立体几何图形ppt模板
合集下载
Ppt课件立体几何

空间几何的计算问题
总结词
需要掌握常见的计算方法和技巧
详细描述
解决空间几何计算问题需要学生掌握常见的计算方法和技巧,如代数运算、三角 函数、平面几何等。学生需要了解这些方法的适用范围和运用技巧,以便在计算 过程中能够灵活运用,提高计算效率和准确性。
06
立体几何的发展趋势
立体几何与其他学科的交叉研究
归纳解题技巧
根据不同的题型,归纳出相应的 解题技巧,以便更快地找到解题
方法。
强化练习
通过大量的练习,可以更好地掌 握解题方法,提高解题效率。
05
立体几何的难点解析
空间几何的作图问题
总结词
空间想象能力要求高
详细描述
立体几何的作图问题需要学生具备较高的空间想象能力, 能够准确地将二维平面图形转化为三维空间图形。这需要 学生不断练习,提高自己的空间感知和想象能力。
曲面立体中,有些面是曲面,有 些面是平面。
曲面立体中,曲面之间可能相交 或平行,也可能呈弧形相切。
立体图形的对称性
立体图形具有对称性,即存在 一个或多个对称轴或对称中心 。
对称轴将立体图形分为两个或 多个相等的部分。
对称中心将立体图形旋转180 度后与原图重合。
03立体几何的应用Fra bibliotek立体几何的应用
空间几何体的性质
空间几何体具有对称性、 重心、表面积和体积等性 质。
点、线、面的关系
点与直线的关系
一个点在直线上,或者在 直线外。
点与平面的关系
一个点在平面上,或者在 平面外。
直线与平面的关系
直线在平面上,或者与平 面平行,或者与平面相交 。
空间几何的度量关系
01
02
03
立体几何全章ppt(多面体棱柱等67个 人教课标版25

复习课(二)
1、棱柱的概念、分类、性质和体积。 2 、棱锥的概念、分类、性质和体积。 例题1、如图三棱柱ABC-A1B1C1的底面是边长为a的正三角 形,顶点A1到底面各顶点之距相等,∠A1AB=45°,求此三 棱柱的侧面积和体积。 C1 解:作A1O⊥面ABC于O,则易知点O为ABC的中心, A1 取AB中点M,连OM、A M、OA, 则A1M ⊥ AB,在Rt△A1MA中, 可求A1A=√2/2a,A1M=a/2,
1
B1
C O
在Rt△A1OA中,OA=√3/3a, A ∴A1O= √6/6a, 又OA ⊥ BC,AA1 ⊥ BC(三垂线定理), ∴ BB1 ⊥ BC,故BB1C1C为矩形, ∴ S侧=2SABB1A1+SBB1C1C=(2+ √ 2)/2a2 ∴ V柱=S△ABC.A1O= √ 2/8a3。
M
GF,证AGFB为平行四边形,得 AG//BF,再证AG ⊥面CDE即可。 (2)连BD、BC, V多面体=VB-ADC+VB-CDE =
A F
B
1/3S△ACD.AB+ 1/3S△DEC.BF
√A,EB交于H,连HC,可证A为DH的中点, D 易证∠ ECD为面BCE与面ACD所成角, 故∠ ECD= 45°为所求。
B
例题2、如图三棱锥P-ABC中,PA ⊥BC,PA=BC=l, PA、PB的公垂线DE=h,求三棱锥P-ABC的体积。
P
解:连BE、EC,易证PA⊥面BEC, E ∴ VP-ABC=VP-EBC+VA-BEC A =1/3S△BEC.PE+ 1/3S△BEC.AE = 1/3S△BEC.AP=1/6hl2。 注:求体积时常进行拆分或组合。
B
1、棱柱的概念、分类、性质和体积。 2 、棱锥的概念、分类、性质和体积。 例题1、如图三棱柱ABC-A1B1C1的底面是边长为a的正三角 形,顶点A1到底面各顶点之距相等,∠A1AB=45°,求此三 棱柱的侧面积和体积。 C1 解:作A1O⊥面ABC于O,则易知点O为ABC的中心, A1 取AB中点M,连OM、A M、OA, 则A1M ⊥ AB,在Rt△A1MA中, 可求A1A=√2/2a,A1M=a/2,
1
B1
C O
在Rt△A1OA中,OA=√3/3a, A ∴A1O= √6/6a, 又OA ⊥ BC,AA1 ⊥ BC(三垂线定理), ∴ BB1 ⊥ BC,故BB1C1C为矩形, ∴ S侧=2SABB1A1+SBB1C1C=(2+ √ 2)/2a2 ∴ V柱=S△ABC.A1O= √ 2/8a3。
M
GF,证AGFB为平行四边形,得 AG//BF,再证AG ⊥面CDE即可。 (2)连BD、BC, V多面体=VB-ADC+VB-CDE =
A F
B
1/3S△ACD.AB+ 1/3S△DEC.BF
√A,EB交于H,连HC,可证A为DH的中点, D 易证∠ ECD为面BCE与面ACD所成角, 故∠ ECD= 45°为所求。
B
例题2、如图三棱锥P-ABC中,PA ⊥BC,PA=BC=l, PA、PB的公垂线DE=h,求三棱锥P-ABC的体积。
P
解:连BE、EC,易证PA⊥面BEC, E ∴ VP-ABC=VP-EBC+VA-BEC A =1/3S△BEC.PE+ 1/3S△BEC.AE = 1/3S△BEC.AP=1/6hl2。 注:求体积时常进行拆分或组合。
B
空间几何体的结构课件(共46张PPT)

