,AB与AC可重合,即AB=AC,∴△ABC是等腰三角形.故选:C.【点睛】本题考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.8.B-≠,解答即可.【分析】根据分式的意义,由x10-≠【详解】解:根据分式的意义:x10∴x1≠,故选择:B.【点睛】本题考查了不等式的意义,解题的关键是计算分母不等于0.9.C【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【详解】①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选C.【点睛】本题考查了全等三角形的判定的应用,能理解全等三角形的判定定理是解此题的关键,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL 定理,但AAA、SSA,无法证明三角形全等.10.D【分析】首先根据垂直平分线的性质得到BD CD =,52BE CE ==,然后根据 ABC 的周长为12,即可求出 ABD 的周长.【详解】解:∵边BC 的垂直平分线分别交AC ,BC 于点D ,E ,∴BD CD =,52BE CE ==,即25BC EC ==,∵ ABC 的周长为12,∴12AB BC AC ++=,∵5BC =,∴7AB AC +=,∴ ABD 的周长7AB BD AD AB CD AD AB AC =++=++=+=.故选:D .【点睛】此题考查了垂直平分线的性质,整体方法的运用,解题的关键是熟练掌握垂直平分线的性质.11.2a(a-3)【分析】只需在原式中提取2a 分解即可.【详解】解:原式=2a(a-3),故答案为:2a(a-3).【点睛】本题考查利用提取公因式分解因式,能够熟练掌握分解因式的方法是解决本题的关键.12.a【分析】先根据同底数幂的乘法进行计算,再根据同底数幂的除法进行计算即可.【详解】a 2•a 3÷a 4=54a a a ÷=故答案为:a【点睛】本题考查了同底数幂的乘除法,掌握同底数幂的乘除法的运算法则是解题的关键.13.6【分析】根据同底数幂乘法的逆用即可求解.【详解】解:101010236m n m n +=⋅=⨯=,故答案为:6.【点睛】本题考查同底数幂乘法的逆用,掌握同底数幂相乘的法则是解题的关键.14.(-1,2)【分析】根据关于y 轴对称,纵坐标不变,横坐标变成相反数计算即可.【详解】∵点M(1,2)关于y 轴对称点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了点的坐标的对称性,熟记对称类型和坐标特点是解题的关键.15.5:6【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得出DE =DF ,根据三角形的面积公式求出答案即可.【详解】解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF ,设DE =DF =R ,∵S △ABD =12AB DE ⨯⨯=152⨯⨯R ,S △ACD =12AC DF ⨯⨯=162R ⨯⨯,∴S △ABD :S △ACD =5:6,故答案为:5:6.【点睛】本题考查了三角形的面积和角平分线的性质,注意:角平分线上的点到角的两边的距离相等.16.23.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【详解】am ﹣n =am÷an =2÷3=23,故答案为23.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.17.50°##50度【分析】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,进而根据等腰三角形的性质以及三角形内角和定理即可求得AOB ∠.【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠, ∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°【点睛】本题考查了等腰三角形的性质,等边对等角,轴对称的性质,根据轴对称求线段和最短,掌握轴对称的性质是解题的关键.18.>【分析】作图方法为:以A ,B 为圆心,大于12AB 长度画弧交于C ,D 两点,由此得出答案.【详解】解:∵2cm AB =,∴半径b 长度12AB >,即1cm b >.故答案为: .【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.19.17.△的周长为12cm,可得【分析】由DE是AC的垂直平分线,可得AD=DC,由ABDAB+AD+BD=12cm,再由AD=DC,可得AB+BC=12cm,结合AC=5cm进行计算即可.△的周长为12cm,【详解】解:∵ABD∴AB+AD+BD=12cm,∵DE是AC的垂直平分线,∴AD=DC,∴AB+DC+BD=12cm,∴AB+BC=12cm,∵AC=5cm,∴AB+BC+AC=17cm,的周长是17cm,即ABC故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,正确理解线段的垂直平分线的性质是解题的关键.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21.﹣xy【分析】根据单项式乘以多项式,多项式除以单项式去括号,再合并同类项即可【详解】解:原式=2x 2﹣6xy+5xy ﹣2x 2=﹣xy .【点睛】本题考查了单项式乘以多项式,多项式除以单项式,正确的计算是解题的关键.22.(1)所画图形见解析;(2)3,-3;-1,-3;0,4;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S ''' .【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=,∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.23.