北师版数学七年级上册第一章《丰富的图形世界》单元检测B附答案

合集下载

2022-2023学年北师大版七年级数学上册第1章 丰富的图形世界 单元测试卷含答案

2022-2023学年北师大版七年级数学上册第1章 丰富的图形世界 单元测试卷含答案

北师大版七上丰富的图形世界单元测试(共23题,共100分)一、选择题(共10题,共30分)1.(3分)下列图形中,是棱柱的是A.B.C.D.2.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“新”字一面的相对面上的字是A.代B.中C.国D.梦3.(3分)用一个平面去截一个正方体,截面可能是A.七边形B.圆C.长方形D.圆锥4.(3分)下图中的几何体从上面看到的图是A.B.C.D.5.(3分)下列几何体中,是圆锥的为A.B.C.D.6.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是A.厉B.害C.了D.我7.(3分)用一个平面去截一个圆柱体,不可能的截面是A.B.C.D.8.(3分)如图是由个小正方体组成的立体图形,它的左视图是A .B .C .D .9. (3分)下面平面图形经过折叠不能围成正方体的是A .B .C .D .10. (3分)如图,已知是圆柱底面的直径,是圆柱的高,在圆柱的侧面上,过点 , 嵌有一圈路径最短的金属丝,现将圆柱侧面沿 剪开,所得的圆柱侧面展开图是A .B .C .D .二、填空题(共5题,共15分) 11. (3分)一个棱柱有 个顶点,所有侧棱长的和是,则每条侧棱长是.12. (3分)如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字 相对面上的数字是 .13. (3分)在如图所示的几何体中,其三视图中有三角形的是_________(填序号).14. (3分)将如图所示的展开图折叠成正方体,“你”对面的数字是 .15. (3分)在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递件如图所示,则这正方体快递件最多有 件.三、解答题(共8题,共55分)16. (6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.17. (6分)如图,在一个正方体的上面、前面、右面分别标有数字 ,,. 的对面标有数字 , 的对面标有数字 , 的对面标有数字 .(1) 求与数字所在平面垂直的面的数字之积.(2) 如果与一个面垂直的面上的数字之和是,那么这个面上的数字是多少?18.(6分)观察下面由个大小相同的小正方体组成的几何体,请分别画出从正面、上面、左面看得到的平面图形.19.(6分)由几个完全相同的小立方块搭成的几何体如图所示,请在下面方格纸中分别画出这个几何体从三个不同的方向(正面、左面和上面)看到的视图.20.(6分)一个几何体由若干个完全相同的小正方体组成,下图分别是从正面和上面看到的几何体的形状图.(1) 该几何体最少需要多少个小正方体?(2) 该几何体最多可以有多少个小正方体?21.(8分)回答下列问题.(1) 如图①,一个正方体纸盒的棱长为,将它的一些棱剪开展成一个平面图形,则这个平面图形的周长为.(2) 如图②,一个长方体纸盒的长、宽、高分别,,,将它的一些棱剪开展成一个平面图形,则这个平面图形的周长的最大值是.22.(8分)如图,左边是小颖的圆柱形笔筒,右边是小彬的六棱柱形笔筒.仔细观察两个笔筒,并回答下列问题:(1) 圆柱、六棱柱各由几个面组成?它们都是平的吗?(2) 圆柱的侧面与底面相交成几条线?它们是直的吗?(3) 六棱柱有几个顶点?经过每个顶点有几条棱?(4) 试写出圆柱与棱柱的相同点与不同点.23.(9分)做一做,回答下列问题:(1) 下图中左边的图形经过折叠能围成右边的棱柱吗?(2) 这个棱柱的上、下底面一样吗?它们各有几条边?(3) 这个棱柱有几个侧面?侧面的形状是什么图形?(4) 侧面的个数与底面图形的边数有什么关系?(5) 这个棱柱有几条侧棱?它们的长度之间有什么关系?答案一、选择题(共10题,共30分)1. 【答案】D【解析】A.是三棱锥,故A错误;B.是圆柱,故B错误;C.是圆锥,故C错误;D.是三棱柱,故D正确.【知识点】认识立体图形2. 【答案】D【解析】时与中是对面,代与国是对面,新与梦是对面.【知识点】正方体相对两个面上的文字3. 【答案】C【知识点】面截体4. 【答案】C【知识点】从不同方向看物体5. 【答案】B【知识点】认识立体图形6. 【答案】D【知识点】正方体的展开图7. 【答案】D【解析】用一个平面去截一个圆柱体,轴截面是矩形;过平行于上下底面的面去截可得到圆;过侧面且不平行于上下底面的面去截可得到椭圆;不可能的截面是等腰梯形.故选D.【知识点】面截体8. 【答案】B【知识点】从不同方向看物体9. 【答案】B【知识点】正方体的展开图10. 【答案】D【解析】因圆柱的展开面为长方形,展开应该是两直线,且有公共点.【知识点】圆柱的展开图二、填空题(共5题,共15分)11. 【答案】【解析】根据以上分析一个棱柱有个顶点,所以它是六棱柱,即有条侧棱,又因为所有侧棱长的和是,所以每条侧棱长是.故答案为.【知识点】认识立体图形12. 【答案】【知识点】正方体相对两个面上的文字13. 【答案】①【知识点】从不同方向看物体14. 【答案】【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“你”与“”是相对面,“好”与“”是相对面,“”与“”是相对面.【知识点】正方体相对两个面上的文字15. 【答案】【解析】最底一层、二层最多分别有件,第三层最多有件,最上面一层最多有件,故这正方体快递件最多件数为:(件).【知识点】从不同方向看物体三、解答题(共8题,共55分)16. 【答案】从正面和从左面看到的形状图如图所示:【知识点】由立体图形到视图17. 【答案】(1)(2) 或【知识点】正方体相对两个面上的文字18. 【答案】如图所示:【知识点】从不同方向看物体19. 【答案】画视图如图所示.【知识点】从不同方向看物体20. 【答案】(1) 个.(2) 个.【知识点】由视图到立体图形21. 【答案】(1)(2)【解析】(1) 因为正方体有个表面,条棱,要展成一个平面图形必须条棱连接,所以要剪(条)棱,则这个平面图形的周长为.(2) 由题意得,只需将最长的棱都剪开,最短的棱只剪一条即可得到周长最大的展开图形.如图所示,则这个平面图形的周长的最大值为.【知识点】直棱柱的展开图、正方体的展开图22. 【答案】(1) 圆柱有个面,六棱柱有个面,圆柱有两个平面,有一个曲面,六棱柱的个面都是平面.(2) 圆柱的侧面与底面相交形成两条线,它们都是曲线.(3) 六棱柱有个顶点,经过每个顶点有条棱.(4) 圆柱与棱柱的相同点:都是柱体;不同点:棱柱与圆柱的底面形状不同,棱柱的底面是多边形,而圆柱的底面是圆形;圆柱的侧面是曲面,而棱柱的侧面是四边形.【知识点】认识立体图形23. 【答案】(1) 上图中左边的图形经过折叠能围成右边的棱柱.(2) 棱柱的上、下底面一样,它们各有五条边.(3) 这个棱柱有五个侧面,侧面的形状是长方形.(4) 侧面的个数与底面图形的边数相等.(5) 这个棱柱有五条侧棱,它们的长度相等.【知识点】认识立体图形、直棱柱的展开图。