S
C
B
D
A
四棱锥:S-ABCD
P
Q C
B
D
A
×
其他的三棱锥底面的平面去截棱锥,底面与 截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面
分别叫做棱台的下底面和上底面。
侧面:原棱锥的侧面也叫做棱台的侧面
(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱
形 状 与 大 小
空间几何体 如果我们只考虑物体的形状和大小,而不考虑其它因素, 那么由这些物体抽象出来的空间图形就叫做空间几何体。
你能把这些几何体 分成两类么?
多面体: 若干个平面多边形围成的几何体
面----围成多面体的各个多边形 棱----相邻两个面的公共边 顶点-----棱与棱的公共点
(截后剩余部分)。
D’
D A’
顶点:上底面和侧面,下底面和侧面
的公共点叫做棱台的顶点。
侧棱 A
上
顶点
底
C’ 面
B’
侧C面
下底面
B
棱台的表示:用表示底面的各顶点的
字母表示。 如:棱台ABCD-
A底’面B是’C三’角D形’,四边形,五边形----的棱台分
别叫三棱台,四棱台,五棱台---
练习:下列几何体是不是棱台,为什么?
B1
C1
B1
C1
A1
B1 A
BC
A1
D1
A
B
A
D
5、判断下列几个命题中的对错
⑴有两个面平行,其余各面都是四边形的几何体叫棱柱 ( × )
⑵有两个面平行,其余各面都是平行四边行的几何体叫棱柱( × )
⑶ 有一个面是多边形,其余各面都是三角形的几何体叫棱锥( × )
立体几何全章ppt(多面体棱柱等67个 人教课标版44

直线 与平面平行
——何才连
• 一:阅读辅导: • 1:直线与平面的位置关系有哪些?并说明其
异同点。 • 2:掌握线面平行判定定理和性质定理的内容, 理解其推导过程,并注意相应的基本图形。 • 3:用符号表示线面平行的判定定理和性质定 理。 • 4:线面平行的判定定理有哪些方法?
二:练习 1、判断正误: ①过平面外一点有且只有一条直线与 平面平行。 ②如果一条直线和一平面平行,则这条 直线和平面内的任意直线平行。 ③平面外一条直线上有两点到平面的距 离相等,这条直线平行于该平面。 ④平行于同一平面的两直线平行。
如图所示。
G P
B Q A H C
Dቤተ መጻሕፍቲ ባይዱ
• 例2:已知:平面α∩平面β=b,
a∥α,a∥β。 求证:a∥b
α
a
B
A
●
m
b
β
●
n
例3:已知空间四形边ABCD,E,F,G,H分 别为AB,CD,DA上的点,若四边形EFGH是 平行四边形,则有直线AC∥平面EFGH且直 线BD∥平面EFGH。
A
H
E
D B G C
①转化思想
②由已知想性质,由求证想判断
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
立体几何全章PPT优秀课件(多面体棱柱等67个) 46

