[k12精品]八年级数学上册13.1命题定理与证明第2课时定理与证明教案新版华东师大版

合集下载

八年级数学上册 13.1 命题与证明教案 (新版)冀教版-(新版)冀教版初中八年级上册数学教案

八年级数学上册 13.1 命题与证明教案 (新版)冀教版-(新版)冀教版初中八年级上册数学教案
难点:理解证明的必要性.
┃教学过程设计┃
教学过程
设计意图
一、创设情境,导入新课
情境:小亮和小刚正在津津有味地阅读《我们爱科学》.
小亮:“哈!这个黑客终于被逮住了.”
小刚:“是的,现在网络广泛运用于我们的生活中,给我们带来了方便,但……”.
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着.
“这个黑客是小偷吗?”
让学生完成教材32页“做一做”,指出原命题和逆命题的真假性.
教师在学生思考的基础上指导学生注意语言的规X和逻辑性.
强调:每个命题都有逆命题,但原命题正确,它的逆命题未必正确.要说明一个命题是假命题,只要举出反例即可.
例如:“若|a|=|b|,则a=b”这个命题是假命题,只要举出两个数的绝对值相等,但这两个数不相等的情况就可以判断这个命题是假命题.如|5|=|-5|,但5≠-5.
说明:教师要重点关注学生的证明过程书写是否符合要求.
一般地,证明命题按如下步骤进行:
(1)画出图形;(2)写出已知、求证;(3)写出证明过程.
教师讲解:如果一个定理的逆命题是真命题,那么这个逆命题也就成了定理.这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.
我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是真命题,所以它们都是定理,因此它们就是互逆定理.
13.1命题与证明
【教学目标】
1.理解逆命题的概念,能够判断命题的真假.
2.了解逆定理及证明的概念,会对一个真命题进行证明.
3.通过对几何问题的演绎推理,体会证明的必要性,培养学生的逻辑推理能力.
4.通过积极参与,获取正确的数学推理方法,理解数学的严密性,并培养与他人合作的意识.

