2007陕西西安中考数学试卷
2003年陕西省中考数学试卷(含解析)

2003年陕西省中考数学试卷一、选择题1、陕西省元月份某一天的天气预报中,延安市的最低气温为-6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低()A.8℃B.-8℃C.6℃D.2℃2、如果两圆半径分别为3和7,圆心距为4,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切3、地球上的陆地面积约为149 000 000千米2,用科学记数法表示为()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千米24、方程(x+1)2=9的解是()A.x=2 B.x=-4C.x1=2,x2=-4 D.x1=-2,x2=-45、把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.6、香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图,这个图形()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形7、为了保护生态环境,我县积极响应国家退耕还林号召,将某地方一部分耕地改为林地改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各为多少平方千米,设耕地面积x平方千米,林地面积为y平方千米,根据题意列出如下四个方程组,其中正确的是()A.B.C.D.8、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形9、要做甲乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为:50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架一共有()A.1种B.2种C.3种D.4种10、晚饭后,郑大爷出去散步,如图描述了他散步过程中离家的距离s(米)与散步所用时间t(分)之间的关系,依据图象,下面的描述符合郑大爷散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,就找朋友去了,13分后才开始返回二、填空题11、计算:-1+(3.14)0+2-1=__________.12、在△ABC中,∠C=90°,若tanA=,则sinA=__________ .13、如图,AB是⊙O的直径,C、D、E是⊙O上的点,则∠1+∠2= __________ 度.14、某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:那么这20名男生鞋号数据的平均数是__________,中位数是__________,在平均数、中位数和众数中,鞋厂最感兴趣的是__________.鞋号23.5 24 24.5 25 25.5 26人数 3 4 4 7 1 115、计算2003的算术平方根时,现有如下三个方案,请你只选择其中一个方案填空:方案一:用双行显示科学记算器求:先按动键ON/C,再依次按键(或或按开平方键)、.方案二:用单行显示科学记算器求:先按动键,再依次按键(或或按开平方键).方案三:查算表(数学用表)计算:下表是平方根表的一部分,依据下表,得**(填多个空的,只要一个正确,给满分).__________.16、如图梯子AB靠在墙上,梯子的底端A到墙根C的距离为2米,梯子的顶端B到地面的距离为7米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根C的距离等于3米,同时梯子的顶端B下降至B′,那么BB′①等于1米②大于1米③小于1米.其中正确结论序号是__________.三、解答题17、先化简,再求值,其中.18、解方程:-8=0.19、设x1、x2是关于x的方程x2-(m-1)x-m=0(m≠0)的两个根,且满足+=-,求m的值.20、如图,在梯形ABCD中,已知AD∥BC,BC=BD,AD=AB=4cm,∠A=120°,求梯形ABCD的面积.21、已知反比例函数的图象经过点A(-2,3).(1)求出这个反比例函数的解析式;(2)经过点A的正比例函数y=k′x的图象与反比例函数的图象还有其它交点吗?若有,求出交点坐标;若没有,说明理由.22、为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度,于是,他测量了一套课桌、凳上对应四档的高度,得到如下数据见下表:档次第一档第二档第三档第四档高度凳高 x(cm) 37.0 40.0 42.0 45.0桌高y(cm)70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现桌高y是凳高x的一次函数,请你写出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套,并说明理由.23、如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连接ED.(1)求证:直线ED是⊙O的切线;(2)连接EO交AD于点F,求证:EF=2FO.24、如图,在直角坐标系中,以点A(,0)为圆心,以为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.(1)求D点坐标.(2)若B、C、D三点在抛物线y=ax2+bx+c上,求这个抛物线的解析式.