第一章 丰富的图形世界单元测试卷(含答案与解析)

第一章 丰富的图形世界单元测试卷(含答案与解析)

【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(含答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥 C.圆台 D.长方体3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.4.圆锥的截面不可能为().A.三角形B.圆C.椭圆D.矩形5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C. D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个C.3个D.4个8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.611.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2π B.6πC.7πD.8π12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有(填编号).14.某几何体的三视图如图所示,则这个几何体的名称是_____.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.16.由几个相同的小正方体搭成一个几何体,从不同的方向看几何体所得到的图形如图所示,则组成这个几何体的小正方体的个数可能是___________个.三.解答题:(共52分)17.仔细观察图所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥18.下面图形是由小正方体木块搭成的几何体的三视图示意图,则该几何体的实物图形是什么模样的?它由多少个小正方体木块搭成.请用小木块实地操作一下吧!正视图左视图俯视图19.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)20.一间长为8米,宽为5米的房间,用半径为0.2米的圆形磨光机磨地板,不能磨到的部分的面积共多少平方米?(提示:不论房间面积多大,其四个角各有一部分不能磨到.)21. 画出下面几何体的主视图、左视图与俯视图.22.已知n棱柱中的棱长都是15 cm,且该棱柱共有16个顶点.(1)该棱柱的底面是______边形;(2)求该棱柱所有棱长的和;(3)求该棱柱侧面展开图的面积.23.用5个棱长都是1的小正方体木块摆成如图所示的几何体.(1)该几何体的体积为_______;(2)如果在该几何体的基础上,用同样的小正方体木块m块,摆成一个大正方体,则m的最小值为________;(3)如果给该几何体的表面刷漆,那么刷漆部分的面积是多少?【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥.故选B.3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:从上边看第一层是一个小正方形,第二层在第一层的上面一个小正方形,右边一个小正方形,故选:B.4.圆锥的截面不可能为().(A)三角形(B)圆(C)椭圆(D)矩形【答案】D【解析】试题分析:从圆锥的顶点沿着高切得到的截面是三角形,平行于底面切得到的截面是圆,斜着切得到的截面是椭圆,所以不可能得到矩形,故选D.5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.【分析】俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.【解答】解:其俯视图为.故选:D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:A、从正面看第一层三个小正方形,第二层中间一个小正方形;B、从正面看第一层三个小正方形,第二层中间一个小正方形;C、从正面看第一层三个小正方形,第二层右边一个小正方形、中间一个小正方形;D、从正面看第一层三个小正方形,第二层中间一个小正方形;故选:C.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【分析】四个几何体的左视图:球是圆,圆锥是等腰三角形,正方体是正方形,圆柱是矩形,由此可确定答案.【解答】解:由图示可得:球的左视图是圆,圆锥的左视图是等腰三角形,正方体的左视图是正方形,圆柱的左视图是矩形,所以,左视图是四边形的几何体是圆柱和正方体.故选B.8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.6【分析】根据从上面看得到的图形是俯视图,根据题意画出图形即可求解.【解答】解:由七个棱长为1的正方体组成的一个几何体,其俯视图如图所示;∴其俯视图的面积=5,故选C.11.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故选D.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有①②③(填编号).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.14.某几何体的三视图如图所示,则这个几何体的名称是_____.【答案】圆柱【解析】试题解析:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.【答案】(1). 12(2). 7(3). 4(4). 等边【解析】试题分析:按照如图所示的截法,截面是一个正三角形,有12条棱,顶点比原来少一个变成7个,截去的几何体是三棱锥,有4个面,截面是等边三角形。