秋八年级数学上册13.2命题与证明教学设计(新版)沪科版【精品教案】

秋八年级数学上册13.2命题与证明教学设计(新版)沪科版【精品教案】

13.2命题与证明第 1课时命题与证明(一)教课目的【知识与技术】1. 理解真命题、假命题、公义、原命题、抗命题等观点.2.会判断一个命题的真假 , 能划分公义、定理和命题 .3.理解证明的含义 , 体考证明的必需性和数学推理的严实性.【过程与方法】1.经过一些简单命题的证明 , 训练学生的逻辑推理能力 .2.依据命题的证明需要 , 要修业生画出图形 , 写出已知、求证 , 训练学生将命题转变为数学语言的能力 .【感情、态度与价值观】1. 经过对命题真假的判断, 培育学生科学谨慎的学习态度和求真求实的作风.2. 让学生踊跃参加数学活动 , 对数学定理、命题的由来产生好奇心和求知欲 , 让学生认识数学与人类生活的亲密联系 , 提升学生学习数学的踊跃性 .要点难点【要点】学习命题的观点和命题、公义、定理的划分.【难点】严实完好地写出推理过程.教课过程一、创建情境, 导入新知教师多媒体出示:有一根比地球赤道长 1m的铜线将地球赤道绕一圈 , 想想 , 铜线与地球赤道之间的缝隙有多大 ?能放进一颗枣吗 ?能放进一个苹果吗 ?学生交流议论后回答.生甲 : 都放不进去 .生乙 : 枣能放进 , 苹果放不进 .生丙 : 都能放进 .师 : 我们此刻用这个式子来算 , 设赤道的长为 C, 则铜线与地球赤道之间的空隙是 -= ≈0.26(m), 可见 , 枣和苹果都能放进去 . 经过这个例子 , 你们遇到了什么启迪 ?生 : 有些东西想象的或感觉的不必定靠谱, 要详细剖析 .师 : 对 , 我们要做到有理有据.上一节研究三角形的性质时, 我们经过折叠、剪拼、胸怀等方法获得三角形的内角和是180°, 但对这类方法, 有的同学提出这样的疑问:在剪拼时 , 发现三个内角难以拼成一个平角 , 不过靠近 180°的某个值 ; 胸怀三个角 , 而后相加 , 不必定能正确地获得 180°.两种状况怎么解呢?学生思虑、交流、.: 是的 , 研究几何形 , 从察和获得的 , 有会有差 , 以令人确信其果必定正确 . 所以 , 就得在察的基上有理有据地明原因 , 就是 , 要判断数学命的真假 , 需要做必需的推理 .二、共同研究, 取新知: 推理是一种思活, 人在思活中, 经常要事物的状况做出各种判断.教多媒体出示:(1)江是中国第一大河 ;(2)假如∠ 1和∠ 2是角 , 那么它相等 ;(3)2+3 ≠ 5;(4)假如一个整数的各位上的数字之和是3的倍数 , 那么个数能被 3整除 .教找一名学生回答, 而后集体正 .: 在学中 , 凡是能够判断出真 ( 即正确 ) 、假 ( 即 ) 的句叫做命 . 上边的 (1) 、(2)、 (4) 都是正确的命 , 我称之真命 ;(3) 是的命 , 我称之假命 . 假如一个句没有某一事件的正确与否作出任何判断 , 那么它就不是命 , 比方感句、疑句、祈使句等 .教多媒体出示 :(1) 关上窗 ;(2) 你明日来上学 ?(3) 天真冷啊 !(4)今日夜晚不会下雨 .(5)昨天我去旅行了 .: 同学判断一下哪些句是命?学生后回答, 而后集体正.: 每个命都由、两部分成, 是已知事 , 是由已知事推出的事. 命常写成“假如⋯⋯那么⋯⋯”的形式 . 有我了便 , 省略关“假如”、“那么” , 如命“假如两个角是角 , 那么两个角相等” , 能够写成“ 角相等” .以“假如⋯⋯那么⋯⋯”关的命的一般形式是“假如p, 那么 q”, 或许成“若p, q”, 此中 p是个命的条件( 或假 ),q 是个命的( 或断 ).三、教多媒体出示:【例 1】指出以下命的条件与:(1) 两条直都平行于同一条直, 两条直平行;(2) 假如∠ A=∠ B, 那么∠ A的角与∠ B的角相等 .生甲 :(1) 中“两条直平行于同一条直”是条件, “两条直平行”是.生乙 : “∠ A=∠B”是条件 , “∠ A的角与∠ B的角相等”是.四、推, 深入研究: 将命“假如 p, 那么 q”中的条件与互, 便获得一个新命“假如q, 那么 p”,我把的两个命称互抗命, 此中一个叫做原命, 另一个叫做原命的抗命. 我在前面学了命都能够判断真假, 当一个命是真命, 它的抗命也是真命?学生交流议论后发布建议.师: 我们能够看这样一个例子 , “假如∠ 1与∠ 2是对顶角 , 那么∠ 1=∠2”是真命题 , 它的抗命题是什么 ?生 : 它的抗命题是“假如∠1=∠ 2, 那么∠ 1与∠ 2是对顶角” .师 : 它是真命题仍是假命题呢?生: 假命题 .师 : 你是怎么判断它是假命题的呢?学生交流议论后回答.教师多媒体出示以下图.师 : 对 . 我们能够举一个例子, 比方角均分线分红的两个角, ∠ 1=∠ 2, 但明显 , 这里∠ 1与∠2就不是对顶角 . 像这类切合命题条件 , 但不知足命题结论的例子 , 我们称之为反例 . 若要说明一个命题是假命题 , 只需举出一个反例即可 .五、练习新知, 加深议论师 : 请同学们看教材中本节例1后练习的第 2题 .教师找学生回答, 而后集体校正获得:(1)假命题 .反例 :|-1|=|1|, 但-1 ≠1.