――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
(2)相等的斜线段的射影相等,较长的斜 线段的射影也较长
(3)垂线段比任何一条斜线段都短
练习
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
(2)相等的斜线段的射影相等,较长的斜 线段的射影也较长
(3)垂线段比任何一条斜线段都短
练习
基本立体图形 立体几何初步PPT课件(第一课时棱柱、棱锥、棱台的结构特征)

点叫做棱柱的顶点. (2)棱柱的分类及表示:根据底面多边形的 边数 分为三棱柱(底面是三角形)、四棱柱
(底面是四边形)……,例如底面是五边形的棱柱可表示为五棱柱 ABCDE-A′B′C′D′E′.
必修第一册·人教数学B版
(3)特殊的棱柱: 直棱柱:侧棱 垂直 于底面的棱柱; 斜棱柱:侧棱 不垂直 于底面的棱柱; 正棱柱:底面是 正多边形 的 直 棱柱; 平行六面体:底面是 平行四边形 的四棱柱.
必修第一册·人教数学B版
返回导航 上页 下页
8.1 基本立体图形 第一课时 棱柱、棱锥、棱台的结构特征
必修第一册·人教数学B版
返回导航 上页 下页
内容标准
学科素养
1.了解空间几何体的分类及其相关概念. 2.理解棱柱、棱锥、棱台的定义,知道这三种几何体的结构特 征,能够识别和区分这些几何体.
数学抽象 直观想象
必修第一册·人教数学B版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第一册·人教数学B版
返回导航 上页 下页
[教材提炼] 知识点一 空间几何体 预习教材,思考问题 (1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点? [提示] 围成它们的每个面都是平面图形,并且都是平面多边形. (2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点? [提示] 围成它们的面不全是平面图形,有些面是曲面.
(底面是四边形)……,其中三棱锥又叫四面体.
棱锥用表示顶点和底面各顶点的字母来表示,例如三棱锥可表示为:三棱锥 S-ABC.
(3)特殊的棱锥 正棱锥:底面是 正多边形 ,并且顶点与底面中心的连线 垂直 于底面的棱锥.
(底面是四边形)……,例如底面是五边形的棱柱可表示为五棱柱 ABCDE-A′B′C′D′E′.
必修第一册·人教数学B版
(3)特殊的棱柱: 直棱柱:侧棱 垂直 于底面的棱柱; 斜棱柱:侧棱 不垂直 于底面的棱柱; 正棱柱:底面是 正多边形 的 直 棱柱; 平行六面体:底面是 平行四边形 的四棱柱.
必修第一册·人教数学B版
返回导航 上页 下页
8.1 基本立体图形 第一课时 棱柱、棱锥、棱台的结构特征
必修第一册·人教数学B版
返回导航 上页 下页
内容标准
学科素养
1.了解空间几何体的分类及其相关概念. 2.理解棱柱、棱锥、棱台的定义,知道这三种几何体的结构特 征,能够识别和区分这些几何体.
数学抽象 直观想象
必修第一册·人教数学B版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第一册·人教数学B版
返回导航 上页 下页
[教材提炼] 知识点一 空间几何体 预习教材,思考问题 (1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点? [提示] 围成它们的每个面都是平面图形,并且都是平面多边形. (2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点? [提示] 围成它们的面不全是平面图形,有些面是曲面.
(底面是四边形)……,其中三棱锥又叫四面体.
棱锥用表示顶点和底面各顶点的字母来表示,例如三棱锥可表示为:三棱锥 S-ABC.
(3)特殊的棱锥 正棱锥:底面是 正多边形 ,并且顶点与底面中心的连线 垂直 于底面的棱锥.
8.1.1《基本立体图形》课件(共37张PPT)