2022年北师大版七年级数学上册第1章丰富的图形世界 单元测试题含答案

2022年北师大版七年级数学上册第1章丰富的图形世界 单元测试题含答案

2022-2023学年北师大版七年级数学上册《第1章丰富的图形世界》单元测试题(附答案)一.选择题(共10小题,满分30分)1.下列列举的物体中,与铅球的形状类似的是()A.音箱B.铅笔C.西瓜D.水杯2.如图是由5个相同的小正方体组合而成的立体图形,其主视图是()A.B.C.D.3.如图所示的几何体的面数为()A.3个B.4个C.5个D.6个4.如图是一个常见的道路警示反光锥实物图,与它类似的几何图形是()A.长方体B.正方体C.球D.圆锥5.下列图形中,含有曲面的是()A.①②B.①③C.②③D.②④6.下面的平面展开图与图下方的立体图形名称不相符的是()A.三棱锥B.长方体C.正方体D.圆柱体7.将下方如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.8.在正方体、球、圆柱、圆锥、三棱柱、五棱柱中,截面能得到长方形的有()A.3个B.4个C.5个D.6个9.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A.B.C.D.10.一个正方体的平面展开图如图所示,将它折成正方体后“广”字对面是()A.亚B.加C.运D.油二.填空题(共8小题,满分24分)11.用一个平面去截一个圆柱体,截面的形状是(填两个即可).12.如图所示的平面图形,能折叠成的几何体可能是.13.粉笔在黑板上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.14.用块棱长为1厘米的正方体木块才能拼成一个棱长是1分米的正方体模型,将这些木块排成一行,长米.15.如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是.16.如图,一个体积是100立方分米的圆柱形木料,将它平均截成四段,这些木料的表面积比原来增加了30平方分米,则所截得每段圆柱形木料的长为分米.17.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是.18.小张外出游玩时买了四盒同样的长方体的礼品(如图),长、宽、高分别为5cm,4cm,3cm,小张想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为cm2.三.解答题(共6小题,满分46分)19.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形最类似的实物(用线连接).20.如图,在平整的地面上,用多个棱长都为2cm的小正方体堆成一个几何体.(1)共有个小正方体;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.21.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有条棱,个面;(2)长方体所有棱长的和;(3)长方体的表面积.22.如果用一个平面截掉棱柱的一个角,剩下的几何体有几个顶点?几个棱?几个面?试用如表进行研究.图形顶点数(v)棱的条数(e)面的个数(f)f+v﹣e问题:(1)如果一个四棱柱被截去一个角,那么剩余几何体是一个面体;(2)如果一个四棱柱被截去一个角后,共有10个顶点,那么它的棱数是.23.如图是用6个完全相同的小正方体搭成的几何体.(1)请在网格中分别画出从正面、左面观察该几何体得到的平面图形并涂上阴影;(2)若现在还有一些相同的小正方体可添加在该几何体上,要保持这个几何体从正面和左面观察得到的平面图形不变,则最多可以添加个小正方体.24.如图两个平面展开图中,哪一个可以围成一个长方体?参考答案一.选择题(共10小题,满分30分)1.解:与铅球形状类似的是西瓜,故选:C.2.解:从几何体的正面看,一共有三列,从左到右小正方形的个数分别为3、1、1,故选:A.3.解:由图可知:此图为三棱柱,所以有2个底面,3个侧面,共有5个面.故选:C.4.解:与常见的道路警示反光锥实物图类似的几何图形是圆锥,故选:D.5.解:①不含曲面;②含有曲面;③含有曲面;④不含曲面.故选:C.6.解:选项A中的图形,折叠后形成的几何体是三棱柱,不是三棱锥,因此选项A符合题意;选项B的图形折叠后成为长方体,因此选项B不符合题意;选项C的图形折叠后成为正方体,因此选项C不符合题意;选项D的图形折叠后成为圆柱体,因此选项D不符合题意;故选:A.7.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A.8.解:在正方体、球、圆柱、圆锥、三棱柱、五棱柱中,截面能得到长方形的有正方体、圆柱、三棱柱、五棱柱,一共4个.故选:B.9.解:A、B一定重合,与A、B相邻的两个阴影一定在A所在的母线重合,而另一端一定与圆锥的底面相交,即靠近A、B两点的两个空白部分无法围成环并且紧贴底面.故选:B.10.解:这是一个正方体的平面展开图,共有六个面,其中面“广”与面“油”相对,面“亚”与面“加”相对,面“运”与面“州”相对.故选:D.二.填空题(共8小题,满分24分)11.解:用平面取截一个圆柱体,横着截时截面是椭圆或圆(截面与上下底平行).竖着截时,截面是长方形(截面与两底面垂直)或梯形.故截面的形状是长方形,圆等.12.解:观察图形,由立体图形及其表面展开图的特点可知:能折叠成的几何体可能是三棱柱.故答案为:三棱柱.13.解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.14.解:∵正方体的棱长是10厘米,∴用1000块棱长为1厘米的正方体木块才能拼成一个棱长是1分米的正方体模型,∵1000厘米=10米,∴将这些木块排成一行,长10米.故答案为:1000,10.15.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“功”是相对面,故答案是:功.16.解:设圆柱形木料的长为h分米.根据题意,得(30÷6)×h=100,解得h=20,所以所截得每段圆柱形木料的长为20÷4=5(分米).故答案为:5.17.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,故答案为:丁.18.解:如图,2×(5×6+5×8+6×8)=236(cm2)答:2个叠在一起(4×5),然后并起来(5×6),包装表面积最小,表面积的最小值为236cm2.故答案为:236.三.解答题(共6小题,满分46分)19.解:立体图形与实物相对应的情况如下:20.解:(1)根据拼图可知,堆成如图所示的几何体需要10个小正方体,故答案为:10;(2)这个组合体的三视图如图所示:因此主视图的面积为2×2×7=28(cm2),左视图为2×2×5=20(cm2),俯视图的面积为2×2×7=28(cm2),∴该组合体的表面积为(28+20+28)×2+2×2×4=168(cm2),(3)在俯视图的相应位置摆放相应数量的小正方体,使其俯视图和左视图都不变,如图所示,所以最多可以添加5个,故答案为:5.21.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4=4×4=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2=(1+2+2)×2=5×2=10(cm2).故长方体的表面积是10cm2.22.解:如图所示:图形顶点数(v)789棱的条数(e)121314面的个数(f)777f+v﹣e222(1)如果一个四棱柱被截去一个角,那么剩余几何体是一个七面体.故答案为:七;(2)如图:如果一个四棱柱被截去一个角后,共有10个顶点,那么它的棱数是15.故答案为:15.23.解:(1)这个组合体从正面、左面看所得到的图形如下:(2)原组合体的俯视图如下,在相应位置上最多添加相应数量的正方体,是从正面看,左面看到的图形不变,所以最多可以添加4个,故答案为:4.24.解:左图中下层的面缺对面,所以左图不能围成一个长方体;右图中每个面的对面相同,能能围成一个长方体.。

