2.3.2_双曲线的简单几何性质
2.3.2 双曲线的简单几何性质

思路分析将双曲线方程化为标准方程,先求出参数a,b,c的值,再写
出各个结果.
解双曲线的方程化为标准形式是������2
9
−
���4���2=1,
∴a2=9,b2=4,
∴a=3,b=2,c= 13.
又双曲线的焦点在 x 轴上,
∴顶点坐标为(-3,0),(3,0),
焦点坐标为(- 13,0),( 13,0),
������2+������2 ������2
=
1+
������ ������
2,所以������������ =
������2-1,所以离心率
的大小决定了渐近线斜率的大小,从而决定了双曲线开口的大小,离
心率越大,开口越开阔,离心率越小,开口越扁狭.
4.等轴双曲线是指实轴长与虚轴长相等的双曲线,其渐近线方程
������2
������
−
������2
������
=1(λ≠0),由题意得
49
a=3.
当 λ>0 时,4������=9,λ=36,双曲线方程为���9���2 − ���4���2=1;
当 λ<0 时,-9������=9,λ=-81,双曲线方程为���9���2 − 48���1���2=1.
为 y=±x,离心率等于 2.
课前篇自主预习
【做一做1】 若点M(x0,y0)是双曲线
������2 4
−
������2 25
=1上支上的任意一点,
则x0的取值范围是
,y0的取值范围是
.
解析因为a2=4,b2=25,所以a=2,b=5,所以x0∈R,y0≥2.
ቤተ መጻሕፍቲ ባይዱ
教学设计3:2.3.2 双曲线的简单几何性质

(三)渐近线双曲线的范围在以直线by xa=和by xa=-为边界的平面区域内,那么从x,y的变化趋势看,双曲线22221x ya b-=与直线by xa=±具有怎样的关系呢?根据对称性,可以先研究双曲线在第一象限的部分与直线by xa=的关系。
双曲线在第一象限的部分可写成:当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)离心率由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,指出:焦点在y 轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变. (五)例题讲解例1求双曲线22143x y -=的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程,并画出双曲线的草图。
分析:由双曲线的标准方程,容易求出,,a b c .引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y 轴上的渐近线是ay x b=±. 例2 已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
例3求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二可直接设所求的双曲线的方程为()22,0169x y m m R m -=∈≠ 例4.如图,设(),M x y 与定点()5,0F 的距离和它到直线l :165x =的距离的比是常数54,求点M 的轨迹方程. 分析:若设点(),M x y ,则()225MF x y =-+,到直线l :165x =的距离165d x =-,则容易得点M 的轨迹方程.例5.双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m.试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).练习反馈1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.限时训练2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程.点到两准线及右焦点的距离.课堂小结作业布置提高。
教学设计2:3.2.2 第1课时 双曲线的简单几何性质

21yb的哪些代数特性获得的?椭圆的顶点、长轴、短轴、中心是如何定义的?类比椭圆几何性质的研究,从双曲线方程21yb,你可以独立发现哪些几何性质?有没有双曲线所特有的性质?问题1如何研究双曲线的几何性质?师生活动:类比椭圆几何性质的研究方法,对双曲线21,(0,0)ya bb的角度分析)类比椭圆的范围、对称性、顶点的研究,通过方程2221x yb研究双曲线的范21yb,可以直观发现双曲线上的(,纵坐标的范围是y R.“数”的角度:根据方程22221x y ab ①, 得到222211x y a b,∴x ≤-a ,或x ≥a ;y R .由(x ,y )的范围,可以发现双曲线不是封闭的曲线.双曲线位于直线x a 及其左侧,以及直线x a 及其右侧的区域,并且两支都向外无限延伸. (2)对称性“形”的角度:双曲线既关于坐标轴对称,又关于原点对称.“数”的角度:用−x 代x ,−y 代y ,−x ,−y 分别代x ,y ,方程的形式不变,所以双曲线关于坐标轴、原点对称.双曲线的对称中心叫做双曲线的中心. (3)顶点“形”的角度:从图形直观上可以发现双曲线与x 轴有两个交点A 1(-a ,0)和A 2(a ,0),与y 轴没有公共点.这与椭圆不同. “数”的角度:令y =0,得到x =a 或x =−a ,所以A 1(-a ,0)和A 2(a ,0), 令x =0,y 2=−b 2,没有实数解。