(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.25、在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下-丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数 3 4 5 6 …正多边形每个内角的度数…(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.2003年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:本题是列代数式求值问题,正确列出减法算式,然后根据法则求解即可.试题解析:因为求延安市的最低气温比西安市的最低气温低多少,可用西安市的最低气温-延安市的最低气温.即2-(-6)=2+6=8.故选A.2、答案:B试题分析:根据两圆半径与圆心距之间的关系求解.试题解析:∵两圆半径分别为3和7,圆心距为4,7-3=4,∴两圆内切.故选B.3、答案:C试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.试题解析:149 000 000=1.49×108千米2.故选:C.4、答案:C试题分析:方程(x+1)2=9,把左边看成一个整体,利用数的开方直接求解.试题解析:∵x+1=±3,∴x1=2,x2=-4.故选C.5、答案:B试题分析:分别求出各个不等式的解集,再求出这些解集的公共部分即可.试题解析:解不等式①,得x>-1,解不等式②,得x≤1,所以不等式组的解集是-1<x≤1.故选:B.6、答案:D试题分析:根据轴对称图形和中心对称图形的概念求解.试题解析:区徽图案(紫荆花)是通过基本图案依次旋转72°得到的,所以既不是轴对称图形,也不是中心对称图形.故选D.B试题分析:关键描述语是:林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%.等量关系为:林地面积+耕地面积=180;耕地面积=林地面积×25%.根据这两个等量关系,可列方程组为B.试题解析:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组故选:B.8、答案:D试题分析:本题有助于提高学生的动手及立体思维能力.由折叠过程可得,该四边形的对角线互相垂直平分,则将①展开后得到的平面图形是菱形.故选D.9、答案:C试题分析:根据相似图形的定义,直接判断,求得正确结果.试题解析:三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选C.B试题分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.试题解析:从图中看,有一段时间内函数图象与x轴平行,说明时间在增加,而路程没有增加,C、D中没有停留,所以排除C、D.与x轴平行后的函数图象表现为随时间的增多路程又在增加,排除A.故选B.二、填空题11、答案:试题分析:根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.试题解析:原式=-1+1+=.故答案为.12、答案:试题分析:根据tanA=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出sinA的值.试题解析:在Rt△ABC中,∠C=90°,∵tanA==,∴设a=x,则b=2x,则c==x.∴sinA===.13、答案:试题分析:由图可知,∠1+∠2所对的弧正好是个半圆,因此∠1+∠2=90°.试题解析:连接AC,则∠ACB=90°,根据圆周角定理,得∠ACE=∠2,∴∠1+∠2=∠ACB=90°.故答案为:90.14、答案:试题分析:根据众数与中位数的定义求解分析.25出现的次数最多为众数,第10、11个数的平均数为中位数.试题解析:平均数==24.55.观察图表可知:有7人的鞋号为25,人数最多,即众数是25;中位数是第10、11人的平均数,即24.5;鞋厂最感兴趣的是使用的人数,即众数.故填24.55;24.5;众数.15、答案:试题分析:本题要求同学们能熟练应用计算器,会用科学记算器进行计算.试题解析:根据方案2利用计算器解得44.75.故本题答案为:44.7516、答案:试题分析:利用勾股定理求得AB长,进而求得CB′求解.由勾股定理得:梯子AB=,CB′=.∴BB′=7-<1,故选③.三、解答题17、答案:试题分析:先除后减,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分;做减法运算时,应是同分母,可以直接通分.最后把数代入求值.试题解析:===;当x=时,原式===.18、答案:试题分析:方程的两个分式具备平方关系,设,则原方程化为y2-2y-8=0.用换元法转化为一元二次方程先求y,再求x.结果需检验.试题解析:令,得y2-2y-8=0,即(y-4)(y+2)=0,解得y1=4,y2=-2.当y1=4时,,解得x1=-;当y2=-2时,,解得x2=-.经检验x1=-,x2=-都是原方程的根.∴原方程的根是x1=-,x2=-.19、答案:试题分析:本题是对根的判别式与根与系数关系的综合考查,因为方程有两个实数根,所以△=b2-4ac≥0,求出m的取值范围,然后根据+=,即可得到关于m的方程然后求解.试题解析:∵△=(m+1)2≥0,∴对于任意实数m,方程恒有两个实数根x1,x2.又∵x1+x2=m-1,x1x2=-m,且m≠0,∴+=-,∴=-,∴=-,∴3m-3=2m∴m=3.20、答案:试题分析:作梯形的高,根据等腰三角形的性质可以求得各个角的度数,作高后,进一步发现30度的直角三角形.