第一章 丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)

第一章 丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)

第一章丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A. B. C. D.2、如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A.美B.丽C.中D.国3、如图是用八块相同的小正方体搭建的几何体,它的左视图是()A. B. C. D.4、如图所示的工件,其俯视图是()A. B. C. D.5、下列各图不是正方体表面展开图的是()A. B. C. D.6、下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱7、从上面看如图中的几何体,得到的平面图形正确的是()A. B. C. D.8、下图中,主视图与俯视图不同的几何体是()A. B. C. D.9、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④10、如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A. B. C. D.11、如图,在3×3的正方形网格中,含有“梦”字的正方形的个数是()A.1个B.4个C.6个D.14个12、右图可以折叠成的几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥13、如图是一个正方体,则它的表面展开图可以是()A. B. C. D.14、下列几何体所对应的主视图中,不是中心对称图形的是()A.圆锥B.正方体C.球D.圆柱15、下列图形不是正方体展开图的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图是由若干个棱长为1的小正方体堆砌而成的几何体,那么这个几何体露在外面的面积是________.17、用一个平面去截一个三棱柱,截面图形的边数最多的为________边形.18、一个长方形绕着它的一条边旋转一周,所形成的几何体是 ________.19、写出一个从上面看与从正面看完全相同的几何体________.20、一个边长为4cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为________cm.21、一个正方体的平面展开图如右图,已知正方体相对两个面上的数之和相等,则a=________,b=________.22、如图,正方体的六个面上标着六个连续的整数,若相对的两个面上所标之数的和相等,则这6个数的和为________ .23、如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y 的值为________.24、长方体纸盒的长、宽、高分别是,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是________ .25、一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、已知如图为一几何体的三视图.(1)写出这个几何体的名称.(2)在虚线框中画出它的一种表面展开图.(3)若主视图中长方形的长为8cm,俯视图中三角形的边长为3cm,求这个几何体的侧面积.28、如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?29、一次课外活动中,小东用小刀将一个泥塑正方体一刀切下去,请你猜猜看他切下的多面体可能是哪些柱体或锥体?30、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、B5、B6、D7、B8、C9、C10、C11、C12、A13、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

北师大版2020七年级数学上册第一章丰富的图形世界自主学习能力达标测试卷B卷(附答案详解)

北师大版2020七年级数学上册第一章丰富的图形世界自主学习能力达标测试卷B卷(附答案详解)