见解析【分析】根据已知条件,直接利用AAS 即可判定△ABC ≌△BAD .【详解】在△ABC 和△BAD 中,21C D AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△BAD (AAS ).【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题关键.24.(1)4000;(2)小勇同学两次慢跑的速度各是4003米/分、160米/分.【分析】(1)一次有氧耐力训练慢跑10圈,一圈400米,两数相乘即可求得答案.(2)设出第一次慢跑的速度,接着表示出第二次的速度,分别求出两次所用时间,根据两次时间的关系,列出方程,并求出方程.【详解】(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x 米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x 米.由题意可得:4000400051.2x x -=解得:4003x =经检验得:4003x =是原分式方程的解.∴第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米.答:小勇同学两次慢跑的速度各是4003米/分、160米/分.【点睛】本题主要是考查了分式方程的实际应用,熟练根据等式关系列出分式方程,并求解分式方程,是解题的关键,但注意分式方程一定要验根.25.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°26.(1)90;(2)45°;(3)可以,45°或90°或0°【分析】(1)根据平行线性质求出∠BCP ,即可得出答案.(2)求出∠ACP,根据三角形内角和定理求出∠PDC,即可得出答案;(3)分为三种情况:当PC=PD时,当PD=CD时,当PC=CD时,根据等腰三角形性质和三角形内角和定理得出关于α的方程,求出即可.【详解】解:(1)∵PN∥BC,∠MPN=30°,∴∠BCP=∠MPN=30°.∵∠ACB=120°,∴∠ACP=∠ACB-∠BCP=120°-30°=90°.(2)∵∠ACB=120°,∠PCB=15°,∴∠PCD=∠ACB-∠PCB=120°-15°=105°.∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°.∴∠ADN=∠PDC=45°.(3)△PCD的形状可以是等腰三角形.由题意知∠PCA=120°-α,∠CPD=30°.①若PC=PD,则∠PCD=∠PDC.∴∠PCD=12(180°-∠MPN)=12(180°-30°)=75°,即120°-α=75°,解得α=45°.②若PD=CD,则∠PCD=∠CPD=30°,即120°-α=30°,解得α=90°;③若PC=CD,则∠CDP=∠CPD=30°.∴∠PCD=180°-2×30°=120°,即120°-α=120°,解得α=0°,此时点P与点B重合,点D和点A重合.综合上述,当α=45°或α=90°或α=0°时,△PCD是等腰三角形,即α的大小是45°或90°或0°.27.【分析】由题意可得∠B=∠C=90°,BF=CE ,由“AAS”可证△ABF ≌△DCE ,可得AF=DE .【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,28.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE S S = ,∴1122CE AH BE AG ⨯⨯=⨯⨯,∴AH=AG ,∴DA 平分∠CDE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期末数学试卷一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!)1.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形2.已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°3.把分式中的x、y都扩大3倍,那么分式的值是()A.扩大3倍 B.缩小3倍 C.不变 D.缩小原来的4.下列各式正确的是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a5.如图,点A和点D都在线段BC的垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°6.下列分式中,是最简分式的是()A.B.C.D.7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A.9 B.8 C.7 D.68.如果9a2﹣ka+4是完全平方式,那么k的值是()A.﹣12 B.6 C.±12 D.±69.已知分式,下列分式中与其相等的是()A.B.C.D.晓晓作法:分别作AC和BC的垂直平分线,交AB于点P,Q.点P,Q就是所求作的点.你认为明明和晓晓作法正确的是()A.明明 B.晓晓 C.两人都正确D.两人都错误二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x.那么整数x可能是.(填一种情况即可)12.齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为.13.一个等腰三角形的一个角为80°,则它的顶角的度数是.14.若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点的坐标是.15.如果的解为正数,那么m的取值范围是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.17.(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢的a值,代入求值.18.