根据30度的直角三角形的性质求得该梯形的高和下底,再根据面积进行计算.试题解析:如图,作AE⊥BC于E,作DF⊥BC于F,∴AE∥DF又∵AD∥BC,且∠A=120°,∴∠ABC=60°,AE=DF,∵AB=AD=4,∴∠ABD=∠ADB=∠DBC=30°在Rt△ABE中,得AE=AB•cos30°=4×=2,在Rt△BDF中,BD=2DF=2AE=4∴BC=BD=4∴S梯形ABCD=(AD+BC)•AE=(12+4)cm2.21、答案:试题分析:(1)把点A的坐标代入即可求解;(2)根据正比例函数和反比例函数构成的图形的中心对称性,显然它们的交点应关于原点对称.试题解析:(1)∵点A(-2,3)在y=的图象上,∴3=,∴k=-6;∴反比例函数的解析式为y=-;(2)有.∵正、反比例函数的图象均关于原点对称,且点A在它们的图象上,∴A(-2,3)关于原点的对称点B(2,-3)也在它们的图象上,∴它们相交的另一个交点坐标为(2,3).22、答案:试题分析:(1)设y=kx+b,利用表中的数据,建立方程组,即可求解.(2)令(1)中的x=43.5,求出y值,进行比较,作出判断即可.试题解析:(1)设桌高y与凳高x的关系为y=kx+b(k≠0),依题意得.解得k=1.6,b=10.8∴桌高y与凳高x的关系式为y=1.6x+10.8(2)不配套.理由如下:当x=43.5时,y=1.6×43.5+10.8=80.4∵80.4≠77∴该写字台与凳子不配套.23、答案:试题分析:(1)连接OD,只需证明OD⊥DE.根据正方形的性质得到AE=AD,则∠ADE=45°.又∠ADO=45°则证明了结论;(2)作OM⊥AB于M.根据平行线分线段成比例定理进行证明.试题解析:证明:(1)连接OD.∵四边形ABCD为正方形,AE=AB.∴AE=AB=AD,∠EAD=∠DAB=90°,∴∠EDA=45°,∠ODA=45°,∴∠ODE=∠ADE+∠ODA=90°,∴直线ED是⊙O的切线.(2)作OM⊥AB于M,∵O为正方形的中心,∴M为AB中点,∴AE=AB=2AM,AF∥OM,∴=2,∴EF=2FO.24、答案:试题分析:(1)连接AD,构造直角三角形解答,在直角△ADO中,OA=,AD=2,根据勾股定理就可以求出AD的长,求出D的坐标.(2)求出B、C、D的坐标,用待定系数法设出一般式解答;(3)求出抛物线交点坐标,连接AP,则△APM是直角三角形,且AP等于圆的半径,根据三角函数就可以求出AM的长,已知OA,就可以得到OM,则M点的坐标可以求出;同理可以在直角△BNM中,根据三角函数求出BN的长,求出N的坐标,根据待定系数法就可以求出直线MN的解析式.将交点坐标代入直线解析式验证即可.试题解析:(1)连接AD,得OA=,AD=2∴OD===3∴D(0,-3).(2)由B(-,0),C(3,0),D(0,-3)三点在抛物线y=ax2+bx+c上,得,解得∴抛物线为.(3)连接AP,在Rt△APM中,∠PMA=30°,AP=2∴AM=4∴M(5,0)∵∴N(0,-5)设直线MN的解析式为y=kx+b,由于点M(5,0)和N(0,-5)在直线MN上,则,解得∴直线MN的解析式为∵抛物线的顶点坐标为(,-4),当x=时,y=∴点(,-4)在直线上,即直线MN经过抛物线的顶点.25、答案:试题分析:(1)利用正多边形一个内角=180-求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.。
2023年陕西省中考数学真题试卷及答案

2023年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的).1.计算:35-=( ) A. 2B. 2-C. 8D. 8-2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.如图,l AB ∥,2A B ∠=∠.若1108∠=︒,则2∠的度数为( )A. 36︒B. 46︒C. 72︒D. 82︒4.计算:233162xy x y ⎛⎫⋅-= ⎪⎝⎭( ) A. 453x y B. 453x y - C. 363x y D. 363x y - 5.在同一平面直角坐标系中,函数y ax =和y x a =+(a 为常数,a<0)的图象可能是( )A. B.C. D.6.如图,DE 是ABC ∆的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A.132B. 7C.152D. 87.陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”( 图②)的形状示意图.AB 是O 的一部分,D 是AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB .已知24AB =cm,碗深8cm CD =,则O 的半径OA 为( )A. 13cmB. 16cmC. 17cmD. 26cm8.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图像经过点(06),.其对称轴在y 轴左侧,则该二次函数有( ) A. 最大值5 B. 最大值154 C. 最小值5 D. 最小值154二、填空题(共5小题,每小题3分,计15分).9.如图,在数轴上,点A 点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是 .10.如图,正八边形的边长为2,对角线AB ,CD 相交于点E .