2017秋八年级数学上册 7.1 为什么要证明学案(无答案)(新版)北师大版
北师大版八年级上册数学 7.1 为什么要证明 学案

第七章平行线的证明
7.1 为什么要证明
一、自主预习(感知)
课前收集有关哥德巴赫猜想的相关资料,上课时与同伴交流
二、合作探究(理解)
1、某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.提示:可列表归纳
2、如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝
与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放
进一个拳头吗?
三、轻松尝试(运用)
1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
第1小题图第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再
用三角尺验证一下.
3.当n为正整数时,n2+3n+1的值一定是质数吗?
四、拓展延伸(提高)
五、收获盘点(升华)
要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理
六、当堂检测(达标)
教材P164页,习题7.1 1,2,3
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《学练优》中的本节内容。
2、思考题:。
北师大版八年级上册 7.1《为什么要证明》学案

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
7.1 为什么要证明北师大版八年级上册数学 7.1 为什么要证明教案2

7.1 为什么要证明第一环节:验证活动(1) 活动内容:某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流. 参考答案:列表归纳为是活动目的:对现在结论进行验证,让学生感受到知识有时具有一定的迷惑性(欺骗性),从而对不完全归纳的合理性产生怀疑,为下一步的学习提供必要的精神准备. 注意事项:学生通过列表归纳,根据自己以往的经验判断,在n=10以前都一直认为n 2-n+11是一个质数,但当n=10时,找到了一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.第二环节:猜想并验证活动(2) 活动内容:如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ 它们的间隙不仅能放进一个红枣,而且也能放进一个拳头. 活动目的:通过理性的计算,验证了很难想像到的结论,让学生产生思维上的碰撞,进而对自己的直观感觉产生怀疑,再次为论证的合理性提供素材. 注意事项:要充分让学生发表自己的见解,首先让学生对自己的结论确信无疑,再进一步计算,结果与学生的感觉产生矛盾,切忌直接进行计算,把结论告诉学生,这样就达不到预想的要求,不能让学生留下深刻的印象.第三环节:猜想并验证活动(3) 活动内容:如图,四边形ABCD 四边的中点E 、F 、G 、H ,度量四边形EFGH 的边和角,你能发现什么结论?改变四边形ABCD 的形状,还能得到类似的结论吗? 参考答案:连接AC .∵E 、F 、G 、H 分别是四边形ABCD 四边中点, ∴EF ∥AC ,EF=21AC ;GH ∥AC ,GH=21AC ; ∴EF 平行且等于GH ,∴四边形EFHG 为平行四边形. 活动目的:通过对图形的直观感受得出结论,但要使学生清楚地知道对几何结论的验证,通常是用严谨的逻辑推理来论述. 注意事项:让学生大胆地进行预测,但要让学生说清理由,让学生了解几何证明的必要性.第四环节:归纳与总结 活动内容:① 通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步, 有根有据的推理.②举例说明“推理意识”与推理方法. 活动目的:使学生理解仅有对图形的直观感受是不够的,从而帮助学生建立推理意识. 注意事项:让学生用自己的语言进行叙述,培养学生的表达能力.AB E CDF G H第五环节:反馈练习活动内容:1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.答案:a与b的长度相等.第1小题图第2小题图2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.3.当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.第六环节:课堂小结活动内容:今天这节课你学到了什么知识?参考答案:①要说明一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性.②要确定一个数学结论的正确性,必须进行一步一步、有根有据的推理.活动目的:通过学生的总结,使学生对证明的必要性有一个清楚的认识,数学杜绝随意性,数学是严密的科学.注意事项:通过前三个例题的感受以及反馈练习,学生都清楚地知道推理、论证的必要性,了解了数学不是一种直观感受,而是一种严密的科学.第七环节巩固练习习题7.1第2,3题.教学反思本节课的教学设计是建立在“以学生的发展为本,为学生的终身学习奠定基础”的教育理念上,融入了新课标的思想内涵,尊重学生的直观感觉,并从学生的直观感觉出发逐步将学生的思维引向严密性、逻辑证明等方面,不是一味地强调证明的必要性,而是通过几个事实的说明来让学生意识到证明的必要性,设计中突出体现了学生的主体地位.在教学设计中,力求让学生学会将生活问题数学化,用一个有趣的生活问题:“用一根铁丝将地球赤道围起来”引起学生的兴趣并进行猜测,然后通过计算得出一个令人很意外的结果,同时也培养了学生“用数学”的意识,并且使得学生有一种感受:数学来源于生活,服务于生活,同时也要用数学的眼光看世界,切勿盲信于自己的直观感觉.本节课通过事例让学生体会检验数学结论的常用方法:实验验证、举出反例、推理等.符合学生的认识特点和知识水平。
新北师大八年级数学上册导学案:71为什么要证明(无答案).doc