如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE的度数;(2)如果AD=6,BE=5.求△ABC的面积.19.作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.20.本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x的实际意义是;团支部书记所列方程中y的实际意义是.(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.21.先阅读下面的内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n的值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面的问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016的值;(2)已知a,b,c为△ABC的三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC的形状,并证明.22.已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2).那么图中是否存在与AM相等的线段?若存在,请写出来并证明;若不存在,请说明理由.八年级(上)期末数学试卷参考答案与试题解析一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Ⅱ的答题栏内.相信你一定能选对!)1.下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形【考点】三角形的稳定性;多边形.【分析】根据三角形具有稳定性解答.【解答】解:具有稳定性的图形是三角形.故选A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∴∠C=180°﹣∠A﹣∠B=70°,故选:D.【点评】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.3.把分式中的x、y都扩大3倍,那么分式的值是()A.扩大3倍 B.缩小3倍 C.不变 D.缩小原来的【考点】分式的基本性质.【分析】根据分子分母都乘以(或除以)同一个不为零的数或整式,结果不变,可得答案.【解答】解:分式中的x、y都扩大3倍,那么分式的值不变.故选:C.【点评】本题考查了分式的基本性质,分子分母都乘以(或除以)同一个不为零的数或整式,结果不变.4.下列各式正确的是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.如图,点A和点D都在线段BC的垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到AB=AC,DB=DC,由等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠2=50°,根据三角形的内角和得到∠BAC=40°,∠BDC=80°,即可得到结论.【解答】解:∵点A和点D都在线段BC的垂直平分线上,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠2=50°,∴∠ABC=∠ACB=∠1+∠DBC=70°,∴∠BAC=40°,∠BDC=80°,∴∠BAC比∠BDC小40°,故选B.【点评】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段垂直平分线的性质是解题的关键.6.下列分式中,是最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、=;B、=;C、=;D、的分子、分母都不能再分解,且不能约分,是最简分式;故选D.【点评】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形的对角线.【分析】多边形的外角和是360度,根据内角和与外角和的比是3:1,则内角和是1080度,根据n边形的内角和定理即可求得.【解答】解:内角和是3×360=1080°.设多边形的边数是n,根据题意得到:(n﹣2)•180=1080.解得n=8.故选:B.【点评】本题考查多边形的内角和计算公式和多边形的外角和定理.根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.8.如果9a2﹣ka+4是完全平方式,那么k的值是()A.﹣12 B.6 C.±12 D.±6【考点】完全平方式.【分析】根据两数的平方和加上或减去两数积的2倍等于两数和或差的平方,即可得到k的值.【解答】解:∵9a2﹣ka+4=(3a)2±12a+42=(3a±2)2,∴k=±12.故选C.【点评】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.已知分式,下列分式中与其相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分子、分母、分式的符号任意改变两项的符号,分式的值不变,可得答案.【解答】解:=﹣=,故A正确.故选:A.【点评】本题考查了分式的基本性质,分子、分母、分式的符号任意改变两项的符号,分式的值不变.晓晓作法:分别作AC和BC的垂直平分线,交AB于点P,Q.点P,Q就是所求作的点.你认为明明和晓晓作法正确的是()A.明明 B.晓晓 C.两人都正确D.两人都错误【考点】角平分线的性质;线段垂直平分线的性质.【分析】根据等腰三角形的性质得到∠B=∠A=30°,CD⊥AB,由三角形的内角和得到∠ACD=∠BCD=60°,明明作法:如图1,根据角平分线的定义得到∠ACP=∠BCQ=30°,求得∠A=∠ACP,∠B=∠BCQ,由等腰三角形的判定得到AP=PC,BQ=CQ,根据全等三角形的性质得到AP=BQ,于是得到AP=CP=CQ=BQ;故明明作法正确;晓晓作法:如图2,根据线段垂直平分线的性质得到AP=PC,BQ=CQ,推出△APC≌△BCQ,根据全等三角形的性质得到AP=BQ,求得AP=CP=CQ=BQ,于是得到晓晓作法正确.