各类地质特征描述重点

合集下载

地质勘察中的地下岩层地质特征描述

地质勘察中的地下岩层地质特征描述

地质勘察中的地下岩层地质特征描述地质勘察是指通过各种手段和方法对地壳内部构造及其上部岩石、地层、矿产资源、地下水等进行的系统观察、测定、分析和解释的一门科学。

在地质勘察中,对地下岩层的地质特征进行准确描述十分重要。

本文将介绍地质勘察中的地下岩层地质特征描述的方法和技巧。

一、岩石的物理特征描述1. 颜色:岩石的颜色可以反映其成分和形成环境。

应采用客观、准确的词语来描述颜色,如红色、灰色、黑色等。

2. 质地:岩石的质地有粗糙、平滑、致密、松散等不同的特征,可以用手感和肉眼观察进行描述。

3. 结构:岩石的结构包括层理、节理、褶皱、断层等,可以通过观察岩石表面或裸露的岩石剖面进行描述。

4. 矿物含量:岩石中的矿物含量对岩石的性质有着重要影响,可以通过观察岩石中各矿物的颗粒大小、分布情况等进行描述。

二、地层的地质特征描述1. 岩性:地层的岩性是指地层所包含的主要岩石类型。

应准确描述地层岩性,如泥岩、砂岩、灰岩等。

2. 厚度:地层的厚度是指地层的垂直厚度,可以通过钻孔、沉积剖面等方式进行测定和描述。

3. 层序:地层的层序是指地层的垂向变化规律。

可以通过观察岩石中的层面倾角、倾向、层序重复等进行描述。

4. 化石:地层中的化石可以揭示岩层的年代和古地理环境。

应准确描述化石的种类、分布情况等。

三、断层的地质特征描述1. 位移:断层的位移是指断层两侧岩块的相对移动距离。

应描述断层的位移方向和大小。

2. 走向和倾角:断层的走向是指断层线在水平面上的方向,倾角是指断层线与水平面的夹角。

应准确描述断层的走向和倾角。

3. 结构:断层的结构包括断层面、断层岩性、断层带等。

可以通过观察岩层的变形和破裂情况进行描述。

四、地下水的地质特征描述1. 含水层特征:地下水的含水层是指能够存储和输送地下水的岩石层。

应描述含水层的深度、厚度、渗透性等特征。

2. 地下水位:地下水位是指含水层中水位的高度。

可以通过观察井中的水位或地下水渗出地表形成的湿地进行描述。

各类地质特征描述.doc

各类地质特征描述.doc

(一)岩石观察描述(一)岩性描述岩性的观察描述是野外地质观察描述工作的基础,只有在详细观察岩性特征、正确确定岩石名称后,才能进一步研究其在空间上的变化及其与其他地质体的关系。

岩性描述内容:1、岩石颜色为岩石的新鲜面整体颜色(风化面颜色加括号写于新鲜面颜色之后)。

2、结构、构造侵入岩结构如粗粒、中粒、细粒、微粒、斑状、似斑状等,构造如块状、斑杂、流动、条带状等;火山岩结构如辉绿、粗玄、球粒、斑状、集块、火山角砾、凝灰等,构造如熔渣状、枕状、石泡、流纹、流线、流面、饼状、豆状等;碎屑岩结构如粗、中、细粒砂状、粉砂状、泥质结构等,并描述胶结类型、胶结成分、层理等特征;变质岩如变余结构、粒状变晶结构、鳞片变晶结构等,变余构造、片麻状、片状、千枚状、板状、条带状构造等。

