八年级(上)期中测试卷数学参考答案
人教版2022--2023学年度第一学期八年级数学上册期中测试卷及答案

故选:C.
【点睛】本题考查了三角形的高线,中线,角平分线的定义,掌握以上知识是解题的关键.
8. B
【解析】
【分析】直接根据三角形中线定义解答即可.
【详解】解:∵ 是 的中线, ,
∴BM= ,
故选:B.
【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
【详解】解:∵△ABF和△BCE均为等边三角形,
∴AB=FB,BC=BE,∠ABF=∠CBE=60°,
∴∠MBN=180°﹣∠ABF﹣∠CBE=60°,
∵∠ABE=∠ABF+∠MBN=60°+60°=120°,
∠FBC=∠CBE+∠MBN=60°+60°=120°,
∴∠ABE=∠FBC,
在△ABE和△FBC中,
21.已知在△ABC中,AC=BC,分别过A,B两点作互相平行的直线AM,BN,过点C的直线分别交直线AM,BN于点D,E.
(1)如图1,若AM⊥AB,求证:CD=CE;
(2)如图2,∠ABC=∠DEB=60°,判断线段AD,DC与BE之间的关系,并说明理由.
22.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.
∴BD是∠ADC的角平分线,故⑤正确;
故选:B.
【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,角平分线的判定定理,综合运用以上知识是解题的关键.
二.填空题(共7小题,满分28分,每小题4分)
11.108°
【解析】
【分析】设∠A=x,然后利用等边对等角表示出各个角的度数,然后利用三角形内角和定理求得x的值后即可求得答案.
八年级数学上册期中试卷【含答案】

八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,则下列哪个选项正确?( )A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为( )。
A. 5B. 6C. 7D. 83. 有理数-3/5、-5/7、-7/9的大小关系是( )。
A. -3/5 < -5/7 < -7/9B. -7/9 < -5/7 < -3/5C. -3/5 > -5/7 > -7/9D. -7/9 > -5/7 > -3/54. 下列哪个图形不是轴对称图形?( )A. 等边三角形B. 矩形C. 圆D. 梯形5. 如果一个多项式能被(x-1)整除,那么这个多项式( )。
A. 必定有实数根B. 必定有复数根C. 必定是偶数次的多项式D. 必定能被(x+1)整除二、判断题1. 两个负数相乘的结果一定是正数。
( )2. 平行四边形的对边相等且平行。
( )3. 任何两个有理数之间都存在无数个无理数。
( )4. 二次函数的图像一定经过原点。
( )5. 对角线互相垂直的四边形一定是菱形。
( )三、填空题1. 若 |x-3| = 5,则 x = _______ 或 _______。
2. 已知a = 2 + √3,b = 2 √3,则a² + b² = _______。
3. 在直角坐标系中,点P(3, -4)关于x轴的对称点坐标是 _______。
4. 若一个等差数列的首项为2,公差为3,则第10项的值是 _______。
5. 若一个函数的图像关于y轴对称,则这个函数是 _______ 函数。
四、简答题1. 解释什么是算术平方根,并给出一个例子。
2. 描述平行线的性质。
2023-2024学年山东省烟台市海阳市八年级上学期期中数学试卷及参考答案

烟台市海阳市2023—2024学年度第一学期期中检测初三数学试题本试卷共6页,共120分;考试时间120分钟.一、选择题(本题共10个小题,每小题3分,共计30分).下列每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的.1.下列因式分解正确的是( ) A .()mx my m m x y m -+=-+ B .()2296332xyz x y xyz xy -=-C .()2236332a x bx x x a b -+=-D .()22111222xy x y xy x y +=+ 2.下列多项式不能用公式法分解因式的是( ) A .22x y -+B .222y xy x ---C .222x xy y -+D .22x y +3.将多项式2161m +加上一个单项式后,使它能够进行因式分解,则此单项式不能是( ) A .8m B .8m - C .215m -D .2-4.()()2022202322-+-等于( ) A .20222-B .20232-C .()20222- D .2-5.若ABC △的三边长a ,b ,c 满足()()2222a b a b ac bc -+=-,则ABC △的形状是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.在“经典诵读”比赛活动中,某校10名学生参赛成结如图所示,对于这10名学生的参赛成织,下列说法不正确的是( )A .众数是90分B .中位数是90分C .平均数是91分D .方差是15 7.若一组数据13,14,15,16,x 的方差比另一组数1,2,3,4,5的方差大,则x 的值可能是( )A .12B .16C .17D .188.