追问2:能否类比椭圆把B 1(0,-b ),B 2(0,b )两点画在y 轴上?线段B 1B 2有何几何意义?师生活动:引导学生画图,学习线段B 1B 2称为双曲线的虚轴,△22A OB 是直角三角形,且2OA a ,22A B c ,2OB b ,线段A 1A 2叫做双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;线段B 1B 2叫做双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长.并且在紧接着的渐近线的研究中就要用到它.追问3:在双曲线29x -24y =1位于第一象限的曲线上画一点M ,测量点M 的横坐标x M 以及它到直线3x -2y=1的距离d ,向右拖动点M ,观察x M 与d 的大小关系,你发现了什么? 师生活动:通过GGB 软件作图,在向右拖动点M 时,点M 的横坐标M x 越来越大,d 越来越小,但是d 始终不等于0.经过两点A 1,A 2作y 轴的平行线x =±3,经过两点B 1,B 2作x 轴的平行线y =±2,四条直线围成一个矩形,矩形的两条对角线所在直线的方程是032xy .可以发现,双曲线22194x y 的两支向外延伸时,与两条直线032x y 逐渐接近,但永远不相交.一般地,双曲线22221x y ab (0a ,0b )的两支向外延伸时,与两条直线0x ya b逐渐接近,我们把这两条直线叫做双曲线的渐近线.实际上,双曲线与它的渐近线无限接近,但永远不相交。
第二章 2.3 2.3.2 双曲线的简单几何性质

返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
直线与双曲线的位置关系 [典例] (本题满分 12 分)设双曲线 C:xa22-y2=1(a>0)与直线 l:x+y =1 相交于两个不同的点 A,B. (1)求双曲线 C 的离心率 e 的取值范围. (2)设直线 l 与 y 轴的交点为 P,且P→A=152P→B,求 a 的值.
人教A版数学·选修2-1
[解析] (1)设双曲线的方程为 mx2+ny2=1(mn<0),
则4298mm++792nn==11,, 解得nm==-2157,15, 所求双曲线方程为2x52-7y52 =1. (2)设所求双曲线方程为 16x2-9y2=λ(λ≠0), 将 M8,1313代入,得 λ=16×82-9×13132=-576, 所求双曲线方程为 16x2-9y2=-576, 即6y42 -3x62=1.
D.y=±2x
解析:y2-x2=2 的渐近线方程为 y=±x.
答案:A
返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
2.若双曲线1y62 -xm2=1 的离心率 e=2,则 m=________. 解析:a2=16,b2=m,c2=16+m, ∴1+1m6=4,∴1m6=3,m=48. 答案:48
返回导航 上页
下页
人教A版数学·选修2-1
返回导航 上页
下页
求双曲线的离心率的方法技巧 (1)若可求得 a,c,则直接利用 e=ac得解; (2)若已知 a,b,可直接利用 e= 1+ba2得解; (3)若得到的是关于 a,c 的齐次方程 pc2+q·ac+r·a2=0(p,q,r 为常数,且 p≠0),则转化为关于 e 的方程 pe2+q·e+r=0 求解.
2.3.2双曲线的简单几何性质(二))

2
作业:课本 P B 组第 4 题
62
x2 y2 1 的左焦点 F1 作倾角为 的直线与双曲线 1.过双曲线 9 16 4
192 交于 A、B 两点,则|AB|= . 7
所得弦长为
2.双曲线的两条渐进线方程为 x 2 y 0 ,且截直线 x y 3 0
4
,求点M的轨迹.
d
M
16 x 5 将上式两边平方,并化简,得9 x2- y 2 144, 16
由此得
. 4
F
x
x y 即 - 1 16 9
2
2
所以,点M的轨迹是实轴、虚轴长分别为8、6的双曲线。
变式:动点 M ( x, y) 与定点 F (c,0)(c 0) 的距离和它到定直线 a2 c c : x 的距离的比是常数 ( 1) ,求点 M 的轨迹方程. c a a 2
F1
O
A
B
F2 x
你能求出△AF1B 的周长吗?