3、矿物成分及结晶状态、粒度形态、含量及变化一般按主要成分在前、次要成分在后的顺序描述。

注意目估矿物含量总和不能大于 100%。

对于斑(玢)岩,先描述斑晶成分、含量、形态、大小及变化情况,后描述基质;碎屑岩、火山碎屑岩按碎屑物、胶结物的顺序描述。

4、蚀变、矿化蚀变:岩石的蚀变情况,包括蚀变部位、蚀变矿物、残留矿物;矿化:金属矿物种类、目估含量、集合体形式等。

基本要求:正确定名,切忌印象描述。

(二)岩层(岩体)观察描述在岩性观察的基础上,向周围扩大观察范围,描述岩层、岩体在空间上的总体特征。

描述内容:1、岩相划分情况;2、岩性变化及互层情况;3、层理、片理产状及变化;4、包体特征;5、化石产出情况。

基本要求:正确分层。

(三)接触关系观察描述描述不同岩层、岩体之间的相互关系。

描述内容:1、接触带类型:按接触界线的明显程度分为:急变、渐变;按成因分为:沉积(超覆)、断层、侵入(脉动、涌动)、整合、平行不整合、角度不整合等。

2、接触带特征;3、接触带侵入岩岩相变化;4、原生构造;5、内外接触带的变化特点;6、接触带产状变化基本要求:正确识别接触面类型构造特征观察描述(一)褶皱构造1、褶皱要素测量两翼的产状、褶皱枢纽产状、轴面产状、翼间角大小;2、组成褶皱的岩层岩性、新老关系等;3、几何形态注意观察描述转折端形态、各褶皱层的厚度变化、褶皱的对称性等。

普通地质知识点总结

普通地质知识点总结

普通地质知识点总结一、地球的内部结构地球的内部结构是地质学的基本内容之一。

地球内部主要分为地壳、地幔和地核。

地壳是地球最外层的部分,主要由硅酸盐矿物组成,厚度约为5-70公里。

地壳的质地比较坚硬,主要由岩石构成。

地壳的厚度随着地球表面的不同而有所变化。

地幔是地壳与地核之间的层,主要由硅氧化物和镁铁矿物组成,厚度约为2900公里。

地幔的温度和压强都比较高,能够形成地幔柱流,驱动地球板块的运动。

地核分为外核和内核,外核主要由铁、镍等金属元素组成,内核则主要由铁、镍等金属元素与一些小量的碳、硫等非金属元素组成。

地核是地球的最内层,厚度约为2200公里。

地核的温度非常高,能够维持地球的内部温度,形成地球的磁场。

二、地球的板块构造地球的板块构造是地质学的一个重要内容。

地球的外表面被划分成了若干块板块,而这些板块则以不同的速度在地球的表面上移动。

地球板块的运动导致了地壳的变形和地震的发生。

目前,地球表面上有七大陆板块和十多个小板块。

地球板块的运动是由地球内部的地幔柱流所驱动的。

地幔柱流是地幔内部的热对流造成的,能够带动地球板块进行运动。

地球板块的运动也导致了地震、火山等地质灾害的发生。

三、地球历史与地质时间尺度地质时间尺度是地质学的一个基本知识点。

地球的形成日期约为46亿年前,而地球自然演化的过程则分为了四个主要的地质时期,分别为元古代、古生代、中生代和新生代。

每一个地质时期都有其特定的地层和化石。

通过对地球不同地质时期的地层和化石的研究,地质学家能够对地球历史的演化过程进行推断和研究。

地质时间尺度的建立也为地球科学的发展提供了重要的基础。

四、地质资源地质资源是地球自然界中的各种物质、能源和矿产等。

地质资源的种类繁多,其中包括了矿产资源、水资源、燃料资源和地质遗迹等。

矿产资源是地球内部的各种矿物资源,包括有色金属、黑色金属、贵金属和非金属矿物资源等。

水资源是地球上的水资源,包括地下水、地表水和海水等。

燃料资源主要包括煤、石油和天然气等。

地质概况内容

地质概况内容

地质概况内容
地质概况是指某个地区或地理单位的地质特征和地质历史的总体描述,包括地质构造、岩性组成、地貌形态、地质时代和地质事件等。

地质构造是地球内部构造与形态的总称,主要包括地壳、地幔和地核。

地壳是地球最外层的硬壳,分为洲壳和海洋壳;地幔是地壳与地核之间的部分,由上地幔、中地幔和下地幔组成;地核位于地幔之下,分为外核和内核。

岩性组成是指地壳中的岩石的种类和特征。

常见的岩石类型包括火山岩、沉积岩和变质岩。

火山岩是由火山喷发的岩浆冷却凝固而成,如玄武岩、安山岩等;沉积岩是通过沉积作用形成的岩石,如砂岩、泥岩等;变质岩是由旧有岩石在高压和高温的条件下改变而成,如片麻岩、页岩等。