(2)假命题 .反例 :(- 1) ×(-1)>0, 但 -1 是负数 .(3)真命题 .(4)假命题 .若两条不平行的直线与第三条直线订交, 同位角不相等 .师 : 我们来看第 3题 .教师找学生回答, 而后集体校正获得:(1)真命题 ,(2) 真命题 ,(3) 真命题 .师 : 在数学命题的研究中 , 为了确认某些命题是真仍是假 , 需要对命题的正确性进行论证 , 在论证过程中 , 一定追本求源 , 真谛不需要再作论证 , 其正确性是人们在长久实践中查验所得的真命题 , 作为判断其余命题真假的依照 , 这些作为原始依据的真命题称为公义 . 同学们想一下, 我们学过哪些公义 ?生甲 : 经过两点有一条直线, 并且只有一条直线.生乙 : 两点之间的全部连线中, 线段最短 .生丙 : 经过直线外一点, 有且只有一条直线平行于这条直线,师: 对 , 这些都是公义 . 有些命题 , 它们的正确性已经过推理获得证明 , 并被选定作为判断其余命题真假的依照 , 这样的真命题叫做定理 . 谁能举几个例子 ?生甲 : 对顶角相等 .生乙 : 三角形的三个内角和等于180°.生丙 : 等角的补角相等.师 : 对 . 推理的过程叫做证明. 下边 , 我们来证明一个七年级时用过的定理“内错角相等,两直线平行” .教师多媒体出示:【例 2】已知:如下图,直线c与直线a、b订交,且∠ 1=∠ 2.求证 :a ∥ b.师: 若已知“同位角相等 , 两直线平行”这个定理 , 怎么证明“内错角相等 , 两直线平行”这个结论 ?学生交流议论, 教师巡视指导.学生口述 , 教师板书推理过程.证明 : ∵∠ 1=∠ 2,( 已知 )又∵∠ 1=∠ 3,( 对顶角相等 )∴∠ 2=∠ 3.( 等量代换 )∴ a∥ b.( 同位角相等 , 两直线平行 )教师重申 : 证明中的每一步推理都要有依据, 不可以想自然 . 这些依据 , 能够是已知条件, 也能够是定义、公义、已经学过的定理.【例 3】已知:如图,∠ AOB+∠BOC=180°,OE均分∠AOB,OF均分∠ BOC.求证 :OE⊥ OF.证明 : ∵ OE均分∠ AOB,OF均分∠ BOC(已知 )∴∠ 1=∠ AOB,∠2=∠ BOC.(角均分线的定义)又∵∠ AOB+∠BOC=180°,( 已知 )∴∠ 1+∠ 2=( ∠ AOB+∠ BOC)=90°.( 等式性质 )∴OE⊥OF.( 垂直的定义 )六、讲堂小结师 : 我们今日学习了什么内容?学生回答 , 教师增补完美.教课反省在这节课上 , 经过举反例判断一个命题是假命题, 培育学生学会从反面思虑问题的方法. 经过重申正面的严实性, 让学生理解证明的必需性和推理过程要步步有据. 在教课方法上我主要采纳“举一”, 让学生独立思虑、自由交流、集思广益, 进而达到“反三”的目的. 尽可能地调换更多学生主动参加、交流、交流 , 经过自己思想碰撞建立新的认知构造 , 进而正确地判断命题的真假 , 关于假命题举出反例 . 关于命题的证明 , 要修业生能写出证明的一般步骤并能做到步步有据 .第 2课时命题与证明(二)教课目的【知识与技术】1. 掌握三角形内角和定理及其三个推论.2. 熟习并掌握较简单命题的证明方法及其表述.3. 研究并理解三角形的内角和定理.4. 会灵巧地运用三角形内角和定理的几个推论解决实质问题.【过程与方法】1. 经历研究并证明三角形内角和定理的过程.2. 让学生在思虑与研究的过程中认识三角形内角和定理的几个推论.【感情、态度和价值观】1. 经过三角形内角和定理的证明, 让学生领会到数学的谨慎性和推理的用途.2.经过让学生踊跃思虑、踊跃讲话, 使他们养成优秀的学习习惯 .3.经过生动的教课活动 , 发展学生的合情推理能力和表达能力 , 提升学生学习和研究数学的兴趣 .要点难点【要点】三角形内角和定理的证明, 三角形内角和定理及其推理.【难点】三角形内角和定理的证明.教课过程一、创建情境, 导入新知师 : 在前面我们学习了三角形的内角和定理, 你还记得它的内容吗?学生回答 .师 : 我们用什么方法证明过这个命题?生 : 用折叠、剪拼和胸怀的方法.师 : 很好 ! 在上节课我们学习了定理的观点, 大家还记得吗 ?生 : 记得 . 它们的正确性已经过推理获得证明, 并被选定作为判断其余命题真假的依照, 这样的真命题叫做定理.师: 对 . 三角形的内角和定理是一个定理 , 它能够被证明 , 上节课我们还学习了简单命题的证明 , 此刻我们来证明这个定理 .二、共同研究, 获得新知教师多媒体出示:【例 1】证明三角形内角和定理: 三角形的三个内角和等于180°.师: 在证明命题时 , 要分清命题的条件和结论 , 假如问题与图形有关 , 第一 , 依据条件画出图形 , 并在图形上标出有关字母与符号 ; 再联合图形 , 写出已知、求证 . 这个命题的条件和结论分别是什么 ?师 : 这个命题与图形有关吗?生:有关.师 : 那我们要画出什么图形?生 : 一个三角形 .教师在黑板上画出一个三角形.师 : 题目中没有已知、求证, 我们自己要写出来. 已知就是条件, 求证的就是要证的结论. 应当怎么写 ?生: 已知 : △ ABC,如下图 . 求证 : ∠A+∠ B+∠C=180°.