若分式方程11222kx x x-+=--无解,则k 的值为( )A .1±B .2C .1或2D .1-或29.一项工作由甲单独做,需a 天完成;若由甲、乙两人合作,则可提前2天完成,则乙单独完成该项工作需要的天数为( ) A .()22a a -天 B .()22a a -天C .22a -天 D .无法判断10.如图,标号为①,②,③,④的长方形不重叠地围成长方形PQMN ,已知①和②能够重合,③和④能够重合,且这四个长方形的面积相等.若4AE DE =,则PQMN ABCDS S 长方形长方形的值为( )A .35 B .925C .34D .916 二、填空题:(本题共6个小题,每小题3分,共计18分)11.若分式21x +在实数范围内有意义,则x 的取值范围是______.12.一个长为a ,寨为b 的长方形的周长为10,面积为5,则22a b ab +的值为______.13.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,所求得的平均数为83,则实际平均数是______. 14.若21237y y ++的值为19,则21468y y +-的值是______.15.已知关于x 的分式方程3211m x x+=---的解为非负数,则符合条件的正整数m 的个数为______个. 16.已知:111y x =-,2111y y =-,3211y y =-,4311y y =-,…,111n n y y -=-,则2023y =______.(用含x 的代数式表示).三、解答题(本大题共8个小题,满分72分)17.(本题满分8分,每小题4分)把下列各式因式分解:(1)2231212x xy y -+-;(2)()222416x x +-.18.(本题满分7分)某个电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示最简结果.已知A ,B 两区初始显示的分别是25和16-(如图1),第1次按键后,A ,B 两区显示的内容如图2所示.(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,并说明这个和能合为负数. 19.(本题满分8分) 先化简,再求值:2225321121x x x x x x +-⎛⎫-÷⎪---+⎝⎭,从22x -<<中选出合适的x 的整数值,代入求值. 20.(本题满分8分)已知分式方程21211xx x -=+-■有解,其中“■”表示一个数.小明对此表示,“■”可以是0.小明的说法正确吗?请通过计算说明理由.21.(本题满分8分)近年来,网约车已逐步成为人们日常出行的选择之一.某校学生对甲、乙两家网约车公司各10名司机的月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:(1)填空:①______,②______,③______;(2)王叔叔想从两家公司中选择一家做网约车司机,请你帮他做出选择并说明理由.22.(本题满分10分)“秋风响,蟹脚痒,正是食蟹好时节.”在我市丁字湾海域的一处螃蟹养殖区,某蟹农在今年五月中旬向自家蟹田投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹田随机试捕了四次,获得如下数据:(1)求四次试捕中平均每只蟹的质量;(2)若蟹苗的成活率为75%,请估计在九月中旬试捕期间,该蟹田中螃蟹的总质量为多少千克?(3)若第三次试捕的蟹的质量(单位:g )分别为:169,170,a ,174,168.求a 的值及该次试捕所得蟹的质量数据的方差.23.(本题满分10分)科研机构试验采集的某样本须在4小时内(含采集时问)送达检测中心,使超过时问,样本就会失效.已知甲、乙两科研机构到检测中心的路程分别为30下米,36下米,两科研机构的送检车有如图所示的信息.根据信息,请解答下列问题:(1)求甲科研机构送检车的平均速度;(2)若乙科研机构从开始采集样本到送检车出发用了3.2小时,则它采集的样本会不会失效? 24.(本题满分13分)用数学的眼光观察: 同学们,在学习中,你会发现“1x x +”与“1x x-”有着紧密的联系,请你认真观察等式:222112x x x x ⎛⎫+=++ ⎪⎝⎭,222112x x x x ⎛⎫-=-+ ⎪⎝⎭. 用数学的思维思考并解决如下问题:(1)填空:2211a a a a ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭______;(2)计算:①若2120a a ⎛⎫+= ⎪⎝⎭,求1a a -的值;②若210a a +-=,求1a a+的值; ③已知11a a -=,求1a a+的值.烟台市海阳市2023—2024学年度第一学期期中检测初三数学试题参考答案及评分意见一、本题满分30分,每题3分二、本题满分18分,每小题3分11.1x ≠- 12.25 13.86 14.14-15.4 16.11x - 三、本大题共8个小题,满分72分17.(本题满分8分,每小题4分)解:(1)22223121231212x xy y x xy y -+--+-()()22234432x xy y x y =--+--;(2)()()()()()2222222416444422x x x x x x x x +-+++=+-=-.18.