2 | AF2 | 8 3
课堂练习: 1.到定点的距离与到定直线的距离之比等于 log23 的点的轨迹是( C ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线 2.点 P 与两定点 F1(-a,0)、F2(a,0)(a>0)的 连线的斜率乘积为常数 k,当点 P 的轨迹是离心 率为 2 的双曲线时,k 的值为( A ) (A)3 (B) 3 (C)± 3 (D)4 2 2 x y 1 上的点 P 到双曲线的右 3.如果双曲线 64 36 6.4 焦点的距离是 8, 那么 P 到右准线的距离是_____, 19.2 P 到左准线的距离是________.
2.3.2双曲线的简单几何性质

2.3.2双曲线的简单几何性质【知识目标】 1.完成下表2.直线与双曲线的位置关系断定(与椭圆的区别):3.直线与椭圆相交的弦长公式。
【能力目标】题型一:双曲线的几何性质研究运用例1.求14416922=-x y 双曲线的半实轴和半虚轴长、焦点坐标、离心率,渐近线方程、准线方程。
例2根据下列条件求出双曲线的标准方程 (1)已知双曲线的渐近线的方程x y 21±=,焦距为10;(2)已知双曲线的渐近线的方程x y 32±=,且过点,1,29⎪⎭⎫⎝⎛-M ;(3)与椭圆14922=+yx有公共焦点,且离心率25=e 。
例3.(课本)双曲线型冷却塔外形是双曲线的一部分绕虚轴旋转成的曲面,他的最小半径为12m,上口半径为13m.下口半径25m,高为55m ,建立适当坐标系,求出此双曲线的的方程。
2010福建理7.若点O 和点F (-2,0)分别为双曲线)0(1222>=-a ya x的中心和左焦点,点P 为双曲线右支上的任意一点,则FP OP ⋅的取值范围为( )A .),323[+∞-B .),323[∞++C .),47[+∞-D .),47[+∞题型二:第二定义及其双曲线的离心率求解(jianjingxian ) 例1.双曲线1366422=-yx上的一点到它的右焦点距离为8,那么它到左准线的距离为( ) A.10 B.7732 C.212 D.532例2.求适合下列条件的双曲线离心率 (1)双曲线的渐近线的方程x y 21±=;(2)过焦点求垂直于实轴的弦与另一焦点的连线所成角为直角。
(3)双曲线)0(12222b a by ax <<=-的半焦距为c ,直线l 过两点),0(),0,(b a ,且原点到直线的距离为.43c2011全国新理(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,A B 为C 的实轴长的2倍,则C 的离心率为 (A)(B)(C )2 (D )3例3(综合)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.练习:双曲线)1,0(12222a b by ax <<=-的焦距为2c,直线l 过点(a,0),(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和c s 54≥,求双曲线的离心率e 。
2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。
第二章 2.3.2 双曲线的简单几何性质

2.3.2双曲线的简单几何性质学习目标 1.掌握双曲线的简单几何性质.2.理解双曲线离心率的定义、取值范围和渐近线方程.3.了解直线与双曲线相交的相关问题.知识点一双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a y≤-a或y≥a对称性对称轴:坐标轴;对称中心:原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2a,b,c间的关系c2=a2+b2(c>a>0,c>b>0)知识点二等轴双曲线实轴和虚轴等长的双曲线,它的渐近线方程是y=±x,离心率为 2.1.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-y2b2=1与y2a2-x2b2=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的渐近线互相垂直,离心率e= 2.(√)4.椭圆的离心率与双曲线的离心率取值范围相同.(×)5.双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点.(×)一、由双曲线方程研究其几何性质例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程. 解 将9y 2-4x 2=-36化为标准方程为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13.因此顶点坐标为A 1(-3,0),A 2(3,0), 焦点坐标为F 1(-13,0),F 2(13,0), 实轴长2a =6,虚轴长2b =4, 离心率e =c a =133,渐近线方程为y =±b a x =±23x .延伸探究求双曲线nx 2-my 2=mn (m >0,n >0)的实半轴长、虚半轴长、焦点坐标、离心率、顶点坐标和渐近线方程. 解 把方程nx 2-my 2=mn (m >0,n >0)化为标准方程为x 2m -y 2n=1(m >0,n >0), 由此可知,实半轴长a =m , 虚半轴长b =n ,c =m +n ,焦点坐标为(m +n ,0),(-m +n ,0),离心率e =ca=m +nm=1+n m, 顶点坐标为(-m ,0),(m ,0), 所以渐近线方程为y =±n mx ,即y =±mn m x .反思感悟 由双曲线的方程研究几何性质的解题步骤 (1)把双曲线方程化为标准形式是解决此类题的关键.