教师板书 .师 : 从前我们经过剪拼将三角形的三个内角拼成了一个平角, 这不是证明 , 但它却给我们以启迪 , 此刻我们经过作图来实现这类转变, 给出证明 .教师边操作边解说:在剪拼中我们能够把∠ B剪下 , 放在这个地点 , 在证明中我们能够作出一个角与∠ B相等 , 来取代这类操作 . 并且为了证明的需要 , 在本来图形上添画的线 , 这类线叫做协助线 . 同学们看, 应当如何添画协助线来帮助我们证明这个问题?生 : 延伸 BC到 D,以点 C为极点、 CD为一边作∠ 2=∠ B.教师作图 :师 : 对 . 假如再知道什么条件就能获得结论了?学生议论后回答.生 : 由于∠ 1+∠ 2+∠ ACB是一个平角 , 等于 180°, 假如∠ A=∠ 1, 那么就有∠ A+∠B+∠C=∠ 1+∠ 2+∠ACB=180°, 这样就证出了却论 .师 : 对 . 此刻我们看如何证∠A=∠ 1?学生交流议论.教师提示 : ∠ A和∠ 1是什么角 ?生: 内错角 .师 : 怎么证两个内错角相等?生 : 两直线平行 , 内错角相等 .师 : 在题中要证哪两条直线平行?怎么证它们平行?生 : 证明 CE∥ BA,由于∠ 2=∠ B, 由同位角相等 , 两直线平行 , 就能够证出 CE∥ BA了 .师: 很好 ! 我们此刻来把这个推导过程详细写一下 . 要注意 , 我们方才是剖析 , 能够由结论推条件 , 但在书写过程中 , 要先写条件 , 再写结论 , 这个次序要理清 .学生口述 , 教师板书 .师: 此刻大家想想 , 假如一个三角形中一个角是 90°, 依据三角形内角和定理 , 此外两个角的和会是多少 ?生:90 °.师 : 对 . 两个角的和是 90°, 我们能够称它们之间是什么关系?生:互余.师 : 对 . 由此我们获得三角形内角和定理的第一个推论.教师板书 :推论 1直角三角形的两锐角互余.三、边讲边练师: 三角形内角和定理的证明有多种方法 , 课本练习中给出了此外两种证法 . 大家能不可以说出第一题的思路 ?生 : 过点 A作 DE∥BC后 , 由两直线平行 , 内错角相等来成立两个相等关系 , 再由平角的定义便可证出了 .师 : 你们已经理清了思路, 此刻请大家将书上的证明过程增补完好.学生达成练习第1题 .师 : 第二个练习的思路大家清楚吗?学生交流议论后回答.生: 过三角形一边上一点作两条平行线 , 而后依据平行线的性质使△ ABC的三个内角与构成平角的三个角分别相等 , 再由平角的定义证明它们的和是 180°.师 : 很好 ! 请同学们把证明过程增补完好 .学生增补练习第2题的证明 , 教师巡视指导, 而后集体校正.四、层层推动, 深入理解教师多媒体出示:师 : 在三角形内角和定理的证明中, 我们以前如图中所示那样把△ABC的一边 BC延伸至点D,获得∠ ACD,像这样由三角形的一边与另一边的延伸线构成的角, 叫做三角形的外角. 在上图中 , △ ABC的外角 , 也就是∠ ACD与它不相邻的内角∠A、∠B有如何的关系?你能给出证明吗?学生小组交流议论后回答.生 : ∠ ACD与∠ ACB的和是 180°, 所以∠ ACD=180°- ∠ ACB;依据三角形内角和定理, ∠ A+∠B+∠C=180°, ∠ A+∠B=180° - ∠ C. 由等式的性质 , 获得∠ ACD=∠ A+∠ B.师: 很好 ! 除了这个相等关系 , 还可以获得什么大小关系 ?生: ∠ ACD>∠ A, ∠ ACD>∠ B.师: 很好 ! 在证明中主要应用了三角形内角和定理 , 我们把这两个结论称为这个定理的两个推论 .教师板书 :推论 2三角形的一个外角等于与它不相邻的两个内角的和.推论 3三角形的一个外角大于与它不相邻的任何一个内角.师: 像这样 , 由公义、定理直接得出的真命题叫做推论. 推论 2能够用来计算角的大小 , 推论3能够用来比较两个角的大小 .【例 2】已知:如下图,∠ 1、∠ 2、∠ 3是△ ABC的三个外角.师: 这个问题实质上是三角形外角和定理, 即三角形三个外角的和是 360°. 请大家想一下,怎么证明这个命题 ?学生交流议论后回答, 而后集体校正 .证明 : ∵∠ 1=∠ ABC+∠ ACB,∠2=∠BAC+∠ ACB,∠3=∠BAC+∠ ABC,( 三角形的一个外角等于与它不相邻的两个内角的和)∴∠ 1+∠ 2+∠ 3=2( ∠ ABC+∠ ACB+∠ BAC).( 等式性质 )∵∠ ABC+∠ ACB+∠BAC=180°,( 三角形内角和定理)∴∠ 1+∠ 2+∠3=360°.五、讲堂小结师 : 我们今日学习了哪些内容?你有什么收获 ?学生讲话 , 教师评论 .教课反省本节课我经过让学生自己思虑设计证明思路, 来培育学生踊跃思虑的研究精神. 在证明三角形内角和定理的第一种证法中, 我率领他们回首了从前证明此定理的操作方法, 并说明这两种方法的思想是一致的. 一方面能够让他们学会把实质问题用数学形式表示出来, 另一方面培育了他们成立有关事物之间的联系的意识, 促使知识的迁徙. 在证明三角形内角和定理的练习中 , 我让他们先理清思路 , 再做题 , 不只能够借鉴识人的思路 , 并且能做到整体掌握 , 理清脉络 .。