地貌形态是地表的地形特征,包括山脉、平原、高原、盆地、河流、湖泊、海洋等。

地貌形态与地质构造密切相关,如山脉常常是由地壳运动造成的地皮隆起而形成的;平原则是沉积物堆积而成。

地质时代是指地球历史上不同时期的划分。

地质时代的划分基于地质事件和化石的演化,如古生代、中生代、新生代等。

每个地质时代都有不同的地质特征和化石记录。

地质事件包括地壳运动、火山喷发、地震等。

地壳运动是地层的抬升或下沉等地壳变动,常常会导致山脉的形成;火山喷发
是地壳中岩浆的喷出,形成火山口和火山岩;地震是地壳的震动,常常与地壳运动和火山活动有关。

地质概况的了解对于资源勘探、地质灾害预防和环境保护等具有重要意义,同时也是地质科学研究的基础。

各类土的工程地质特性

各类土的工程地质特性

第四章各类土的工程地质特性一、一般土的工程地质特性一般土按粒度成分特点,常分为巨粒土、粗粒土及细粒土三大类。

巨粒土和粗粒土为无粘性土,细粒土为粘性土。

粗粒土又分为砾类土和砂类土。

巨粒土和粗粒土的工程地质性质主要取决于粒度成分和土粒排列的松密情况,这些成分和结构特性直接决定着土的孔隙性、透水性、和力学性质。

细粒土的性质取决于粒间连结特性(稠度状态)和密实度,这些都与土中粘粒含量、矿物亲水性及水和土粒相互作用有关。

砾类土和砂类土为单粒结构;细粒土为团聚结构。

二、几种特殊土的工程地质特征1、淤泥类土淤泥类土是指在静水或水流缓慢的环境中沉积,有微生物参与作用的条件形成的,含较多有机质,疏松软弱(天然孔隙比大于1,含水率大于液限)的细粒土。