则线段BE 的长为___.11.点E 是菱形ABCD 的对称中心,56B ∠=︒,连接AE ,则BAE ∠的度数为___.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上.点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.13.如图,在矩形ABCD 中,3AB =,4BC =.点E 在边AD 上,且3ED =,M ,N 分别是边AB ,BC 上的动点,且BM BN =,P 是线段CE 上的动点,连接PM ,PN .若4PM PN +=.则线段PC 的长为___.三、解答题(共13小题,计81分.解答应写出过程).14.解不等式:3522x x ->.15.(131()27--+-.16.化简:23121111a a a a a -⎛⎫-÷⎪--+⎝⎭. 17.如图.已知锐角ABC ∆,48B ∠=︒,请用尺规作图法,在ABC ∆内部求作一点P .使PB PC =.且24PBC ∠=︒.(保留作图痕迹,不写作法)18.如图,在ABC ∆中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.19.一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3,这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为 . (2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.20.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价. 21.一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =.当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F ,D ,B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈22.经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m 处的直径)越大.树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为0.2m 时,树高为20m .这种树的胸径为0.28m 时,树高为22m . (1)求y 与x 之间的函数表达式.(2)当这种树的胸径为03m .时,其树高是多少? 23.某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64,通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是 . (2)求这20个数据的平均数.(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.24.如图,ABC ∆内接于O ,45BAC ∠=︒,过点B 作BC 的垂线,交O 于点D ,并与CA 的延长线交于点E ,作BF AC ⊥,垂足为M ,交O 于点F .(1)求证:BD BC =. (2)若O 的半径3r =,6BE =,求线段BF 的长.25.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度12m ON =,拱高4m PE =.其中,点N 在x 轴上,PE ON ⊥,OE EN =.方案二,抛物线型拱门的跨度8m ON '=,拱高6m P E ''=.其中,点N '在x 轴上,P E O N ''''⊥,O E E N ''''=.要在拱门中设置高为3m 的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中.矩形框架ABCD 的面积记为1S ,点A,D 在抛物线上,边BC 在ON 上.方案二中,矩形框架A B C D ''''的面积记为2S ,点A ','D 在抛物线上,边B C ''在ON '上.现知,小华已正确求出方案二中,当3m A B ''=时,22S =,请你根据以上提供的相关信息,解答下列问题: (1)求方案一中抛物线的函数表达式.(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较1S ,2S 的大小. 26.(1)如图②,在OAB ∆中,OA OB =,120AOB ∠=︒,24AB =.若O 的半径为4,点P 在O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:90A ABC AED ∠=∠=∠=︒,10000m AB AE ==.6000m BC DE ==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为30m 的圆型环道O .过圆心O ,作OM AB ⊥,垂足为M ,与O 交于点N .连接BN ,点P 在O 上,连接EP .其中,线段BN ,EP 及MN 是要修的三条道路.要在所修道路BN ,EP 之和最短的情况下,使所修道路MN 最短,试求此时环道O 的圆心O 到AB 的距离OM 的长.2022年陕西省中考数学真题试卷一、选择题共8小题,每小题只有一个选项是符合题意的)1. 37-的相反数是( ) A. 37-B. 37C. 137-D.1372. 如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A. 120︒B. 122︒C. 132︒D. 148︒3. 