北师大版2020七年级数学上册第一章丰富的图形世界自主学习能力达标测试卷B卷(附答案详解)1.水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.2.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,33.下面图形中为圆柱的是()A.(A)B.(B)C.(C)D.(D)4.如图给出的三视图表示的几何体是()A.圆锥B.三棱柱C.三棱锥D.圆柱5.如图是下列哪个几何体的主视图与俯视图()A.B.C.D.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱7.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我8.如图是由5个大小相同的小立方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.9.将下面的平面图形绕直线旋转一周,可以得到如图立体图形的是()A.B.C.D.10.如图,下面是一个正方体的表面展开图,则正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.西D.华11.如图所示,是一个简单几何体的三视图,则这个几何体的侧面积等于_____.12.下列说法:1:圆柱体的左视图必是一个圆;2:任意一个三角形必有一个内切圆.正确说法正确的序号是________.13.正方体有_____个顶点,经过每个顶点有_____条棱.14.根据图中几何体的平面展开图写出对应的几何体的名称.①________;②________;③________;④_________15.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是_____.16.一个正方体的六个面分别标有数字1、2、3、4、5、6,在桌子上翻动这个正方体,根据图中给出的三种情况,可知数字2的对面是数字_____.17.如图所示是小聪制作的一个正方体模型的展开图,把“读书使人进步”六个字分别粘贴在六个面上,那么在正方体模型中与“书”相对的面上的字是________.18.若圆柱的底面圆半径为3cm,高为5cm,则该圆柱的侧面展开图的面积为____________cm2.19.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面,对面的字是_____.20.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是______.21.画出如图所示几何体的三种视图.22.画出下面图形的三视图:主视图,左视图,俯视图.23.如图所示的是一个三棱柱,用一个平面先后三次截这个三棱柱.()1截得的截面能否是三个与该三棱柱的底面大小相同的三角形?若能,画图说明你的截法.()2截得的截面能否是三个长相等的长方形?若能,画图说明你的截法;()3截得的截面能否是梯形?若能.画图说明你的一种截法.24.如图是一个由多个相同的小正方形堆积而成的几何体,从上面看得到平面图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出该几何体从正面看到和从左面看到所得的平面图形.25.如图,是由个大小相同的小立方块搭成的一个几何体.请在指定位置画出该几何体从上面、左面看到的形状图;若从该几何体中移走一个小立方块,所得新几何体与原几何体相比,从上面、左面看到的形状图保持不变,请画出新几何体从正面看到的形状图.26.一个物体的正视图、俯视图如图所示,请你画出该物体的左视图并说出该物体形状的名称.27.如图,边长为acm的正方体其上下底面的对角线AC、A1C1与平面H垂直.(1)指出正方体在平面H上的正投影图形;(2)计算投影MNP的面积.28.立体图形的三视图如下,请你画出它的立体图形:左视图参考答案1.D【解析】分析:根据左视图是从物体的左面看得到的视图解答即可.详解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选D.点睛:考查简单几何体的三视图,掌握左视图是从物体的左面看得到的视图是解题的关键. 2.B【解析】【分析】由第一幅和第二幅图可判断5的对立面,由第二幅图和第三幅图可判断1的对立面.【详解】解:由第一幅和第二幅图中1和2所在面是相邻的关系可知5和4所在的面是对立面;由第二幅图和第三幅图中1和4所在面是相邻的关系可知6和2是对立面,则3和1所在的面是对立面,故选择B.【点睛】本题考查了正方体相对两个面上的文字,本题从相邻面入手进行分析.3.B【解析】【分析】圆柱特点:圆柱的底面是两个完全相等的圆,且平行,侧面是曲面.据此可以分析. 【详解】选项A上底面不是圆;选项B是圆柱;选项C上下底不是圆;选项D上下底两个圆不完全相等.故选:B【点睛】本题考核知识点:圆柱.解题关键点:认识几何体的特点.4.B【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选B.【点睛】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.5.C【解析】【分析】根据已知主视图和俯视图可得到该几何体是圆柱体的一半,即可得出正确选项.【详解】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故答案为:C.【点睛】本题考查由三视图判断几何体.关键是根据主视图,俯视图,左视图图形状判断常见几何体的类型.6.A【解析】【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【详解】观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选A.【点睛】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.C【解析】【分析】根据左视图是从左面看得到的平面图形,进而得出答案.【详解】如图所示:这个立体图形的左视图是:.故选:C.【点睛】此题主要考查了简单组合几何体的三视图知识;关键是掌握左视图所看的位置;从几何体左面看得到的平面图形.9.A【解析】试题解析:直角三角形绕直角边旋转一周得到的立体图形是圆锥,故选A.10.D【解析】解:由正方体的展开图特点可得:“建”和“华”相对;“设”和“丽”相对;“美”和“西”相对.