【解答】解:∵AC=BC,AD=BD,∴∠B=∠A=30°,CD⊥AB,∴∠AC D=∠BCD=60°,明明作法:如图1,∵CP平分∠ACD,CQ平分∠BCD,∴∠ACP=∠BCQ=30°,∴∠A=∠ACP,∠B=∠BCQ,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ;∴明明作法正确;晓晓作法:如图2,∵分别作AC和BC的垂直平分线,交AB于点P,Q,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ,∴晓晓作法正确,故选C.【点评】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定和性质,等腰三角形的性质,正确的画出图形是解题的关键.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个三角形的三边长分别是3,6,x.那么整数x可能是5.(填一种情况即可)【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定x的取值范围,再确定x的值.【解答】解:根据三角形的三边关系可得:6﹣3<x<6+3,即3<x<9,∵x为整数,∴x=5.故答案为:5.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域的研究.纤毛虫作为原生动物中特化程度最高且最为复杂的一个门,是单细胞真核生物,具有高度的形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为2×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00002=2×10﹣5,故答案为:2×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点的坐标是(﹣2,﹣15).【考点】关于x轴、y轴对称的点的坐标;因式分解-十字相乘法等.【分析】先利用多项式的乘法展开再根据对应项系数相等确定出b、c的值,然后根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵(x+5)(x﹣3)=x2+2x﹣15,∴b=2,c=﹣15,∴点P的坐标为(2,﹣15),∴点P(2,﹣15)关于y轴对称点的坐标是(﹣2,﹣15).故答案为:(﹣2,﹣15).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.如果的解为正数,那么m的取值范围是m<1且m≠﹣3.【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【解答】解:去分母得,1+x﹣2=﹣m﹣x,∴x=,∵方程的解是正数∴1﹣m>0即m<1,又因为x﹣2≠0,∴≠2,∴m≠﹣3,则m的取值范围是m<1且m≠﹣3,故答案为m<1且m≠﹣3.【点评】本题考查了分式方程的解,由于我们的目的是求m的取值范围,根据方程的解列出关于m的不等式,另外,解答本题时,易漏掉m≠﹣2,这是因为忽略了x﹣2≠0这个隐含的条件而造成的,这应引起同学们的足够重视.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.【考点】分式的混合运算;零指数幂;负整数指数幂.【分析】(1)分母不变,直接把分子相加减即可;(2)先算乘方,再算乘法即可;(3)分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据有理数的减法进行计算.【解答】解:(1)原式==1;(2)原式==;(3)原式=1﹣=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.17.(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢的a值,代入求值.【考点】分式的化简求值;整式的混合运算.【专题】计算题;分式.【分析】(1)原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果;(2)原式第一项利用除法法则变形,约分后合并得到最简结果,把a=2代入计算即可求出值.【解答】解:(1)原式=3(x2﹣2xy+y2)﹣(2x2﹣4xy+xy﹣2y2)=3x2﹣6xy+3y2﹣2x2+4xy ﹣xy+2y2=x2﹣3xy+5y2;(2)原式=•+=a﹣(﹣a)=2a,当a=2时,原式=2×2=4.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE的度数;(2)如果AD=6,BE=5.求△ABC的面积.【考点】三角形内角和定理;三角形的面积;含30度角的直角三角形.【分析】(1)先由直角三角形的性质求出∠ADF的度数,再由角平分线的性质求出∠BAF 的度数,故可得出∠BAD的度数,再由直角三角形的性质即可得出结论;(2)由(1)知,∠BCE=30°,故可得出BC=2BE,再由三角形的面积公式即可得出结论.【解答】解:(1)∵AD,CE是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°﹣∠AFD=90°﹣80°=10°.∵AF平分∠BAC,∴∠BAF=∠BAC=×80°=40°.∴∠BAD=∠BAF﹣∠DAF=40°﹣10°=30°.∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BCE=∠BAD=30°.(2)在Rt△BCE中,∵∠BCE=30°,∴BC=2BE=2×5=10.∴S△ABC=BC•AD=×10×6=30.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.19.