正态分布 - 复旦大学精品课程共42页

合集下载

《正态分布》教学课件(2024)

《正态分布》教学课件(2024)

2024/1/29
4
正态分布定义及特点
特点
分布的形状由标准差决定,标准 差越小,曲线越陡峭;标准差越 大,曲线越平缓。
定义:正态分布是一种连续型概 率分布,描述了许多自然现象的 概率分布情况。在统计学中,正 态分布又被称为高斯分布。
2024/1/29
曲线呈钟形,对称于均值,且均 值、中位数和众数相等。
正态分布在实际问题中解 决方案
2024/1/29
24
问题背景描述
2024/1/29
实际问题中,很多数据分布情况呈现出一种钟型曲线, 即正态分布。 正态分布在自然界、社会科学、工程技术等领域都有广 泛应用。
掌握正态分布的性质和参数估计方法,对于解决实际问 题具有重要意义。
25Βιβλιοθήκη 解决方案设计思路确定问题背景和数据来源,对数据进行 收集和整理。
02
正态分布是一种连续型概率 分布,具有钟形曲线特征。
03
正态分布的概率密度函数由 均值和标准差决定。
29
关键知识点总结回顾
正态分布具有对称性 、可加性和稳定性等 重要性质。
标准正态分布是均值 为0、标准差为1的正 态分布。
2024/1/29
标准正态分布及其性 质
30
关键知识点总结回顾
标准正态分布的概率密度函数具有标准形式,便于计算和分析。
如果数据符合正态分布,则可以利用正 态分布的性质和参数估计方法,对数据
进行建模和分析。
2024/1/29
利用统计分析方法,对数据进行描述性 统计和推断性统计,判断数据是否符合 正态分布。 根据建模结果,对实际问题进行解释和 预测,提出相应的解决方案。
26
具体实施步骤和结果展示

正态分布优质课课件

正态分布优质课课件
创设情景,引入新课
你见过高尔顿板吗 ? 图2. 4 1 所示的就是一块高尔顿 板示意 图.在一块木板上钉上若干 排相 互平行但相互错开的圆柱 形小 木块,小木块之间留有适当的空 隙作为通道, 前面挡有一块玻璃. 图2.4 1 让一个小球从高尔顿板 上方的 通道口落下,小球在下落过 程中 . 与层层小木块碰撞, 最后掉入高尔顿板下方的某一球槽内
正态曲线下的面积规律
X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
m
正态曲线下的面积规律
对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
m
x2 x1
5、特殊区间的概率:
若X~N
( m , s 2 ),则对于任何实数a>0,概率
m + a
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
a
b
2、正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
P(a X b) m ,s ( x)dx
a
b
则称为X 的正态分布. 正态分布由参数μ、σ唯一确定. 正态分布记作N( μ,σ2).其图象称为正态曲线.
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)

正态分布ppt课件统计学

正态分布ppt课件统计学
详细描述
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象

正态分布(第3课时)(课件)高二数学精品课堂(沪教版2020选择性)

正态分布(第3课时)(课件)高二数学精品课堂(沪教版2020选择性)
词了.例如,我们常提起学生的考试成绩是不是正态分布,
某个城市的家庭收入是不是正态分布,等等.那么,究竟什
么是正态分布呢?平日所说的正态分布,大体上是指数据对
称地分布在某个中心值两边,且离中心值越远,分布得越少
一包米的外包装上标示的 5 0 0 0 g,但实际上是有误差的.假设包
装米的公司没有故意偷工减料,计量员精确地检测所有在售的该种米,
大?(结果精确到0.1%)
解用x表示糖果质量,由题意,可知X ~N
(500, 2.52).要求|X -500|>5的概率,
X 500
即求(|
P
X -500|>5)的值.令Y=
则Y ~N
(0.1).因此,有
2.5
即误差超过5g的可能性约是%.
例6 设X为任取的某袋有包装误差的产品的质量,X~N(μ,σ2).
分别求|X-μ|<σ,|X-μ|<2σ及|X-μ|<3σ的概率.
(结果精确到0.1%)
解令
那么P(|X-μ|<σ)=P(|Y|<1).而P(|Y|<1)是标准正
态分布的密度函数在区间(-1,1)上的面积,它等于函数在区间
(-∞,1)上的面积减去在区间(-∞,-1)上的面积.这样,就