(2)由标准方程确定焦点位置,确定a,b的值.(3)由c2=a2+b2求出c的值,从而写出双曲线的几何性质.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程为 y 242-x 232=1. 由此可知,实半轴长a =4,虚半轴长b =3; c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5);离心率e =c a =54;渐近线方程为y =±43x .二、由双曲线的几何性质求标准方程 例2 根据以下条件,求双曲线的标准方程. (1)过点P (3,-5),离心率为2;(2)与椭圆x 29+y 24=1有公共焦点,且离心率e =52;(3)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23).解 (1)若双曲线的焦点在x 轴上, 设其方程为x 2a 2-y 2b 2=1(a >0,b >0),∵e =2,∴c 2a2=2,即a 2=b 2.①又双曲线过P (3,-5),∴9a 2-5b 2=1,②由①②得a 2=b 2=4,故双曲线方程为x 24-y 24=1. 若双曲线的焦点在y 轴上, 设其方程为y 2a 2-x 2b 2=1(a >0,b >0),同理有a 2=b 2,③ 5a 2-9b 2=1,④ 由③④得a 2=b 2=-4(舍去). 综上,双曲线的标准方程为x 24-y 24=1.(2)由椭圆方程x 29+y 24=1,知半焦距为9-4=5,∴焦点是F 1(-5,0),F 2(5,0). 因此双曲线的焦点为(-5,0),(5,0). 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知条件,有⎩⎪⎨⎪⎧c a =52,a 2+b 2=c 2,c =5,解得⎩⎪⎨⎪⎧a =2,b =1.∴所求双曲线的标准方程为x 24-y 2=1.(3)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14,∴双曲线方程为x 29-y 216=14,即双曲线的标准方程为x 294-y 24=1.反思感悟 (1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的六种方法与技巧①焦点在x 轴上的双曲线的标准方程可设为x 2a 2-y 2b 2=1(a >0,b >0).②焦点在y 轴上的双曲线的标准方程可设为y 2a 2-x 2b2=1(a >0,b >0).③与双曲线x 2a 2-y 2b 2=1共焦点的双曲线方程可设为x 2a 2-λ-y 2b 2+λ=1(λ≠0,-b 2<λ<a 2).④与双曲线x 2a 2-y 2b 2=1具有相同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).⑤渐近线为y =kx 的双曲线方程可设为k 2x 2-y 2=λ(λ≠0). ⑥渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0). 跟踪训练2 求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)渐近线方程为y =±12x 且过点A (2,-3).解 (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9, 故双曲线的标准方程为x 29-y 216=1.(2)方法一 ∵双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b 2=1.②由①②联立,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b 2=1.④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,∴λ=-8 ∴所求双曲线的标准方程为y 28-x 232=1.三、双曲线的离心率例3 设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为________.答案 53解析 不妨设P 为双曲线右支上一点, |PF 1|=r 1,|PF 2|=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a 2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =c a =a 2+b 2a 2=⎝⎛⎭⎫b a 2+1 =⎝⎛⎭⎫432+1=53. 反思感悟 求双曲线离心率的两种方法(1)直接法:若已知a ,c 可直接利用e =ca求解,若已知a ,b ,可利用e =1+⎝⎛⎭⎫b a 2求解.(2)方程法:若无法求出a ,b ,c 的具体值,但根据条件可确定a ,b ,c 之间的关系,可通过b 2=c 2-a 2,将关系式转化为关于a ,c 的齐次方程,借助于e =ca ,转化为关于e 的n 次方程求解.跟踪训练3 (1)已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( ) A .4+2 3 B .23-1 C.3+12D.3+1答案 D解析 因为MF 1的中点P 在双曲线上,所以|PF 2|-|PF 1|=2a ,因为△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a, 所以e =c a =23-1=3+1.(2)如果双曲线x 2a 2-y 2b 2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________. 