如图,假 如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?
【扩展提高】
如图,四边形ABCD四边的中点E、F、G、H,度量四边形EFGH的边和角,你能发现什么结论?改变四边形ABCD的形状,还能得到类似的结论吗?
新北师大版八年级数学上册导学案:71为什么要证明
我的疑问
感觉怎么样?
再测量一下?
【合作探究】
1做一做:
(1)当n=0,1,2,3时,代数式n2-n+11的值都是质数, 于是得到结论:对于所有自然数n, n2-n+11的值都是质数.你认为呢?与同伴交流.
请列表归纳填空:
n
0
1
2
3
4
5
6
7
8
9
10
11
…
A
B
E
C
D
F
G
H
【课堂小结】
通过这节课学习,你知道了些什么?
【课后记】
家长签字:
【学习目标】
通过生活实例与数学命题,体验通过观察、实验、归纳、类比 得到的结论未必是真命题,从而体会证明的必要。
【重点难点】
能运用结论进行推理与计算,进行简单 的证明。
【自主学习】
以前,我们通过观察、实验、归纳得到了很多正确的结论。观察、实验、归纳得到的结论一定正确吗?我们再感受几个!
n2-n+11
是否为质数
通过列表归纳,根据自己以往的经验判断,在n= 以前都一直认为n2-n+11是一个数,但当n= 时是一个数,找到了 一个反例,进而发现不能根据少数几个现象轻易肯定某个数学结论的正确性.
2017年秋季新版北师大版八年级数学上学期7.1、为什么要证明学案12

第七章 平行线的证明1.为什么要证明 【学习目标】 课标要求1.运用实验验证、举反例验证、推理论证等方法来验证某些问题的结论正确与否.2.经历观察、验证、归纳等过程,使学生对由这些方法所得到的结论产生怀疑,以此激发学生的好奇心,从而认识证明的必要性,培养学生的推理意识.3.了解检验数学结论的常用方法:实验验证、举出反例、推理论证等.学习流程:【课前展示】 某学习小组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有自然数n , n 2-n+11的值都是质数.你认为呢?与同伴交流. 23 【创境激趣】 如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗? 参考答案:设赤道周长为c ,铁丝与地球赤道之间的间隙为 :)(16.021221m c c ≈=-+πππ它们的间隙不仅能放进一个红枣,而且也能放进一个拳头.【自学导航】 如图,四边形ABCD 四边的中点E 、F 、G 、H ,度量四边形EFGH 的边和角,你能发现什么结论?改变四边形ABCD 的形状,还能得到类似的结论吗? 【合作探究】连接AC .∵E 、F 、G 、H 分别是四边形ABCD 四边中点, ∴EF ∥AC ,EF=21AC ;GH ∥AC ,GH=21AC ;∴EF 平行且等于GH ,∴四边形EFHG 为平行四边形. 【展示提升】典例分析 知识迁移第1小题图 第2小题图1.如图中三条线段a 、b 、c ,哪一条线段与线段d 在同一直线上?请你先观察,再用三角尺验证一下. 答案:线段b 与线段d 在同一直线上.2.当n 为正整数时,n 2+3n +1的值一定是质数吗?ABE CD FG H答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.【强化训练】课本第217页习题6.1第2,3题.【归纳总结】第四环节:归纳与总结①通过以上三个数学活动,使学生对每一个问题的结论的正确性有了怀疑,从而知道了由观察、猜想等渠道得到的结论还必须经过有效的证明才能对其进行肯定.也即:要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理.②举例说明“推理意识”与推理方法.。
北师大版八年级上册 7.1《为什么要证明》学案()

7.1为什么要证明(展示课)授课人:王振学习目标:1、经历观察、实验、归纳等活动,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性。
2、知道验证数学结论的方法。
学习过程:一、自主学习:1、观察课本“图7―1”,感觉线段a比线段b要___,但经过实际测量,发现a__b。
2、观察课本“图7―2”,第一感觉图中的四边形______(填“是”或“不是”)正方形,但经过测量发现,四边形______(填“是”或“不是”)正方形。
二、合作探究:1、如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?通过观察,感觉中间的空隙应该很小,不妨实际计算一下:设赤道的周长为C米,地球赤道的半径为R米,那么地球的半径R=_______米,比地球赤道长1米的铁丝的半径R1=________ 米,则:铁丝与地球赤道之间的间隙:R1-R=________ 米≈_______米。
2、(1)当n=0,1,2,3,4,5,6,7,8,9,10时,填表代数式n2-n+11的值都是质数吗?______________(3)你能否得到结论:对于所有自然数n ,n 2-n+11的值都是质数?__________ 3、如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE ,DE 与BC 有怎样的位置关系和数量关系?请你先猜一猜,再设法检验你的猜想,你能肯定你的结论对所有的△ABC 都成立了吗?三、课堂小结:1、一个数学结论是否正确,无论验证多少个特殊的例子,也无法保证其正确性。
2、要判断一个数学结论是否正确,仅仅依靠观察、猜想、实验、归纳是不够的,必须一步一步、有根有据地进行证明。
3、验证数学结论的方法:计算、举出反例、 几何证明等。
四、练习:下列结论你能肯定的是( ) A 、如果两个角相等,那么它们是对顶角。
近年学年八年级数学上册7.1为什么要证明导学案(无答案)北师大版(2021学年)