故选D.点睛:此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.11.18【解析】由几何体的三视图可知,该几何体是底面边长为2的等边三角形、高为3的三棱柱,∴这个几何体的侧面积等于3×2×3=18,故答案为:18.【点睛】本题考查三视图、三棱柱的侧面积,考查了简单几何体的三视图的运用,解题的关键是要具有空间想象能力和基本的运算能力.12.2【解析】【分析】根据圆柱体和三角形的性质得出答案.【详解】1、圆柱体的左视图有可能是一个矩形,所以错.2、任意一个三角形必有一个内切圆.这是正确的.故答案为:2【点睛】本题比较容易,考查几何体的三视图和三角形的内切圆知识.13.8 3【解析】【分析】根据正方体的概念和特性即可解.【详解】解:正方体属于四棱柱.有4×2=8个顶点.经过每个顶点有3条棱,这些棱都相等.故答案为8,3.【点睛】本题主要考查正方体的构造特征.14.圆锥正方体三棱锥长方体【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,长方体.故答案为圆锥,正方体,三棱锥,长方体.本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.15.我【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】由图1可得:“中”和“的”相对;“国”和“我”相对;“梦”和“梦”相对;由图2可得:该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格时,“国”在下面,则这时小正方体朝上一面的字是“我”.故答案为我.【点睛】本题以小立方体的侧面展开图为背景,考查学生对立体图形展开图的认识.考查了学生空间想象能力.16.6【解析】【分析】运用正方体的相对面和图中数字位置的特点解答问题.【详解】根据题意由图可知,2与1,3,4,5相邻,则数字2的对面是数字6.故答案为:6,【点睛】此题考查了空间几何体的翻转,主要培养学生的观察能力和空间想象能力.17.步【解析】【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“书”相对的面上的字.根据正方体及其表面展开图的特点,可知:面“使”与面“进”相对,面“书”与面“步”相对,面“读”与面“人”相对,故答案为步.【点睛】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.18.30π【解析】分析:圆柱的母线长即为圆柱的高,那么圆柱侧面积=底面周长×高.详解:圆柱的侧面积=2π×3×5=30π,故答案为:30π.点睛:本题考查圆柱的侧面积计算公式,熟练套用公式:圆柱侧面积=底面周长×高.19.顺【解析】【分析】根据正方体展开成平面图规律可得:相对面之间一定相隔一个正方形,因此“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.【详解】因为正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.【点睛】本题主要考查正方体平面展开图的特征,解决本题的关键是要熟练掌握正方体平面展开图形的特征.20.的【解析】【分析】分析出6个面中,每个面的对面即可.【详解】正方体的表面展开图是6个正方形,“大”的对面是“中”,“的”的对面是“梦”,“伟”的对面是“国”.故答案为:的【点睛】本题考核知识点:正方体的表面展开图.解题关键点:分析正方体的表面展开图的情况. 21.见解析【解析】分析:该几何体的上面是一个四棱柱,下面是一个圆柱,由此能作出它的三视图.详解:该几何体的上面是一个四棱柱,下面是一个圆柱,其三视图如图所示.点睛:本题考查了几何体的三视图的画法,解题时要认真审题,注意熟练掌握基本概念.22.详见解析.【解析】【分析】主视图有4列,每列小正方形数目分别为2,1,1,1;左视图有2列,每列小正方形数目分别,2,1;俯视图有4列,每行小正方形数目分别为2,1,1,1.【详解】如图所示:【点睛】本题考查画三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23.(1)能,图示见解析;(2)能,图示见解析;(3)能,图示见解析.【解析】【分析】(1)截面与地面平行时,截面的形状与地面相同;(2)用垂直于地面的平面截几何体得到的截面可以是三个长相等的长方形;(3)用一个斜面截掉棱柱的一条棱得到的平面是梯形.【详解】()1能;如图①所示;()2能;如图②所示;()3能;如图③所示.【点睛】考查截一得到的截面几何体,解决本题的关键是理解截面经过三棱柱的几个面,得到的截面形状就是几边形.24.见解析【解析】【分析】由已知条件可知:主视图有3列,每列小正方数形数目分别为2、3、2;左视图有3列,每列小正方形数目分别为2、3、1,据此可画出图形.【详解】所画图形如所示:【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的25.见解析【解析】【分析】试题分析: (1) 观察图形可知, 从左面看到的图形是2列, 从左往右正方形个数依次是2,1; 从上面看到的图形是3列,从左往右正方形个数依次是2, 2, 1; 据此即可画图;(2) 根据从该几何体中移走一个小立方块, 所得新几何体与原几何体相比, 从左面、上面看到的形状图保持不变, 可得移走的一个小立方块是从正面看第二层第1列的底一个或第三个, 再画出主视图即可.【详解】解:如图:如图:【点睛】本题主要考查几何图形的三视图,注意画图的准确性.26.圆柱【解析】试题分析:由该物体的正视图、俯视图可得,该物体为圆柱,可得圆柱的左视图为长方形.试题解析:圆柱27.(1)矩形;(222a试题分析:(1)利用几何体的摆放角度可得正方体在平面H上的正投影图形是矩形;(2)首先利用勾股定理计算出BD长,再利用矩形的面积公式计算出投影MNPQ的面积.试题解析:解:(1)正方体在平面H上的正投影图形是矩形;(2)∵正方体边长为acm,∴BD=22+=2a(cm),∴投影MNPQ的面积为a a2a a⨯=22a(cm2).点睛:本题主要考查了简单几何体的三视图,关键是正确计算出正方体底面对角线长度.28.见解析【解析】【分析】根据三视图推出立体图形.【详解】解:如图【点睛】本题考核知识点:画立体图形.解题关键点:理解三视图各个面的关系.。