答案 (2,+∞)解析 如图,因为AO =AF ,F (c ,0),所以x A =c2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =c a>2.1.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( ) A .4 B .-4 C .-14D.14答案 C解析 由双曲线方程mx 2+y 2=1,知m <0, 则双曲线方程可化为y 2-x 2-1m=1, 则a 2=1,a =1,又虚轴长是实轴长的2倍, ∴b =2,∴-1m =b 2=4,∴m =-14,故选C.2.中心在原点,焦点在x 轴上,且一个焦点在直线3x -4y +12=0上的等轴双曲线的方程是( )A .x 2-y 2=8B .x 2-y 2=4C .y 2-x 2=8D .y 2-x 2=4答案 A解析 令y =0,得x =-4, ∴等轴双曲线的一个焦点为(-4,0), ∴c =4,a 2=b 2=12c 2=12×16=8,故选A.3.双曲线x 2-y 2m=1的离心率大于2的充要条件是( ) A .m >12B .m ≥1C .m >1D .m >2 答案 C解析 由题意得,a 2=1,b 2=m >0,∴c 2=m +1 ∴e =c a=m +1>2,∴m >1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,则其渐近线方程为________________.答案 y =±33x解析 由题意知,e =c a =233,得c 2a 2=43.又c 2=b 2+a 2,所以b 2+a 2a 2=43. 故b 2a 2=13. 所以b a =33,所以该双曲线的渐近线方程为y =±33x .5.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围为________. 答案 (-2,2)解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.1.知识清单: (1)双曲线的几何性质. (2)双曲线的离心率的求法.2.方法归纳:定义法、函数与方程、数形结合. 3.常见误区:忽略双曲线中x ,y 的范围.1.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.31414B.324C.32D.43答案 C解析 由题意知a 2+5=9,解得a =2,e =c a =32.2.双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A.12 B.22 C .1 D. 2 答案 B解析 双曲线x 2-y 2=1的渐近线方程为x ±y =0,顶点坐标为(1,0),(-1,0),故顶点到渐近线的距离为22. 3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则双曲线C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12. 故双曲线C 的渐近线方程为y =±12x ,故选C. 4.已知双曲线方程为x 2-y 24=1,过点P (1,0)的直线l 与双曲线只有一个公共点,则l 共有( ) A .4条 B .3条 C .2条 D .1条答案 B解析 因为双曲线方程为x 2-y 24=1,则P (1,0)是双曲线的右顶点,所以过P (1,0)并且和x 轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外两条就是过P (1,0)分别和两条渐近线平行的直线,所以符合要求的有3条.5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则双曲线C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 双曲线C 的渐近线方程为y =±b a x ,点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2, 又a 2+b 2=c 2=25,解得b 2=5,a 2=20,故选A.6.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于________.答案 4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,所以|AB |=4 3.7.已知双曲线方程为8kx 2-ky 2=8(k ≠0),则其渐近线方程为________________. 答案 y =±22x解析 由已知令8kx 2-ky 2=0,得渐近线方程为y =±22x .8.过双曲线x 2-y 23=1的左焦点F 1作倾斜角为π6的弦AB ,则|AB |=________.答案 3解析 易得双曲线的左焦点F 1(-2,0),∴直线AB 的方程为y =33(x +2), 与双曲线方程联立,得8x 2-4x -13=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12,x 1x 2=-138, ∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+13×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-138=3. 9.求适合下列条件的双曲线的标准方程.(1)两顶点间的距离是6,两焦点所连线段被两顶点和中心四等分;(2)渐近线方程为2x ±3y =0,且两顶点间的距离是6.解 (1)由两顶点间的距离是6,得2a =6,即a =3.