孔隙比大于1.5的称为淤泥,小于1.5大于1的称为淤泥质土。

工程地质性质的基本特点:①高孔隙比,高含水率,含水率大于液限②透水性极若③高压缩性④抗剪强度很低,且与加荷速度和排水固结条件有关。

由于这类土饱水而结构疏松,所以在振动等强烈扰动下其强度也会剧烈降低,甚至液化变为悬液。

这种现象称为触变性。

同时还具有蠕变性。

淤泥类土的成分和结构是决定其工程地质性质的根本因素。

有机物和粘粒含量越多,土的亲水性越强,则压缩性越高;孔隙比越大,含水率越高,压缩性越高,强度越低,灵敏度越大,性质越差。

2、黄土黄土是一种特殊的第四纪陆相松散堆积物。

颜色多呈黄色、淡黄色或褐黄色,颗粒组成以粉粒为主,粒度大小较均匀。

天然剖面上垂直节理发育。

被水浸润后显著沉陷(湿陷性)。

一般工程地质性质:①密度小,孔隙率大②含水较少③塑性较弱④透水性较强⑤抗水性弱⑥压缩性中等,抗剪强度较高。

⑦具有湿陷性(自重湿陷和非自重湿陷)湿陷系数,自重湿陷系数3、膨胀土又称胀缩土,系指随含水量的增加而膨胀,随含水量的减少而收缩,具有明显膨胀和收缩特性的细粒土。

成分和结构特征:粘粒含量高,一般35%以上。

矿物成分以蒙脱石和伊利石为主,高岭石含量较少。

高一地理会考地形知识点

高一地理会考地形知识点

高一地理会考地形知识点地形是地球表面的形态特征,是地质活动和其他自然力量的结果。

了解地形对于理解地球的构造和地理环境具有重要意义。

1. 地球的地壳地球的地壳是地球表面的最外层,由岩石和土壤组成。

地壳分为大陆地壳和海洋地壳两种类型。

大陆地壳厚度较厚,海洋地壳则较薄。

1.1 大陆地壳大陆地壳主要由花岗岩、片麻岩和石英岩等构成。

大陆地壳的平均厚度约为35千米,最厚的地方可达到70千米左右。

大陆地壳分布在世界各大陆上,平均海拔较高,地势较为复杂。

1.2 海洋地壳海洋地壳主要由玄武岩、玄武凝灰岩和海底沉积物等构成。

海洋地壳的平均厚度约为7千米,最厚的地方仅有20千米左右。

海洋地壳分布在世界大洋中,平均海拔较低,地势相对平坦。

2. 地表形态地球表面的形态特征可以分为高原、山地、盆地、平原和丘陵等。

2.1 高原高原是地势相对平坦,相对海拔较高的地区。

高原地区多由火山喷发、河流侵蚀、地壳抬升等地质作用形成。

例如青藏高原就是世界上最大的高原,平均海拔超过4000米。

2.2 山地山地是地势较为陡峭,相对海拔较高的地区。

山地多由构造运动和侵蚀作用形成。

世界上最高的山脉是喜马拉雅山脉,峰顶海拔超过8000米。

2.3 盆地盆地是地势较为平坦,呈凹陷状态的地区。

盆地多由构造运动和沉积作用形成。

中国的塔里木盆地和四川盆地都是典型的盆地地貌。

2.4 平原平原是地势较为平坦的地区,一般由沉积作用形成。

世界上最大的平原是北方平原,位于中国、俄罗斯和蒙古国交界处。

2.5 丘陵丘陵是地势较为起伏,但不如山地陡峭的地区。

丘陵地貌多由水、风和冰的侵蚀作用形成。

英国的候鸟丘陵是著名的丘陵地区之一。

3. 地形变化地形是不断变化的,地表形态会受到地质作用和气候变化的影响而发生变化。

3.1 地壳运动地壳运动是地球表面地壳岩石由于内部地球运动所引起的变动。

地壳运动包括构造运动和地震等。

构造运动是指地壳板块和岩石层次发生的抬升、倾斜、断裂等变化,地震则是地壳的短期变化。

高考地理地表知识点

高考地理地表知识点

高考地理地表知识点地理学作为一门综合性的学科,研究地球的各个方面,其中地表是地理研究的重要内容之一。

地表是地球表面的自然和人类活动形成的地貌特征的总和,它包括陆地、水域和人类活动区域。

在高考地理考试中,地表知识点常常是重要的考查内容。

本文将从陆地、水域和人类活动区域三个方面介绍高考地理地表知识点。

一、陆地地表知识点1. 大陆板块大陆板块是地球上最大的地壳构造单元,通常指的是大陆地壳及其下面的地壳和最外部的上地幔岩石部分。

大陆板块的移动会导致地壳变动,形成山脉、高原、丘陵等地貌。

2. 山脉山脉是地表的重要地貌类型之一,是由构造力和侵蚀力作用下被抬升的地表岩石形成的高大隆起。

山脉常常由多个山岭组成,形成山脉带。

3. 高原高原是地表的另一种重要地貌类型,是由于地壳抬升而形成的平坦或轻微倾斜的地貌。