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。

举例说明命题的正确性和错误性。

1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。

引导学生理解命题的逻辑关系,如且、或、非等。

第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。

引导学生了解定理的重要性和应用价值。

2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。

强调证明的逻辑严密性和步骤完整性。

第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。

强调几何定理在几何学中的基础性作用。

3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。

第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。

强调代数定理在代数学中的基础性作用。

4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。

第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。

引导学生运用命题、定理与证明的方法解决实际问题。

5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。

鼓励学生探索命题、定理与证明在生活中的应用。

第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。

解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。

八年级数学上册第13章全等三角形13.1命题定理与证明13.1.2定理与证明教案新版华东师大版word版本

八年级数学上册第13章全等三角形13.1命题定理与证明13.1.2定理与证明教案新版华东师大版word版本
1.什么是命题?
2.命题有哪几类?各是什么?
3.一个命题都可以写成什么形式?哪一步分是题设?哪一步分是结论?
前一节课 我们讲过,要 证明一个命题是假命题,只要举 出 一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.
面向全体学生提出相关的问题。明确要研究,探索的问题是什么,怎样去研究和讨论。.
留给学生一定的思考和回顾知识的时 间。
为学生创设表现才华的平台。
一.知识:
(一 )定理
用逻辑推理的方法证明它们是正确的命题叫做定理.
(二)证明
根据条 件,定义以及定理等,经过推理论证,来判断一个命题是否正确,这样的推理过程叫做证明.
(三)命题,公理和定理的区别与联系
学生讨 论
二应用:
问题1.看下面的命题ห้องสมุดไป่ตู้不是真命题?
教学反思
定理与证明
教学目标
知识与技能
了解命题、定理的含义;理解证明的必要性.
过程与方法
结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
情感态度与价值观
初步感受定理化方法对数学发展和人类文明的价值.
教学重点
知道什么是定理
教学难点
理解证明的必要性.
教学内容与过程
教法学法设计
请看下 面的问题:
一条直线截两条平 行直线所得的同位角相等;
问题2.三角形三边的垂直平分线的交点都在三角形的内部是不是真 命题?
解答:不是
问题3.直角三角形的两个锐角互余是不是真命题?
解答:是,请 你证明.
课后小结:定理,证 明.
课后练习:见教材58页
课后作业:复印给学生
创设良好的问题情境,激活学生的求知欲,促使学生 为问题的解决形成一个合适的思维意向,收到最佳的教学效益。使学生在问题情境中,通过观察、操作、思考交流和运用,逐步形成良 好的数学思维习惯,发展数学应用意识,感受学习数学的乐趣。