由两焦点所连线段被两顶点和中心四等分可得2c =4a =12,即c =6,于是有b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1. (2)设双曲线方程为4x 2-9y 2=λ(λ≠0),即x 2λ4-y 2λ9=1(λ≠0),由题意得a =3. 当λ>0时,λ4=9,λ=36, 双曲线方程为x 29-y 24=1; 当λ<0时,-λ9=9,λ=-81, 双曲线方程为y 29-x 2814=1. 故所求双曲线的标准方程为x29-y24=1或y29-x2814=1.10.过双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,求双曲线C的离心率.解如图所示,不妨设与渐近线平行的直线l的斜率为ba,又直线l过右焦点F(c,0),则直线l的方程为y=ba(x-c).因为点P的横坐标为2a,代入双曲线方程得4a2a2-y2b2=1,化简得y=-3b或y=3b(点P在x轴下方,故舍去),故点P的坐标为(2a,-3b),代入直线方程得-3b=ba(2a-c),化简可得离心率e=ca=2+ 3.11.如图,双曲线C:x29-y210=1的左焦点为F1,双曲线上的点P1与P2关于y轴对称,则|P2F1|-|P1F1|的值是()A.3 B.4 C.6 D.8答案 C解析 设F 2为右焦点,连接P 2F 2(图略),由双曲线的对称性,知|P 1F 1|=|P 2F 2|,所以|P 2F 1|-|P 1F 1|=|P 2F 1|-|P 2F 2|=2×3=6.12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点,若M ,O ,N 将椭圆的长轴四等分,则双曲线与椭圆的离心率的比值是()A .3B .2 C. 3 D. 2答案 B解析 设椭圆与双曲线的标准方程分别为x 2a 2+y 2b 2=1(a >b >0), x 2m 2-y 2n 2=1(m >0,n >0), 因为它们共焦点,所以设它们的半焦距均为c ,所以椭圆与双曲线的离心率分别为e 1=c a ,e 2=c m, 由点M ,O ,N 将椭圆长轴四等分可知m =a -m ,即2m =a ,所以e 2e 1=c m c a=a m=2. 13.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,点P ,Q 在双曲线的右支上,由双曲线的定义,得|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28,∴△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.14.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1),即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-k ,x 2-y 22=1,得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2, 所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2), 则⎩⎨⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2). 因为x 1≠x 2,所以y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2, 所以k AB =2×1×22×2=1, 所以直线AB 的方程为y =x +1,代入x 2-y 22=1满足Δ>0. 所以直线AB 的方程为y =x +1.15.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( ) A.43 B.53 C .2 D.73答案 B解析 ∵P 在双曲线的右支上,∴由双曲线的定义可得|PF 1|-|PF 2|=2a , ∵|PF 1|=4|PF 2|,∴4|PF 2|-|PF 2|=2a ,即|PF 2|=23a , 根据点P 在双曲线的右支上,可得|PF 2|=23a ≥c -a , ∴53a ≥c ,又∵e >1,∴1<e ≤53, ∴此双曲线的离心率e 的最大值为53. 16.已知双曲线C 1:x 2-y 24=1. (1)求与双曲线C 1有相同的焦点,且过点P (4,3)的双曲线C 2的标准方程;(2)直线l :y =x +m 分别交双曲线C 1的两条渐近线于A ,B 两点,当OA →·OB →=3时,求实数m的值.解 (1)双曲线C 1的焦点坐标为(5,0),(-5,0),设双曲线C 2的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), 则⎩⎪⎨⎪⎧ a 2+b 2=5,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1, 所以双曲线C 2的标准方程为x 24-y 2=1. (2)双曲线C 1的渐近线方程为y =2x ,y =-2x ,设A (x 1,2x 1),B (x 2,-2x 2),由⎩⎪⎨⎪⎧ x 2-y 24=0,y =x +m ,消去y 化简得3x 2-2mx -m 2=0, 由Δ=(-2m )2-4×3×(-m 2)=16m 2>0,得m ≠0.因为x 1x 2=-m 23, OA →·OB →=x 1x 2+2x 1(-2x 2)=-3x 1x 2=m 2, 所以m 2=3,即m =±3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、顶点
(1)双曲线与对称轴的交点,叫做双曲线的顶点
顶点是A 1 (a,0)、A 2 (a,0) 只有两个!