高原通常位于山脉之间,海拔较高。

4. 平原平原是地表上广阔而平坦的区域,通常由沉积物构成。

平原分为河流平原、湖泊平原、盆地平原等。

平原地区常常适宜农业发展。

二、水域地表知识点1. 海洋海洋是地球上最大的水域,占据了地球表面的绝大部分。

海洋包括五大洋和海峡、海湾、海海峡等。

海洋对地球气候和生物圈有重要影响。

2. 湖泊湖泊是地表上蓄水较为集中的区域,通常由河流沉积物、断层构造或火山活动形成。

湖泊分为淡水湖和咸水湖,有的湖泊还有特定的生态环境和生物资源。

3. 河流河流是地表水循环的重要组成部分,它将降水和地下水带回海洋。

河流对区域的水资源、交通和农田灌溉等起着重要作用。

4. 冰川冰川是地球上的重要水体,是积雪在高山地区长时间积累、压实形成的。

冰川会随着气候变化而发生融化和退缩,对全球海平面和水资源有着重要影响。

三、人类活动区域地表知识点1. 都市地表都市地表是人类活动区域中的重要部分,包括城市建筑、道路、公园、广场等。

都市地表也反映了人类经济、社会和文化发展的水平。

2. 农田和农业活动农田是农业活动的重要场所,包括耕地、田地、农作物等。

砂岩以及粉砂岩描述要点

砂岩以及粉砂岩描述要点

砂岩以及粉砂岩描述要点砂岩和粉砂岩是常见的沉积岩石,它们具有一些独特的特征和形成过程。

本文将重点描述砂岩和粉砂岩的特征、形成条件和地质意义。

首先,我们会详细介绍砂岩和粉砂岩的定义和组成;然后,我们将讨论它们的颗粒大小和形成过程;最后,我们将探讨它们在地质学中的重要作用。

一、砂岩和粉砂岩的定义和组成砂岩是由石英颗粒构成的沉积岩石,其粒径在0.0625-2毫米之间。

而粉砂岩是由石英和铁锰泥颗粒构成的,其粒径小于0.0625毫米。

这两种岩石都属于碎屑岩,是由岩石风化和侵蚀所产生的碎石颗粒沉积而成。

二、砂岩和粉砂岩的颗粒大小和形成过程砂岩的颗粒大小介于粉砂岩和砾岩之间。

根据颗粒的大小排序,砂岩可以分为细砂岩、中砂岩和粗砂岩。

颗粒大小对砂岩的性质和用途具有重要影响。

与之相比,粉砂岩的颗粒更加微小,因此其孔隙度较低,密度较高。

砂岩和粉砂岩的形成过程主要有三个阶段:侵蚀、输运和沉积。

首先,岩石在风化和侵蚀的作用下,溶解或破碎成颗粒。

然后,这些颗粒会经过水流、风力或冰川等力量的作用而运输到其他地点。

最后,在沉积盆地中,这些颗粒逐渐沉积下来,形成砂岩或粉砂岩。

这个过程需要相当长的时间,并在地质学中起着重要的地质记录作用。

三、砂岩和粉砂岩在地质学中的重要作用砂岩和粉砂岩在地质学中具有重要的意义。

首先,它们是巨大的油气和地下水储集层,其中的孔隙和裂缝可以储存和传输液体和气体。

许多油田和水井都是在砂岩和粉砂岩中形成的。

其次,砂岩和粉砂岩可以作为重要的建筑材料。

它们通常具有良好的耐久性和可塑性,可以用于建筑、修建道路和生产混凝土等方面。

另外,砂岩和粉砂岩也是古地理和古气候的重要指示物。

通过研究不同地区和不同时期的砂岩和粉砂岩特征,地质学家可以了解到过去的地壳活动、气候变化和环境演化过程。

总结起来,砂岩和粉砂岩是具有重要地质学意义的沉积岩石。

它们的特征和形成过程对于研究地质过程、储油和地下水资源以及古地理古气候变化等方面具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质观测描述1 岩石、构造(一)岩石观察描述(一)岩性描述岩性的观察描述是野外地质观察描述工作的基础,只有在详细观察岩性特征、正确确定岩石名称后,才能进一步研究其在空间上的变化及其与其他地质体的关系。

岩性描述容:1、岩石颜色为岩石的新鲜面整体颜色(风化面颜色加括号写于新鲜面颜色之后)。

2、结构、构造侵入岩结构如粗粒、中粒、细粒、微粒、斑状、似斑状等,构造如块状、斑杂、流动、条带状等;火山岩结构如辉绿、粗玄、球粒、斑状、集块、火山角砾、凝灰等,构造如熔渣状、枕状、石泡、流纹、流线、流面、饼状、豆状等;碎屑岩结构如粗、中、细粒砂状、粉砂状、泥质结构等,并描述胶结类型、胶结成分、层理等特征;变质岩如变余结构、粒状变晶结构、鳞片变晶结构等,变余构造、片麻状、片状、千枚状、板状、条带状构造等。