作图与证明:(1)读下列语句,作出符合题意的图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB的同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.【考点】作图—复杂作图.【专题】作图题.【分析】(1)根据题中要求,先确定C点,使CA=CB,再在AC的延长线上截取CD=AC,然后连结BD得到△ABD;(2)利用作法得到AB=AC=BC=CD,根据圆的定义得到点B在以AD为直径的圆上,然后根据圆周角定理可判断△ABD是直角三角形.【解答】(1)解:如图,△ABD为所作;(2)证明:连接BC,如图,由作图可得AB=AC=BC=CD,∴点B在以AD为直径的圆上,∴∠ABD=90°,∴△ABD是直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.20.本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好的前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量的笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量的笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x的实际意义是钢笔的单价;团支部书记所列方程中y的实际意义是所买笔记本的本数.(2)你认为刘老师能买到相同数量的笔记本和钢笔吗?请说明理由.【考点】分式方程的应用.【分析】(1)根据钢笔每只比笔记本每本贵16元结合所列方程可得x的实际意义是钢笔单价,y的实际意义是所买笔记本的本数;(2)首先假设刘老师能买到相同数量的笔记本和钢笔,设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得,解出z的值,然后再计算出,根据实际问题可得笔记本的本数必须为整数,故刘老师不能买到相同数量的笔记本和钢笔.【解答】解:(1)班长所列方程中x的实际意义是:钢笔的单价;团支部书记所列方程中y的实际意义是:所买笔记本的本数;(2)假设刘老师能买到相同数量的笔记本和钢笔.设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得.解这个方程,得z=8,经检验z=8是所列方程的解.∴,而笔记本的本数必须为整数,∴z=8不符合实际题意.∴刘老师不能买到相同数量的笔记本和钢笔.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,列出方程,注意分式方程必须检验.21.先阅读下面的内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n的值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面的问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016的值;(2)已知a,b,c为△ABC的三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC的形状,并证明.【考点】配方法的应用;非负数的性质:偶次方.【专题】阅读型.【分析】(1)根据完全平方公式把原式化为(x﹣4)2+(y+5)2=0的形式,根据非负数的性质求出x、y,代入代数式根据乘方法则计算即可;(2)根据完全平方公式把原式化为(a﹣b)2+(b﹣c)2+(c﹣a)2=0的形式,根据非负数的性质进行解答即可.【解答】解:(1)∵x2+y2﹣8x+10y+41=0,∴x2﹣8x+16+y2+10y+25=0.∴(x﹣4)2+(y+5)2=0.∴x﹣4=0且y+5=0.∴x=4,y=﹣5.∴(x+y)2016=[4+(﹣5)]2016=1.(2)∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2=2ab+2bc+2ca.∴a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ca+a2=0.∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0.∴a﹣b=0且b﹣c=0且c﹣a=0.∴a=b=c.∴△ABC是等边三角形.【点评】本题考查的是配方法的应用和非负数的性质的应用,正确根据完全平方公式进行配方是解题的关键.22.已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2).那么图中是否存在与AM相等的线段?若存在,请写出来并证明;若不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据题意得到三角形ABC为等腰直角三角形,且CD为斜边上的中线,利用三线合一得到CD垂直于AB,且CD为角平分线,得到∠CAE=∠BCG=45°,再利用同角的余角相等得到一对角相等,AC=BC,利用ASA得到△AEC与△CGB全等,利用全等三角形的对应边相等即可得证.(2)图中存在与AM相等的线段,AM=CE.先证出∠CEB=∠CMA,再由AAS证明△BCE≌△ACM,即可解答.【解答】解:(1)∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,,∴△AEC≌△CGB(ASA).∴AE=CG.(2)图中存在与AM相等的线段,AM=CE.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.∵AC=BC,∠ACM=∠CBE=45°,在△CAM和△BCE中,,∴△CAM≌△BCE(AAS).∴AM=CE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解决问题的关键.。

相关文档
最新文档