( 2) 如图,线段 A1A2 叫做双曲线 的实轴,它的长为2a,a叫做 实半轴长;线段 B1B2 叫做双 曲线的虚轴,它的长为2b,b 叫做双曲线的虚半轴长 ( 3) 实轴与虚轴等长的双曲线 叫等轴双曲线
法一:直接设标准方程,运用待定系数法 x2 y2 ⑵解:设双曲线方程为 2 2 1 (a>0,b>0) a b a 2 b 2 20 a 2 12 则 解之得 2 (3 2 )2 2 2 或设 b 8 1 2 2
a b
x2 y2 1 ∴双曲线方程为 12 8
x2 y2 x2 y2 注:与 2 2 1共焦点的椭圆系方程是 2 2 2 1, a b m m c x2 y2 双曲线系方程是 2 2 1 2 m c m
2 2
2
2
x2 y2 1 有共同焦点,渐近线方程为 2、求与椭圆 16 8
x 3y 0 的双曲线方程。
解:依题意可设双曲线 的方程为
c 5 又 e , c 10 a 4
2a 16,即a 8
x y 1 2 2 a b
b2 c 2 a 2 102 82 36
x2 y 2 双曲线的方程为 1 64 36 3 渐近线方程为 y x 4
B2
. .
B2 A2
图形
. .
F1(-c,0)
F1
y
y
F2
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐近线
x y 1 (a b 0) 2 2 a b
2
2
x ≥ a 或 x ≤ a,y R
关于x轴、y轴、原点对称
y x 1 (a 0,b 0 ) a b
x a 或 x a,y R
y a 或 y a,x R
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
x2 y2 1, 2 2 m 20 m 求得m2 12(30舍去)
法二:设双曲线方程为
(3 2)2 22 ∴ 16 k 4 k 1
x2 y2 1 16 k 0且4 k 0 16 k 4 k
x2 y2 1 12 8
, 解之得k=4,
A1 -a
y b
B2
o a A2 x
x y m ( m 0)
2 2
-b B 1
4、渐近线
动画演示 y b N(x,y’) Q M(x,y)
双曲线在第一象限内部 分的方程为 2 2 (1) 双曲线 x y 1(a 0, b 0) b 2 a22 b 2 y x a ( x 0) a 的渐近线为y b x a b 它与y x的位置关系 : 2 2 a 等轴双曲线 x y m (2 ) A1 b 在y x的下方 ( m0 a)的渐近线为
A1(- a,0),A2(a,0)
y ≥ a 或 y ≤ a,x R
y2 x2 2 1 (a 0 ,b 0 ) 2 a b
关于x轴、y轴、原点对称
A1(0,-a),A2(0,a)
c e a
(e 1)
b y x a
c e a
(e 1)
a y x b
课外思考: x2 y2 1 的两条渐近线的夹角的正切 1.双曲线 16 25 40 值是________. 2 9 y 1 的右焦点 F2 作直线与双 2.若过双曲线 x 2 3 曲 线 的 两 支 都 相 交 , 求 直 线 l 的 倾 斜 角 的 范围 ________.
小
结
椭 圆
双曲线
方程
a b c关系
图象
2 x2 y 1 2 ( a> b >0) 2 a b
x2 y2 1 ( a> 0 b>0) 2 2 a b
c 2 a 2 b 2 (a> b>0)
y
M
c 2 a 2 b 2 (a> 0 b>0)
Y p F2 X
F1
0
F2
X
F1
0
解: 椭圆的焦点在x轴上,且坐标为
F , 0),F ( , 0) 1 (2 2 2 2 2
双曲线的焦点在x轴上,且c 2 2
3 双曲线的渐近线方程为 y x 3 b 3 ,而c 2 a 2 b 2 , a 2 b 2 8 a 3 解出 a 2 6,b 2 2 x2 y2 双曲线方程为 1 6 2
离心率e 2的双曲线是等轴双曲线
c (5) e a
c a b
2 2
2
在a、b、c、e四个参数中,知二可求 二
y x 二、导出双曲线 2 2 1(a 0, b 0) a b y 的简单几何性质
(1)范围: y a, y a
2
2
(2)对称性: 关于x轴、y轴、原点都对称
(e 1)
无
b y x a
B2
. .