八年级数学上册 13.1 命题、定理与证明 13.1.2 定理与证明教案 (新版)华东师大版

八年级数学上册 13.1 命题、定理与证明 13.1.2 定理与证明教案 (新版)华东师大版
说明:老师和学生一起,写出已知,求证,然后画出图形,再用已经学过的定理进行证明.
1.要求学生注意定理也是命题注意它的两个组成部分:条件和结论.
2.能证明一个较简单的命题是真命题.
【拓展提升】
[厦门中考]A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线.小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.
例如图13-1-,有下列三个条件:
图13-1-
①DE∥BC:②∠1=∠2;③∠B=∠C.
(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你都写出来;
(2)请你就其中的一个真命题给出推理过程.
解:(1)一共能组成2个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;
②[讲授效果反思]
A.重点□B.难点□C.易错点□
举反例说明一个命题是假命题是一个难点,教学时要帮助学困生,关注他们在这方面的不足.证明过程的书写是一个较为长期的训练过程,不期望一节课上学生就能很好地掌握.
③[师生互动反思]
学生根据定理的内容画出相应的图形会有较大的困难,师生共同完成.
④[习题反思]
教学
重点
对数学基本事实、定理的理解.
教学
难点
证明一个命题是真命题的一般方法.
授课
类型
新授课
课时
第一课时
教具
多媒体课件
教学活动
教学
步骤
师生活动
设计意图
回顾
问题1请同学们判断下列命题哪些是真命题?哪些是假命题?

八年级数学上册《定理与证明》教案、教学设计

八年级数学上册《定理与证明》教案、教学设计
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学,提高学生的数学素养。同时,注重培养学生的逻辑思维能力和创新意识,为学生的终身发展奠定基础。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的运算技能和解决问题的方法。在此基础上,他们对数学定理的学习具备以下特点:
直接进入本章节的教学设计正文部分:
**三、教学过程**
**1.导入新课(5分钟)**
-通过一个简单的几何问题,例如“为什么直角三角形的两个锐角互余?”,引发学生的思考,从而导入定理与证明的概念。
-使用多媒体展示一些生活中的实例,让学生体会到定理在生活中的应用,激发学生的学习兴趣。
**2.新课内容展示与探究(20定理的概念,强调定理在数学推理中的重要性。
- **证明方法的学习**:分别介绍综合法、分析法、反证法等证明方法,并通过示例进行展示。
- **学生探究活动**:组织学生分组讨论,尝试用不同的方法证明一个简单的定理,如“对顶角相等”。
**3.练习与应用(15分钟)**
-设计一系列的练习题,让学生独立尝试证明,巩固所学的证明方法。
1.思维能力逐渐由具体形象向抽象逻辑转变,对数学定理的理解和证明具有一定的兴趣。
2.学生在解决实际问题时,能够尝试运用已知的定理,但可能在运用过程中出现理解不深、运用不当等问题。
3.部分学生对数学学科兴趣浓厚,具有较强的自主学习能力,但部分学生对数学学习存在恐惧心理,自信心不足。
4.学生在团队合作中,表现出一定的交流与协作能力,但仍有部分学生在团队中缺乏主动性。
-推荐一些拓展阅读材料,鼓励学生深入了解定理的历史背景和应用。
**四、教学评价**

初中数学八年级《命题与证明第二课时证明》公开课教学设计

初中数学八年级《命题与证明第二课时证明》公开课教学设计

初中数学公开课教学设计初中数学八年级上册第十三章第二节《命题与证明》第二课时证明◆教材分析本节课是《13.2命题与证明》的第二课时,是在学习了命题的相关概念后,进一步探究真命题,依据定义、基本事实、定理进行演绎推理从而证明命题的正确性.从这节课开始学生将正式进入几何证明的学习,它是以后研究复杂图形的重要基础.本节课通过师生的共同探究证明活动,培养学生学习的兴趣,学会用几何的思维方法解决实际问题.在进行命题的证明时,体会命题证明的必要性,证明的步骤及格式,会进行推理论证,并会注明每一步推理的依据,最终进一步提高学生的逻辑分析能力,同时让学生感受到数学知识的严谨性,方法的多样性。