第一章 丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)

第一章 丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)

第一章丰富的图形世界数学七年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BC D.PA,PB,PC,AD2、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦3、由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.4、如图所示,从上面看该几何体的形状图为()A. B. C. D.5、在下图的四个立体图形中,从正面看是四边形的立体图形有( )A.1个B.2个C.3个D.4个6、如图是下面哪个图形的俯视图()A. B. C. D.7、三本相同的书本叠成如图所示的几何体,它的主视图是( )A. B. C. D.8、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的9、如图,从上面看该物体得到的平面图形是()A. B. C. D.10、下图中的正五棱柱的左视图应为()A. B. C. D.11、小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.12、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A.﹣1B.﹣2C.﹣3D.﹣613、右图是某个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.三棱锥14、将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体的主视图是()A. B. C. D.15、某几何体的三视图如图所示,该几何体是()A.圆锥B.圆柱C.三棱锥D.球二、填空题(共10题,共计30分)16、一个长方体的三种视图如图所示,若其俯视图为正方形,则这个长方体的表面积为________ .17、如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为________cm2.18、如图,将一个正方体截去一个角变成一个多面体,则这个多面体有________个顶点.19、如图是某几何体的三视图及相关数据,则该几何体的侧面积是________.20、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.21、一个立方体的表面展开图如图所示,将其折叠成立方体后,“步”对面的字是________.22、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是________.23、下图中的截面分别是(1)________(2)________24、如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有________.(填编号)25、如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为________.三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、如图所示的圆柱体,它的底面半径为2cm,高为6cm.(1)想一想:该圆柱体的截面有几种不同形状的平面图形?(2)议一议:你能截出截面最大的长方形吗?(3)算一算:截得的长方形面积的最大值为多少?28、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.29、将如图所示的长方体用过ABCD的平面切割,得到两个什么几何体?说出它们的名称.30、将如图中几何体的截面用阴影部分表示出来,并分别指出它们的形状.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、C5、B6、D7、B8、B9、C10、B11、C12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。