3、矿物成分及结晶状态、粒度形态、含量及变化一般按主要成分在前、次要成分在后的顺序描述。

注意目估矿物含量总和不能大于100%。

对于斑(玢)岩,先描述斑晶成分、含量、形态、大小及变化情况,后描述基质;碎屑岩、火山碎屑岩按碎屑物、胶结物的顺序描述。

4、蚀变、矿化蚀变:岩石的蚀变情况,包括蚀变部位、蚀变矿物、残留矿物;矿化:金属矿物种类、目估含量、集合体形式等。

基本要求:正确定名,切忌印象描述。

(二)岩层(岩体)观察描述在岩性观察的基础上,向周围扩大观察围,描述岩层、岩体在空间上的总体特征。

描述容:1、岩相划分情况;2、岩性变化及互层情况;3、层理、片理产状及变化;4、包体特征;5、化石产出情况。

基本要求:正确分层。

(三)接触关系观察描述描述不同岩层、岩体之间的相互关系。

描述容:1、接触带类型:按接触界线的明显程度分为:急变、渐变;按成因分为:沉积(超覆)、断层、侵入(脉动、涌动)、整合、平行不整合、角度不整合等。

2、接触带特征;3、接触带侵入岩岩相变化;4、原生构造;5、外接触带的变化特点;6、接触带产状变化基本要求:正确识别接触面类型构造特征观察描述(一)褶皱构造1、褶皱要素测量两翼的产状、褶皱枢纽产状、轴面产状、翼间角大小;2、组成褶皱的岩层岩性、新老关系等;3、几何形态注意观察描述转折端形态、各褶皱层的厚度变化、褶皱的对称性等。

4、从属构造观察与褶皱有成因联系的从属小构造,如小褶皱、节理裂隙、层间滑动、劈理线理的分布、型式及与褶皱的关系等。

(二)断裂构造1、构造岩的描述按岩石描述容描述。

构造角砾岩着重描述构造角砾成分、砾径大小、形态、排列形式,胶结物成分、胶结程度等;糜棱岩重点观察结构特征及矿物的变形特征等。

2、断层两盘的岩层(石)及其产状变化3、断层面产状及断层带宽度的确定。

4、断层力学性质及两盘的相对运动方向主要根据两盘地层的新老关系、牵引褶皱、擦痕、阶步、羽状节理、两侧小褶皱、断层角砾岩等确定。

5、断层组合、配置形式及其与其他构造的关系等。

6、断层的一些其他特征如负地形标志、断层三角面;断裂中的矿化蚀变现象等。

(三)节理构造1、节理产状测量。

2、节理的性质及节理面特征。

3、节理的充填情况(注意含矿性)。

4、节利与层理及大构造的关系。

5、节理的分期配套及组合型式(有重点地观察)。

(四)劈理构造1、描述劈理的性质,区分劈理的类型。

2、测量劈理与层理的产状及其夹角。

3、观测描述劈理与劈理之间的先后顺序。

4、描述劈理与其他构造的关系。

5、描述劈理域与微劈石的特征。

地质观测描述2 矿石、矿体及蚀变体一、矿石及矿(化)体特征的观察描述首先在地质点或工程中详细观察矿石、矿化特征,并进行矿石命名,在此基础上加大观察围,追索观察矿(化)体的总体特征。

(一)矿石命名原则1、凡根据有用矿物目估含量换算的有用元素含量达边界品位者,一律定为矿石,作为基本名称。

如黄铜矿≥1%(即Cu≥0.3%),则定名为××岩黄铜矿石;对于金而言,如野外快速分析Au≥1×10-6,则暂定为××岩金矿石,其他依此类推。

2、矿石中若有两种以上有用矿物,目估含量又分别达到各自的边界品位,命名时以本项目主攻矿种的矿物作为基本名称,其他矿物按“少前多后”的原则冠于基本名称之前。

但参与命名的矿物最多不得超过三种。

如黄铜金矿石、黄铁方铅闪锌矿石等。

3、当有用矿物总含量小于50%时,按原岩加有用矿物组合的原则来定名,如透辉石矽卡岩黄铜矿石、构造角砾岩金矿石等;当有用矿物总含量大于50%时,为块状矿石,原岩不参与矿石命名,如黄铁黄铜矿石、方铅闪锌矿石等。