◆学情分析通过七年级的学习,学生已经积累了一定的说理题的经验,掌握了五个基本事实和一些定义、定理,为本节课的学习做好了相关的知识储备,同时,学生已经具有了基本的图形认识能力和初步的空间想象能力,但学生可能对寻找证明思路,书写证明过程必须步步有据等接受有困难。

◆教学目标1.理解定义、基本事实、定理、证明的意义,能区分基本事实、定理和命题。

2.通过具体例子了解综合法证明的步骤和书写格式,体验证明的必要性和数学推理的严密性。

3.了解推理过程步步有据的重要性,能够证明一些简单的几何问题,增强学生的推理论证意识,培养学生的演绎推理习惯和能力。

4.通过对欧几里得的《几何原本》的简单介绍渗透数学文化教育。

◆教学重点理解演绎推理和演绎证明的概念,了解综合法证明的步骤和格式。

◆教学难点严密完整地写出推理证明的过程,并做到步步有据。

◆教学方法情境教学法、引导发现法、自主探究法◆教学流程本节课教学流程共分为五个环节,依次是:环节一创设情境,引入新课环节二知识回顾,认识概念环节三合作探究,学习新知环节四学以致用,深化理解环节五课堂小结,分层作业◆教学过程一、创设情境,引入新课微课视频简单介绍欧几里得的《几何原本》.教师介绍古希腊数学家欧几里得,引入本节课题“证明”.【设计意图】通过微课介绍,激发学生的兴趣,渗透数学文化教育.二、知识回顾,认识概念(一)思考请判断下列命题是真命题还是假命题.1.如果|a|=|b|,那么a=b.2.在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.3.同位角相等,两直线平行.4.内错角相等,两直线平行.(二)从基本事实或其他真命题出发,用推理方法判断为正确的,并被选作判断命题真假的依据,这样的真命题叫做定理.师生行为:(1)教师引导学生复习命题相关知识,并进一步探究真命题的分类. (2)学生回忆已学的基本事实和定理.(3)教师引导学生归纳定理的概念.【设计意图】教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对概念的理解,突出本节课的重点.通过回忆基本事实为下面的证明做好铺垫.三、合作探究,学习新知1.例题已知:如图,直线c与直线a,b相交,且∠1=∠2求证:a∥b.a2.从已知条件出发,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论,这一方法称为演绎推理(或演绎法).3.演绎推理的过程,叫做演绎证明,简称证明.师生行为:(1)教师点拨证明的书写格式及证明过程要步步有据.(2)学生探究证明方法,师生共同完成证明过程,教师板演.(3)教师引导学生观察例题证明过程,归纳演绎推理和演绎证明的概念.【设计意图】通过对学生熟悉的“内错角相等,两直线平行”的论证,使学生理解严格的数学证明要有理有据,感悟学习演绎证明的必要.通过对例题的反思归纳演绎推理和演绎证明的概念,加深学生对概念的理解.此例题是由基本事实“同位角相等,两直线平行”推理得出的定理,让学生体会欧式几何公理化的演绎范式.练习已知:如图,直线c与直线a,b相交,且∠1+∠2=180°求证:a∥b.a师生行为:(1)学生自主探究完成练习题.(2)投影展示学生解题过程并请学生自评.【设计意图】在例题中通过基本事实证明出定理“内错角相等,两直线平行”后出示此练习题,再用定理“内错角相等,两直线平行”证明另一个命题的正确性,再次体会欧式几何公理化的演绎范式.四、学以致用,深化理解例题已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.师生行为:(1)学生独立思考完成例题,如有困难可同桌交流探究.(2)投影展示学生的证明过程,学生自评互评,教师适时点拨.【设计意图】 通过具体例子了解综合法证明的步骤和书写格式,体验证明的必要性和数学推理的严密性.体会推理过程步步有据的重要性,突破本节课的难点.练习请在下题的括号内,填上推理的依据:已知:如图,点B 、A 、E 在一条直线上,∠1=∠B .求证:∠C =∠2.证明:∵∠1=∠B ( )∴AD ∥BC ( )∴∠C =∠2 ( )变式一:已知:如图,点B 、A 、E 在一条直线上,∠1=∠2,∠EAC =A D2∠B .求证:AD ∥BC .变式二: 已知:如图,点B 、A 、E 在一条直线上,AD ∥BC ,∠B =∠C. 求证:∠1=∠2.师生行为:(1)学生自主探究完成证明过程,同桌互评.(2)教师根据此题编出变式练习题,由学生完成完整的证明过程.【设计意图】 通过练习让学生进一步体会证明过程要步步有据.变式练习设计目的是进一步巩固证明过程的书写,增强学生的推理论证意识,培养学生的演绎推理习惯和能力.五、课堂小结,分层作业小结:请同学们静思一下,想一想这节课你有哪些新的收获? 师生行为:(1)学生思考后回答.(2)教师在学生总结的基础上,把学生反思与教师总结相结合,使学生对本节课知识有一个完整系统的认识.D D【设计意图】让学生自己小结,发挥学生的主体作用,提高了他们的表达能力,尊重学生的个性发展,促进了学生综合素质的提高. 先请同学回顾,然后教师通过PPT课件展示本节课的知识结构,学生将自我回顾与其融合,完善本节课知识体系.分层作业:必做题:课本P84习题13.2 第5、6题.选做题:思考如何证明三角形内角和等于180°.【设计意图】必做题是对本节课内容的巩固和反馈,选做题是对下节课知识的预习,为下节课的学习做准备.附:板书设计13.2.1命题与证明。