B2 A2
2 2 2 2
图形
. .
F1(-c,0)
2 2
y
y
F2
F1
A1 A2
O
F2(0,c)
B1
B1 F2(c,0)
F2
x
A1 O F1
x F1(0,-c)
方程 范围 对称性 顶点 离心率 渐进线
x y 1 (a b 0) a b
2 2
2.3.2 双曲线简单的几何性质 (二)
图形
A1
.
2 2
y
B2 O
F1
.
F2
A2
x
. .
B2
y
F1(-c,0) B1 F2(c,0)
方程 范围
F1(-c,0)
2
F1
A1 A2
O
F2
B1
2
x F2(c,0)
x y 1 (a b 0) a b
2 2
x y 1 (a 0,b 0 ) a b
(3)e的含义:
b c2 a2 c 2 ( ) 1 e2 1 a a a b b 当e (1, )时, (0, ), 且e增大 , 也增大 a a e增大时,渐近线与实轴 的夹角增大
e是表示双曲线开口大小的一个量,e越大开口越大
(4)等轴双曲线的离心率e= ?2
∴ 双曲线方程为
总结: 1、“共渐近线”的双曲线的应 2 2用 x y
与
b 2 2 x y 方程为 2 2 ( 0,为参数), a b
a
2
2
1共渐近线的双曲线系
λ>0表示焦点在x轴上的双曲线; λ<0表示焦点在y轴上的双曲线。 x2 y 2 x2 y2 2、与 2 2 1共焦点的椭圆系方程是 2 2 2 1, a b m m c 2 2 x y 双曲线系方程是 2 2 1. 2 m c m
xa
x a
ya
或
或
y a
b c 关于 ( a,0) y x e 坐标 a a 轴和 (其中 原点 都对 a c 2 a 2 b2 ) 称 (0, a) y x b
例题讲解
例1 :求双曲线
9y2 16x2 144 的实半轴长,虚半轴长,
y2 x2 2 1 2 4 3
0 , 60
(120 ,180 )
备选练习:
3 x 1. 过点(1,2),且渐近线为 y 4 2 2 16 y 9 x 55 的双曲线方程是________.
2.求中心在原点,对称轴为坐标轴,经过点 P( 1,-3) 且离心率为
2
2的双曲线标准方程.
2
y x 1 8 8
课堂新授
一、研究双曲线
x2 y2 2 1(a 0, b 0) 2 a b
(-x,y)
的简单几何Байду номын сангаас质
y (x,y) o a (x,-y)
1、范围 2 x 2 2 2 1,即x a a x a, x a 2、对称性
-a (-x,-y)
x
关于x轴、y轴和原点都是对称。 x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。
法二:巧设方程,运用待定系数法 . 2 2 ⑴设双曲线方程为 x y ( 0) ,
9 16
( 3)2 (2 3)2 9 16
1 4
x2 y2 双曲线的方程为 1 9 4 4
根据下列条件,求双曲线方程: x2 y2 1 有公共焦点,且过点 (3 2 , 2) . ⑵与双曲线 16 4
2 2
a xa
b y b
x a 或 x a,y R
对称性 关于x轴、y轴、原点对称 顶点 离心率 渐进线
A1(- a,0),A2(a,0) B1(0,-b),B2(0,b)
关于x轴、y轴、原点对称
A1(- a,0),A2(a,0)
c e a
(0 e 1)
c e a
a (3 ) 利用渐近线可以较准确的 慢慢靠近 画出双曲线的草图 它与y
B2
o
A2
a x
y b x
x的位置的变化趋势 :
B1
b y x a
b y x a
5、离心率 c 双曲线的焦距与实轴长 的比e ,叫做 (1)定义: a 双曲线的 离心率。