同样,
因此,随意购买一袋该产品,约有68.3%的可能性其质量在μ左
也可以通过某些型号的计算器来查它或者它的反函数的值,如
容易验证y=φ(x)是一个偶函数,所以该函数在区间
(-∞,-r)上的面积等于其在区间(r,+∞)上的面积,如
图7-3-5所示.此外,由于y=φ(r)与r轴所围面积为1,因此
y=Φ(r)满足
如果X~N(μ,σ2),那么将X 平移再伸缩后将服从标准正
右σ的范围内;约有95.4%的可能性其质量在μ左右2σ的范围内;

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

正态分布完整ppt课件

正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。

正态分布分布ppt课件

正态分布分布ppt课件

通过样本数据可以估计总体的均值、方差等 参数,进而对总体进行推断和分析。
假设检验
质量控制
在假设检验中,通常需要比较样本数据与某 个理论分布的差异,中心极限定理提供了理 论依据。
在工业生产等领域中,可以利用中心极限定 理对产品质量进行监控和预测。
03
正态分布在各领域应用举例
自然科学领域应用
1 2
描述自然现象的概率分布 正态分布可以描述许多自然现象的概率分布情况, 如身高、体重、智商等的分布情况。
根据显著性水平和自由度 确定t分布的临界值,进 而确定拒绝域。
将计算得到的t统计量与 拒绝域进行比较,若t统 计量落在拒绝域内,则拒 绝原假设,否则接受原假 设。
配对样本t检验原理及步骤
01
02
03
04
05
原理:配对样本t检验是 提出假设:设立原假设 用于比较同一组受试者 (H0)和备择假设 在两个不同条件下的测 (H1),原假设通常为 量值是否存在显著差异 两个测量值的均值相等。 的统计方法。它基于正 态分布假设和配对设计, 通过计算t统计量来推断 两个测量值的差异是否 显著。
设立原假设(H0)和备择假 设(H1),原假设通常为样 本均值等于总体均值。
计算t统计量,公式为t=(样 本均值-总体均值)/标准误, 其中标准误=样本标准差/根 号n。
根据显著性水平和自由度确 定t分布的临界值,进而确 定拒绝域。
将计算得到的t统计量与拒 绝域进行比较,若t统计量 落在拒绝域内,则拒绝原假 设,否则接受原假设。
06
非参数检验在处理非正态数据 时应用
非参数检验方法简介
非参数检验的概念
非参数检验是一种基于数据秩次的统计推断方法,它不依赖于总 体分布的具体形式,因此适用于处理非正态数据。

正态分布 课件

正态分布 课件

[一点通] 解答此类问题的关键在于充分利用正态 曲线的对称性,把待求区间内的概率向已知区间内的概 率进行转化,在此过程中注意数形结合思想的运用.
3.若随机变量X~N(μ,σ2),则P(X≤μ)=________.
解析:若随机变量 X~N(μ,σ2),则其正态密度曲 线关于 x=μ 对称,故 P(X≤μ)=12. 答案:12
1.设有一正态总体,它的概率密度曲线是函数 f(x)的图象,

f(x)=
1 8πe
(
x
10 )2 8
,则这个正态总体的均值与标准差
分别是
()
A.10 与 8
B.10 与 2
C.8 与 10
D.2 与 10
解析:由正态曲线 f(x)=
1 2πσe
(
x )2 8
知,
2πσ= 8π, μ=10,
即 μ=10,σ=2.
[例3] (10分)据调查统计,某市高二学生中男生的身高 X(单位:cm)服从正态分布N(174,9).若该市共有高二男生3 000人,试估计该市高二男生身高在(174,180)范围内的人数.
[思路点拨] 因为μ=174,σ=3,所以可利用正态分布 的性质可以求解.
[精解详析] 因为身高X~N(174,9),
4.设随机变量X服从正态分布N(2,9),若P(X>c+1)= P(X<c-1),则c=________.
解析:∵μ=2,P(X>c+1)=P(X<c-1), ∴c+1+2 c-1=2,解得 c=2. 答案:2
5.若X~N(5,1),求P(5<X<7).
解:∵X~N(5,1),∴μ=5,σ=1. 因为该正态曲线关于 x=5 对称, 所以 P(5<X<7)=12P(3<X<7)=12×0.954 4=0.477 2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档