明矾晶体
问题7:观察棱台,构成它的面有什么特点? 与棱锥有何关系?
1.定义:用一个平行于棱锥底面的平面去截棱锥,底 面与截面之间的部分是棱台.
2. 分类:由三棱锥,四棱锥,五棱锥,……截得的棱 台,分别叫做三棱台,四棱台,五棱台,……
3.表示: 棱台ABCD-A1B1C1D1
DD’ AD A’
A
➢围成多面体的各个多边形 叫多面体的面;
➢相邻两个面的公共边 叫多面体的棱;
➢棱和棱的公共点 叫多面体的顶点;
问题4:一般地,怎样定义旋转体?
轴
由一个平面图形绕它所在平面内的 一条定直线旋转所形成的封闭几何体 叫做旋转体
问题5:观察下列棱柱,它们共同的特点是什么? 你能给出棱柱的定义吗?
D1
C1
两个互相平行的平面叫做棱柱的底面,其
余各叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
2、棱柱的结构特征
如何描述下图的几何结构特征?
棱柱
有两个面互相平行,其余各面 都是四边形,并且每相邻两个面的 公共边都平行,由这些面所围成的 几何体叫棱柱.
E′ F′ A′
D′ C′
棱柱的底面可以是三角形、四边形、五边形……我们 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……
课堂练习:
1. 下面的几何体中,哪些是棱柱?
P 106第8题
2.如图,长方体
ABCD ABCD
中被截去一部分,其中 EH//BC//FG 截去的几何体是什么? 剩下的几何体是什么?
HC
A
E
G
B
F
A
D
HC
C C’
上底面
B
侧棱
问题7:观察棱台,构成它的面有什么特点? 与棱锥有何关系?
1.定义:用一个平行于棱锥底面的平面去截棱锥,底 面与截面之间的部分是棱台.
2. 分类:由三棱锥,四棱锥,五棱锥,……截得的棱 台,分别叫做三棱台,四棱台,五棱台,……
3.表示: 棱台ABCD-A1B1C1D1
DD’ AD A’
A
➢围成多面体的各个多边形 叫多面体的面;
➢相邻两个面的公共边 叫多面体的棱;
➢棱和棱的公共点 叫多面体的顶点;
问题4:一般地,怎样定义旋转体?
轴
由一个平面图形绕它所在平面内的 一条定直线旋转所形成的封闭几何体 叫做旋转体
问题5:观察下列棱柱,它们共同的特点是什么? 你能给出棱柱的定义吗?
D1
C1
两个互相平行的平面叫做棱柱的底面,其
余各叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。 侧面与底的公共顶点叫做棱柱的顶点。
2、棱柱的结构特征
如何描述下图的几何结构特征?
棱柱
有两个面互相平行,其余各面 都是四边形,并且每相邻两个面的 公共边都平行,由这些面所围成的 几何体叫棱柱.
E′ F′ A′
D′ C′
棱柱的底面可以是三角形、四边形、五边形……我们 把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……
课堂练习:
1. 下面的几何体中,哪些是棱柱?
P 106第8题
2.如图,长方体
ABCD ABCD
中被截去一部分,其中 EH//BC//FG 截去的几何体是什么? 剩下的几何体是什么?
HC
A
E
G
B
F
A
D
HC
C C’
上底面
B
侧棱
《高一立体几何三视图》课件

构建三维物体。
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
领导者处理与下属关系
邢朵朵
领导者与下属关系的重要性 他们之间的关系既是决定领导 者影响力的前提条件,也是影 响领导行为有效性的重要因素。
他们的“无能”之能 刘备,从一个卖草席的破落皇族起家, 在关羽、张飞、赵云、诸葛亮等武将 谋士的追随下,成就了三国鼎立之势。
宋江,为人仗义,好结交 朋友,ቤተ መጻሕፍቲ ባይዱ及时雨的绰号闻 名。在众梁山好汉中,无 论武功、智谋、胆略都不 算出众,却赢得了好汉们 的普遍认可,坐上梁山的 第一把交椅。
唐僧,手无缚鸡之力,在 三个本领高强的徒弟的追 随下,取得西天真经。
为什么以上的三位领导者可以获得这 些能人志士的追随? 他们是怎么处理与下属的关系的?
领导者处理与下属关系的原则: 1.以身作则 2.尊重下属人格 3.相互利益 4.积极激励 5.沟通授权 6.民主参与
领导者缩短与下属心理距离的 策略和方法: 1.深入了解下属的行为动机 2.重视下属尊重的需要 3.正确对待下属的过失行为