(本题满分7分)解:(1)A 区显示结果为:22225252a a a ++=+.B 区显示结果为:1633166a a a -----.(2)由题意得,A ,B 两区代数式的和为:()()222225416342541612412923a a a a a a a +⨯+--⨯=+--=-+=-∵()2230a -≥,所以,这个和不能为负数. 19.(本题满分8分)解:原式()()()()()()23112511112x x x x x x x x⎡⎤+-+=-⋅⎢⎥+-+--⎣⎦ ()()()2121111211x x x x x x x x x --+--=⋅==+--++ ∵分式中分母()()11x x +-,2x -均不为0,∴1,1,2x ≠-. 由题意得,x 的取值为0. 当0x =时,原式01101-==-+ 20.(本题满分8分) 解:不正确.理由如下:当“■”为0时,原方程为212011x x x -=+-. 两边都乘以()()11x x +-,得120x x --=. 解这个方程,得1x =-. 检验:当1x =-时,原方程中分式11x +和221x x -的分时的值为零, 所以1x =-是原方程的说根,应舍去. 因此,原方程无解.这与题意“方程有解”不符,故“■”不能为0,所以小明的说法不正确. 21.(本题满分8分) 解:(1)6;4.5;4. (2)选甲公司.理由如下:甲、乙公司司机月收入的平均数一样,但甲公司司机月收入的中位数、众数均大于乙公司,且方差小于乙公司,收入更稳定.22.(本题满分10分)解:(1)平均每只蟹的质量为:()()()171170101681705170170g 4556-⨯+-⨯+=+++.(2)()()170120075%153000g 153kg ⨯⨯==. 所以,蟹田中螃蟹的总质量约为153千克.(3)1691701741681705a ++++=⨯,可得169a =.()()()()222222169170170170174170168170 4.45S ⨯-+-+-+-==.所以,该次试捕所得蟹的质量数据的方差为4.4. 23.(本题满分10分)解:(1)设甲科研机构送检车的平均速度为x 千米/小时, 则乙科研机构送检车的平均速度为1.2x 千米/小时,根据题意,得303621.2x x+=. 解这个方程,得30x =.经检验,30x =是所列方程的根.所以,甲科研机构送检车的平均速度为30千米/小时. ∵3.214+>,所以,它采集的样本会失数. 24.(本题满分13分) 解:(1)4.(2)①∵2211420416a a a a ⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴14a a -=±.②将210a a +-=两边都除以a ,得11a a-=-.∴()222114145a a a a ⎛⎫⎛⎫+=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴1a a +=(3)当10a >时,此时0a >,则111a a a a-=-=,得11a a -=-.∵()222114145a a a a ⎛⎫⎛⎫+=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴1a a +=∵0a >,∴1a a+=.∴11a a a a+=+= 当10a <时,此时0a <,则111a a a a-=--=,得11a a +=-. ∵()2221141430a a a a ⎛⎫⎛⎫-=+-=--=-< ⎪ ⎪⎝⎭⎝⎭,故舍去.综上,1a a+。
【人教版】数学八年级上学期《期中检测卷》含答案解析

A. 4.5cmB. 5.5cmC. 6.5cmD. 7cm
【答案】A
【解析】
试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=4cm,得出NQ=MN-MQ=4-2.5=1.5(cm),即可得出QR的长RN+NQ=3+1.5=4.5(cm).
【解析】
考点:线段垂直平分线的性质;等腰三角形的性质.
分析:根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.
求证:△AEC≌△CDB
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB’,连接B’C,求△AB’C的面积
(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连接OP,将线段OP绕点O逆时针旋转120°得到线段OF,设点P运动 时间为t秒.
理由:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE,
∴∠ABC=∠ABD,
在△ABC和△ABD中,
,
∴△ABC≌△ABD(ASA),
11.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_____°.
【答案】45°.
八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
【人教版】数学八年级上册《期中考试题》附答案

∴不合题意,舍去;
若3cm为底边长,8cm为腰长,
则此三角形的周长为:3+8+8=19(cm).
故选A.
【点睛】此题考查了三角形的三边关系定理.比较简单,注意掌握分类讨论思想的应用.