目标关键词(2分钟)探究任务一:独学6分钟组学3分钟抽展或抢答3分钟(展台)师总结归纳2分钟结论:有时视觉受周围环境的影响,往往误导我们,让我们得出错误的结论,所以仅靠验证、观察是不够的。
2、代数式112+-nn的值是质数吗?取n=0,1,2,3,4,5试一试,你能否得出结论:对于所有自然数n,112+-nn的值都是质数?当n=10,11,…时,再试试。
3、如图,再△ABC中,点D、E分别是AB、AC的中点,连接DE。
DE 与BC有怎样的位置关系和数量关系?请你先猜一猜,再设法验证你的猜想。
你能肯定你的结论对所有的△ABC都成立吗?结论:凭经验、观察甚至实验得到的数学结论是正确的,在数学上判断一个结论是否正确,必须进行,且是有根有据的.达标小测:下列推理正确的是( )A、弟弟今年13岁,哥哥比弟弟大6岁,到了明年,哥哥比弟弟只大5岁了,因为弟弟明年比今年长大了1岁新知拓展:独立探索3分钟;小组交流、展台展示讲解3分钟;讲评总结2分钟总结升华3分钟达标反馈(展台)5分钟推达1个2新用(棒((【【7.1 为什么要证明以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above is the wholecontent of this article, Gorky said: "the book isthe ladder of hu man progress." I hope you canmake progress with the helpof this ladder. Material life is extremely rich, science and technology are developing rapidly,allof which gradually ch ange theway of people's study andleisure. Many people are no longer eager to pursue a doc ument, but as long as you still have such a small persistence, youwillcontinue to grow andprogress. When the complex world leads usto chase out, reading anarticle or doi ng a problem makes us calm down and returntoourselves. With learning,we can activate our imagination and thinking, establish ourbelief, keep our pure spiritual world and resi st the attack of the external world.34。
北师大版八年级上册7.1为什么要证明教案

在上完这节课后,我有一些想法想和大家分享。首先,我发现同学们在理解证明的概念和意义方面存在一定难度。这让我意识到,在接下来的教学中,我需要更加注重引导学生从实际例子中感受证明的重要性,帮助他们建立起证明的直观认识。
其次,关于逻辑推理这个难点,我觉得通过分组讨论和实验操作的方式,同学们有了更深刻的体会。但在讲解过程中,我发现部分同学还是难以跟上节奏,可能是我讲解得不够细致,或者是举例不够贴近他们的生活实际。因此,我计划在下一节课中,尝试使用更多生动有趣的例子,让学生在轻松愉快的氛围中掌握逻辑推理的方法。
北师大版八年级上册7.1为什么要证明教案
一、教学内容
北师大版八年级上册7.1为什么要证明:本节课主要围绕证明的概念、意义和必要性展开,使学生理解证明在数学学习中的重要作用。内容包括:
1.证明的概念:通过实例让学生了解证明是什么,以及证明的基本结构。
2.证明的意义:讨论证明在数学中的价值,如确保结论的正确性、培养逻辑思维能力等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与证明相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示证明过程的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“证明在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-证明的结构:介绍证明的基本结构,包括已知、求证、证明过程等,强调证明过程的逻辑性和条理性。
-证明方法:举例讲解教材中涉及的证明方法,如直接证明、反证法、归纳法等,并强调各种方法的应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平行线的证明
7.1 为什么要证明
一、自主预习(感知)
课前收集有关哥德巴赫猜想的相关资料,上课时与同伴交流
二、合作探究(理解)
1、某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对于所有自然数n, n2-n+11的值都是质数.你认为呢?与同伴交流.
提示:可列表归纳
2、如图,假如用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?
三、轻松尝试(运用)
1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
第1小题图第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.
3.当n为正整数时,n2+3n+1的值一定是质数吗?
四、拓展延伸(提高)
五、收获盘点(升华)
要判断一个数学结论是正确,仅观察、猜想、实验还不够,必须经过一步一步,有根有据的推理
六、当堂检测(达标)
教材P164页,习题7.1 1,2,3
七、课外作业(巩固)
1、必做题:①整理导学案并完成下一节课导学案中的预习案。
②完成《学练优》中的本节内容。
2、思考题:
2。