4、为了避免矿石名称过于冗长,可将基本名称前的所有“矿”字去掉,如黄铁黄铜矿石,但在文字描述中“矿”字不能省掉。

(二)矿化命名原则1、凡含有用矿物,其中有用组分目估含量在某一界限以上又达不到边界品位时可称为矿化。

命名时以岩石名称作基本名称,其前冠以“××矿化”。

如黄铜矿化变质粉砂岩、辉锑矿化凝灰岩等。

2、有两种以上矿化时,只选两种主要的,按“少前多后”的原则冠在岩石名称之前,其余在描述中叙述。

3、参与矿化命名的有用元素目估含量围:Cu品位在0.1%≤Cu≤0.3%时,定为×铜矿化,如辉铜矿化石英砂岩;Au品位在0.3×10-6≤Cu≤1×10-6时,定为金矿化;S品位在2%≤S≤6%时,则主要含硫矿物黄铁矿或磁黄铁矿参与矿化命名;其他矿种一般以边界品位的三分之一左右数值作为矿化命名的含量下限。

(三)矿石描述顺序及容1、矿石颜色:矿石总体新鲜颜色,风化色加括号写于后。

2、结构构造:主要的放在前面,次要的放在后面。

3、矿物成分、含量及产状特征:先描述金属矿物的种类及含量百分比、集合体产状特征;后描述脉石矿物种类及其含量变化。

4、矿物共生组合:主要的(含量多的)在前,次要的在后,最后为脉石矿物,并用短线连接。

如:次黄铁矿—黄铁矿—黄铜矿—石英。

5、矿化总体特征:首先概括叙述该矿段的整体矿化程度,包括贫富、均匀程度及其与岩石、构造等的联系;其次由上到下叙述各段中金属矿物的组成、含量、产状等的变化特征。

6、矿石的次生变化。

7、有条件时根据矿物之间的交代关系,确定主要金属矿物的生成顺序,早生成的在前,后生成的在后,并用箭头依次连接。

如磁黄铁矿→黄铁矿→黄铜矿→褐铁矿、孔雀石。

矿化岩石一般先按(一)的容描述原岩特征,再按上述3—7的要求描述矿化特征。

(四)矿石的描述实例1、透辉石矽卡岩磁黄铁黄铜矿石:古铜色(褐色),半自形—他形粒状结构,浸染状构造,块状构造。

矿物成分:金属矿物有黄铜矿(2—5%),磁黄铁矿(20—25%),黄铁矿(3%);脉石矿物主要为透辉石(40—50%),石榴石(5——10%),方解石、绿泥石等。