[配套K12]八年级数学上册 13.1 命题、定理与证明 第2课时 定理与证明教案 (新版)华东师大版

[配套K12]八年级数学上册 13.1 命题、定理与证明 第2课时 定理与证明教案 (新版)华东师大版

13.1 命题、定理与证明第二课时定理与证明教学目标1.知识与技能:了解命题、公理、定理的含义;理解证明的必要性.2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.重点与难点1.重点:知道什么是公理,什么是定理2.难点:理解证明的必要性.教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.我们已经知道下列命题是真命题:两点确定一条直线;两点之间、线段最短;过一点有且只有一条直线与已知直线垂直;过直线外一点有且只有一条直线与这条直线平行;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.在本书中我们将这些真命题均作为公理.(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1.我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2> b2.这个命题是真命题吗?[答案:不正确,因为3>-5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.(三)例题与证明例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.教师板书证明过程.教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.三、随堂练习课本P58练习第1、2题.四、课时总结1、在长期实践中总结出来为真命题的命题叫做公理.2、用逻辑推理的方法证明它们是正确的命题叫做定理五、布置作业课本P58 习题13.1 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1 命题、定理与证明
第二课时定理与证明
教学目标
1.知识与技能:了解命题、公理、定理的含义;理解证明的必要性.
2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值.
重点与难点
1.重点:知道什么是公理,什么是定理
2.难点:理解证明的必要性.
教学过程
一、复习引入
教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了.这节课,我们将探究怎样证明一个命题是真命题.
二、探究新知
(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
我们已经知道下列命题是真命题:
两点确定一条直线;
两点之间、线段最短;
过一点有且只有一条直线与已知直线垂直;
过直线外一点有且只有一条直线与这条直线平行;
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
在本书中我们将这些真命题均作为公理.
(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的.从而说明证明的重要性.
1、教师讲解:请大家看下面的例子:
当n=1时,(n2-5n+5)2=1;
当n=2时,(n2-5n+5)2=1;
当n=3时,(n2-5n+5)2=1.
我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?
实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25.
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a>b时,a2> b2.这个命题是真命题吗?
[答案:不正确,因为3>-5,但3 2<(-5)2]
教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质.但由前面两题我们又知道,这些方法得到的结论有时不具有一般性.也就是说,由这些方法得到的命题可能是真命题,也可能是假命题.
教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理.
(三)例题与证明
例如,有了“三角形的内角和等于180°”这条定理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角三角形的两个锐角互余.
教师板书证明过程.
教师讲解:此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理.
定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.
三、随堂练习
课本P58练习第1、2题.
四、课时总结
1、在长期实践中总结出来为真命题的命题叫做公理.
2、用逻辑推理的方法证明它们是正确的命题叫做定理
五、布置作业
课本P58 习题13.1 3。

相关文档
最新文档