5.如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE等于( )
A.20°B.18°C.45°D.30°
6.如图,AD是△ABC的中线,E是AD的中点,S△AEC=3cm2,则S△ABC=()cm2
A. 10B. 11C. 12D. 13
7.如图,在 中, ,点 是两条角平分线的交点,则 的大小为()
A. B. C. D.
8.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()
11.在正方形网格中, 的位置如图所示,到 的两边距离相等的点应是( )
A.点MB.点QC.点PD.点N
12.如图,直线AC上取点B,在其同一侧作两个等边三角形△ABD和△BCE,连接AE,CD与GF,下列结论正确的有()
①AEDC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
即B点到AE和DC的距离相等,
∴BH平分∠AHC,所以④正确;
∵△AGB≌△DFB,
∴BG=BF,
∵∠GBF=60°,
∴△BGF 等边三角形,
∴∠BGF=60°,
∴∠ABG=∠BGF,
∴GF∥AC,所以⑤正确.
(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上塘学区八年级(上)期中测试卷数学卷
2
1
a b
m n
4
3 A
B C
D 八年级(上)期中测试卷数学参考答案
、全卷满分为100分,考试时间为90分钟. 、答题前,请在答卷上先填写考生相关信息
、本卷答案必须做在答题卷的相应位置上,做在问卷上无效。
答题时,不允许使用计算器。
温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸!
10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、
6小题,每小题4分,共24分)
、 140° 12、 < 13
、 2 、 4 15
、32 16、
6 46分) 、(本题4分)填空:如图,∠1=100°,∠2=100°,∠3=120°,求∠4的
1=∠2=100°(已知)
∴ m ∥ n (1分)(内错角相等,两直线平行)(1分) ∴∠ 3 =∠ 4 (1分)(两直线平行,同位角相等)(1分) 又∵∠3=120°(已知) ∴∠4=120° 、(本题4分)如图,AD 是等腰△ABC 的底边BC 上的中线,过点D 作DE AB ,交AC 于点E ,判断△ADE 是不是等腰三角形,并说明理由。
是等腰三角形
(等量代换)相等)
(两直线平行,周位角(已知)等边对等角已知ADE EDC C EDC B AB DE C B AC AB ∆∠=∠∠=∠∠=∠=//)()(
、(本题6分)如图是由8个相同的小立方体组成的几何体,请画出它的三视图. 主视图 右视图 俯视图
、(本题4分)
(1)试说明AE=BE 的理由;
(2)若∠AEC=45°,AC=1,求BC 的长。
上塘学区八年级(上)期中测试卷数学卷
分)
((等角对等边)等)
(全等三角形对应角相)
((已知)(公共边)中和2)1(⋯⋯⋯=∴∠=∠∴≅∆∴==∆∆BE AE ABC BAD Hl RtBAD ABC Rt BD AC AB AB BAD Rt ABC Rt
分)
(又(等角对等边)2212
145)2(⋯⋯+=+∴==∴==∴∆
=∠=∠BE BCCE BE
AE AE CE AC Rt C AEC 21、(1)根据上图中提供的数据填写上表:
(2)___王成 ___ (3) 略 22、(本题6分)
Rt 答:小车没有超速
小车的速度为由勾股定理得
中,
解:由题知在n
km s m AC AB BC AB AC ACB Rt /72/202
40
40305050,302222==∴=-=-===∆
23、(1)请说明∠ABC =45°; (2)判断BE 与AC 的位置关系,并说明理由。
分)
(全等三角形对应边相等,又的高是):解(345)
()(1 =∠∴=∴∆≅∆∴==∠=∠=∠∴⊥∴∆ABC AD BD SAS ADC Rt BDF Rt CD FD AC BF Rt ADC BDF BC
AD ABC AD
分)(,又)(390902AC BE AFE CAD AFE BFD CAD FBD BFD FBD ⊥∴=∠+∠∴∠=∠∠=∠=∠+∠
24、(1)、 30 (2分)
分)
(旋转此时是等腰三角形时21575))
2(111⋯⋯⋯⋯∆∴=∠∆=
C B A ACP ACP PA AC i
分)
等)((全等三角形对应边相)
((对顶角相等)又,分)(旋转此时是等腰三角形时)23026030111111111111AH H A AAS AHD HB A DHA BHA A D CA AD
B A CD A
C BC C A C
D BC AC C A C B A ACP ACP PA PC ii =∆≅∆∠=∠=∠=∠=∆∴-=-∴==⋯⋯⋯⋯∆∴=∠∆=。