第一章《丰富的图形世界》单元检测题B

第一章《丰富的图形世界》单元检测题B

北师版七年级数学上册第一章《丰富的图形世界》单元检测题B一.选择题(共10小题)1.如图,下列图形全部属于柱体的是()A. B. C.D.2.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.4.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对5.如图的长方体是由A,B,C,D四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是()A.B.C. D.6.把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A.21 B.24 C.33 D.377.将如图所示的正方体展开,可能正确的是()A.B.C.D.8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.10.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8二.填空题(共7小题)11.如图,用棱长为a的小正方体拼成长方体,按照这样的拼法,第n个长方体表面积是.12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,﹣3,A,B,相对面上是两个数互为相反数,则A=.13.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有种.14.用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体15.如图,左边是一个由5个棱长为1的小正方体组合而成的几何图,现在增加一个小正方体,使其主视图如右,则增加后的几何体的左视图的面积为.16.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是.17.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.三.解答题(共6小题)18.推导猜测(1)三棱锥有条棱,四棱锥有条棱,五棱锥有条棱.(2)棱锥有30条棱.(3)一个棱锥的棱数是100,则这个棱锥是棱锥,面数是.19.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().20.如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和.21.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.22.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?23.由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)答案与解析一.选择题(共10小题)1.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.2.【分析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.3.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、上面小下面大,侧面是曲面,故A正确;B、上面大下面小,侧面是曲面,故B错误;C、是一个圆台,故C错误;D、下、上面一样大、侧面是曲面,故D错误;故选:A.4.【分析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.5.【分析】观察长方体,可知第四部分所对应的几何体在长方体中,前面有一个正方体,后面有三个正方体,前面一个正方体在后面三个正方体的中间.【解答】解:由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选:A.6.【分析】此题可根据表面积的计算分层计算得出红色部分的面积再相加.【解答】解:根据题意得:第一层露出的表面积为:1×1×6﹣1×1=5,第二层露出的表面积为:1×1×6×4﹣1×1×13=11,第三层露出的表面积为:1×1×6×9﹣1×1×37=17,所以红色部分的面积为:5+11+17=33.方法2:立方体俯视图9:,前后左右视图各6格,红色部分的面积为9+6×4=33.故选:C.7.【分析】根据平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.【解答】解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B、D都不符合,所以能得到的图形是C.故选:C.8.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②的位置出现重叠的面,所以不能围成正方体.故选:B.9.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.10.【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.二.填空题(共7小题)11.【分析】棱长为1厘米的正方体的一个面的面积是1平方厘米,且相邻的2个正方体拼组在一起减少了2个小正方体的面:第一个长方体的表面积是:10个小正方体的面,可以写成1×4+6;第二个长方体的表面积是:14个小正方体的面,可以写成2×4+6;第三个长方体的表面积是:18个小正方体的面,可以写成3×4+6;…则第n个长方体的表面积是:4n+6个小正方体的面.【解答】解:根据题干分析可得:第n个长方体的表面积是:4n+6个小正方体的面;小正方体的一个面的面积为:a×a=a2,所以第n个长方体的表面积为:[(n+1)×4+2]a2=(4n+6)a2.故答案为:(4n+6)a2.12.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上是两个数互为相反数解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“B”是相对面,“2”与“A”是相对面,“3”与“﹣3”是相对面,∵相对面上是两个数互为相反数,∴A=﹣2.故答案为:﹣2.13.【分析】利用正方体的展开图即可解决问题,共2种.【解答】解:如图所示,不同的选法有2处,故答案为:2.14.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截球,截面是圆,用一个平面去截圆锥或圆柱,截面可能是圆,但用一个平面去截棱柱,截面不可能是圆.故答案为:②③⑤15.【分析】首先确定增加一个立方体后的几何体的左视图,然后计算其面积即可.【解答】解:根据增加一个立方体的几何体的左视图发现增加的立方体放在了原几何体的左上角,所以其左视图为两列,左边一列有2个立方体,右边一列有1个立方体,所以其左视图的面积为3,故答案为:3.16.【分析】如图可知该几何体的正视图由6个小正方形组成,左视图是由34小正方形组成,俯视图是由6个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由6个小正方形组成,左视图是由4个小正方形组成,俯视图是由6个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图.17.【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.三.解答题(共6小题)18.【分析】(1)三棱锥侧面有3条棱,底面有3条棱,共有6条棱;四棱锥侧面有4条棱,底面有4条棱,共有8条棱;五棱锥侧面有5条棱,底面有5条棱,共有10条棱;(2)共有30条棱,那么底面有15条棱,是十五棱锥;(3)棱锥有100条棱,那么底面有50条棱,为五十棱锥,共有51个面.【解答】解:(1)三棱锥有6条棱,四棱锥有8条棱,五棱锥有10条棱.(2)十五棱锥有30条棱.(3)一个棱锥的棱数是100,则这个棱锥是五十棱锥,面数是51.故答案为:6,8,10;十五;五十,51.19.【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).20.【分析】由已知可知这六个数中一定含有4、5、6、7,所以可得出这六个数字的所有情况,可求得答案.【解答】解:∵已知三个面上的数字为4、5、7,且六个面分别标着连续的整数,∴这六个数中一定含有4、5、6、7,∴这六个数字可能为2、3、4、5、6、7;或3、4、5、6、7、8;或4、5、6、7、8、9;当这六个数为2、3、4、5、6、7时,其和为2+3+4+5+6+7=27;当这六个数为3、4、5、6、7、8时,其和为3+4+5+6+7+8=33;当这六个数为4、5、6、7、8、9时,其和为4+5+6+7+8+9=39;故答案为:27或33或39.21.【分析】根据左面与右面所标注式子的值相等,构建方程即可解决问题.【解答】解:由题意:x﹣3=3x﹣2.∴x=﹣.22.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体.【解答】解:(1)如图所示:(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;(3)最多可以再添加4个小正方体.23.【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版数学七年级上册第一章《丰富的图形世界》单元检测B
一.选择题(共12小题)
1.下列图形不是立体图形的是()
A.球B.圆柱C.圆锥D.圆
2.下列第一行所示的四个图形,每个图形均是由四种简单的图形a、b、c、d(圆、直线、三角形、长方形)中的两种组成.例如由a、b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()
A.B.C.D.
3.把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形.如果将图中标有字母A的一个小正方体搬去.这时外表含有的小正方形个数与搬动前相比
()
A.不增不减B.减少1个C.减少2个D.减少3个
4.(2015•崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()
A.的B.中C.国D.梦
5.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()
A.B.C.D.
6.过正方体中有公共顶点的三条棱的中点,切去一个三棱锥,形成如图的几何体,其展开图正确的是()
A.B.C.D.
7.如图中,几何体的截面形状是()
A.B.C.D.
8.用一平面截一个正方体,不能得到的截面形状是()
A.直角三角形B.等边三角形C.长方形D.六边形
9.将一个正方体截去一个角,则其面数()
A.增加B.不变
C.减少D.上述三种情况均有可能
10.(2015•南通)下面四个几何体中,俯视图是圆的几何体共有()
A.1个B.2个C.3个D.4个
11.(2015•丽水)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()
A.B.C.D.
12.(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()
A.B.C.D.
二.填空题(共7小题)
13.如图所示的图形绕虚线旋转一周,便能形成某个几何体,这个几何体的名称叫
做.
14.10个棱长为m的正方体摆放成如图的形状,当m=5时,这个图形的表面积
为.
15.如图,是一个正方体纸盒的展开图,若在其中的三个正方形的a、b、c内分别填入适当的数,使得它们的折成正方体后a与a的相对面上的数互为相反数,b与b的相对面上的数互为倒数,a=,b=.
16.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,先从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的共有种情况.
17.(2015•西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.
18.(2015•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.
19.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:(多填或错填得0分,少填酌情给分).
三.解答题(共8小题)
20.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?
21.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.
22.如图,长方体的每个面上都写着一个自然数,并且相对两个面所写两数之和相等.若10的对面写的是质数a,12的对面写的是质数b,15的对面写的是质数c,求ab+bc+ac﹣a2﹣b2﹣c2的值.
23.如图,左图为一个边长为4的正方形,右图为左图的表面展开图(字在外表面上),请根据要求回答问题:
(1)面“成”的对面是面;
(2)如果面“丽”在右面,面“美”在后面,面会在上面;
(3)左图中,M.N为所在棱的中点,试在右图中画出点M.N的位置;右图中三角形AMN 的面积为.
24.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:
请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)
25.下面的图形是一个物体的三视图,请画出这个物体的形状.
26.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.
27.如图是由几个小立方块所搭成几何体从正面和从上面看的形状图:这样搭建的几何体,最少、最多各需要多少个小立方块?
参考答案
一.选择题(共12小题)
1.D.2.A.3.A.4.D.5.C.6.B.7.B8.A.9.A.10.B.11.A.12.C.二.填空题(共7小题)
13.圆锥.14.900.15.﹣3;.16.4.17.球或正方体(答案不唯一).18.7.
19.①②③.
三.解答题(共8小题)
20.解:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6
21.解:这是一个正方体的平面展开图,共有六个面,
其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.
则z+3=5,y+(﹣2)=5,x+10=5,
解得z=2,y=7,x=﹣5.
故x+y+z=4.
22.解:由题意得:10+a=12+b=15+c,
∴a﹣b=2,b﹣c=3,a﹣c=5,
原式=﹣=﹣=﹣19.
故ab+bc+ac﹣a2﹣b2﹣c2之值为﹣19.
23.解:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“我”是相对面,
“爱”与“成”是相对面,
“丽”与“都”是相对面,
故答案为:爱;
(2)∵面“丽”在右面,面“美”在后面,
∴面“我”会在上面;
故答案为:我;
(3)△AMN的面积=×(4+6)×8﹣×2×4﹣×6×6,
=40﹣4﹣18,
=40﹣22,
=18.
故答案为:18.
24.解:从3个小立方体上的数可知,
与写有数字1的面相邻的面上数字是2,3,4,6,
所以数字1面对数字5面,
同理,立方体面上数字3对6.
故立方体面上数字2对4.
作图为:
25.解:如图所示:

26.解:作图如下:
27.解:搭这样的几何体最少需要8+2+1=11个小正方体,最多需要8+6+3=17个小正方体;
故最多需要17个小正方体,最少需要11个小正方体.。

相关文档
最新文档