矿物共生组合为磁黄铁矿—黄铁矿—黄铜矿。

黄铜矿呈他形粒状,星点状分布于磁黄铁矿之间,少量呈细脉状;磁黄铁矿多呈团块状粒状集合体产出,上部以块状为主,下部以团块状为主。

金属矿物矿化不均匀,上部较富,下部较贫。

矿石中可见黄铁矿、黄铜矿细脉穿插磁黄铁矿,故推测其生成顺序:磁黄铁矿→黄铁矿→黄铜矿。

局部见碳酸盐化和绿泥石化,绿泥石多沿裂隙面分布。

矿体与上盘岩石界线不清楚,呈渐变过渡关系。

2、中粒石英砂岩辉铜矿石:灰白色(紫褐色)间夹钢灰、烟灰色,他形粒状结构,浸染状构造。

金属矿物有晶质辉铜矿(5—35%)、烟灰辉铜矿(微量)、褐铁矿(2—25%),脉石矿物主要为石英,粒度自上而下由粗变细,上部强烈破碎呈角砾状。

矿化较均匀,上部强烈,呈稠密浸染状,向下减弱,呈星散状;晶质辉铜矿集合体粒径一般0.2—0.5毫米,烟灰色辉铜矿仅见于细小裂隙中;褐铁矿沿裂隙及砂岩孔隙出现。

硅化普遍,局部强烈,呈石英化;次为叶蜡石化、绢云母化。

矿段上、下与页岩界线清楚,而矿化在上、下页岩层变弱。

(五)矿(化)体特征的观察1、矿(化)体的宽度、产状的测量。

2、矿(化)体顶、底板围岩特征。

3、矿(化)体沿走向在矿化强度、矿体厚度、产状等的变化情况。

4、矿(化)体赋存构造部位、成矿后构造对矿体的影响等。

5、矿化与蚀变的组合关系。

二、围岩蚀变的观察描述1、蚀变种类:按主要蚀变矿物类型,如硅化、绢云母化、绿泥石化等;2、蚀变矿物分布特征:如蚀变矿物呈星点状分布、带状分布、面状分布等等。

3、蚀变规模及强度:面型蚀变描述其围大小如蚀变围500米×400米;带型蚀变说明蚀变带长度、宽度等。

4、蚀变分带及其与围岩的关系。

例如斑岩型矿床从斑岩体部到远离围岩具有钾化—石英绢云母化—青磐岩化的分带等。

5、蚀变与矿化关系:如蚀变强度与矿化强度具正相关关系,其中黄铜矿与绢云母化关系密切,辉钼矿化与钾化(黑云母化)关系密切等。

气成-热液蚀变类型一览表地质观测描述三三大类岩石一、沉积岩类(一)沉积岩的描述1、颜色复合色命名法:深浅度+次要色+基本色。

不准使用实物形容颜色。

2、岩层单层厚度岩层单层厚度系指岩层上下层之间的垂直厚度。

3、结构沉积岩石的结构有:巨砾结构、粗粒结构、中砾结构、细砾结构、粗粒砂状结构、中粒砂状结构、细粒砂状结构、粉砂状结构、泥质结构、火山集块结构、火山角砾结构、凝灰结构、颗粒结构、生物骨架结构、晶粒结构、泥晶结构、碎屑结构、生物屑结构、鲕粒结构、豆粒结构、球粒结构、藻粒结构、条带状结构、线理状结构、透镜状结构、均一状结构、粒状结构、木质结构、叶片状结构、纤维状结构。

4、成分石英、长石、岩屑、云母、炭屑、高岭石、水云母、蒙脱石、绿泥石、方解石、白云石、菱铁矿、黄铁矿、磁铁矿、赤铁矿、褐铁矿、晶屑、炭屑、沥青、石膏、海绿石、凝灰质。

5、分选性分选好:>75%,分选中等:60—70%,分选差:50—60%。

注:“%”系指主要粒级数量比例。

7、填充物质种类有:杂基、砂、粉砂、泥、凝灰质、钙质、铁质、硅质、泥晶基质、亮晶。

8、胶结类型沉积岩的胶结类型有:基底胶结、孔隙胶结、接触胶结。

9、结核:指成分、结构、颜色与围岩有明显差别的团块状矿物集合体。

结核按含量大小分为:少量、丰富。

结核按其成分分为:菱铁质、白云质、钙质、黄铁矿、硅质、锰质、煤核。

结核按其成因分为:同生结核、成岩结核、后生结核。

结核按其形状分为:球状、椭球状、透镜状、瘤状、不规则状。

10、包裹体:指陆源沉积物在堆积时,由于水流冲刷而包裹在沉积物中的泥质岩、粉砂岩、煤或炭质泥岩的碎块,其特点未经过分选和磨圆。

包裹体的种类有:煤、炭质泥岩、泥质岩、粉砂岩、砂岩。

11、层面构造:波痕、冲刷痕、压刻痕、负载构造、雨痕、干痕裂、生物遗迹。

12、层理构造层理类型:大型槽状交错层理、大型板状交错层理、大型楔状交错层理、羽状交错层理、小型交错层理、中型槽状交错层理、爬升波痕纹理、平行层理、水平层理、均匀层理、递变层理、脉状层理、透镜状层理、波状层理、水平互层层理、韵律层理、变形层理。

相关文档
最新文档