计算:()2323x x y⋅-=( )A. 336x yB. 236x y -C. 336x y -D. 3318x y 4. 在下列条件中,能够判定ABCD 为矩形的是( )A. AB AC =B. AC BD ⊥C. AB AD =D. AC BD = 5. 如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A.B. C. D. 6. 在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A. 15x y =-⎧⎨=⎩ B.13x y =⎧⎨=⎩ C. 31x y =⎧⎨=⎩ D. 95x y =⎧⎨=-⎩7. 如图,ABC 内接于②,46O C ∠=︒,连接OA ,则OAB ∠=( )A. 44︒B. 45︒C. 54︒D. 67︒8. 已知二次函数y =x 2−2x −3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当−1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A. 123y y y << B. 213y y y <<C. 312y y y <<D. 231y y y <<二、填空题(共5小题)9. 计算:3=______.10. 实数a ,b 在数轴上对应点的位置如图所示,则a ______b -.(填“>”“=”或“<”)11. 在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为______米.12. 已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______. 13. 如图,在菱形ABCD 中,4,7AB BD ==.若M,N 分别是边AD BC 、上的动点,且AM BN =,作,ME BD NF BD ⊥⊥,垂足分别为E,F ,则ME NF +的值为______.三、解答题(共13小题,解答应写出过程)14. 计算:015(3)|7⎛⎫⨯-+- ⎪⎝⎭. 15. 解不等式组:()21531x x x +>-⎧⎨--⎩16. 化简:212111a a a a +⎛⎫+÷⎪--⎝⎭.17. 如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)18. 如图,在②ABC 中,点D 在边BC 上,CD =AB ,DE ②AB ,②DCE =②A .求证:DE =BC .19. 如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B,C 的对应点分别是B C '',.(1)点A,A'之间的距离是__________;'''.(2)请在图中画出A B C20. 有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是______;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21. 小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O,C,D,F,G五点在同一直线上,A,B,O三点在同一直线上,且AO②OD,EF②FG.已知小明的身高EF为1.8米,求旗杆的高AB.22. 如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23. 某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在__________组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数. 24. 如图,AB 是②O 的直径,AM 是②O 的切线,AC ,CD 是②O 的弦,且CD AB ⊥,垂足为E ,连接BD 并延长,交AM 于点P .(1)求证:CAB APB ∠=∠;(2)若②O 的半径5,8r AC ==,求线段PD 的长.25. 现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A,B 处分别安装照明灯.已知点A,B 到OE 的距离均为6m ,求点A,B 的坐标. 26. 问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________. 问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O,E ,求四边形OECA 的面积. 问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:②以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ; ②作CD 的垂直平分线l ,与CD 于点E ;②以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △. 请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.2021年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分每小题只有一个选项是符合题意的)1. 计算:()32⨯-=( ) A. 1B. -1C. 6D. -62. 下列图形中,是轴对称图形的是( )A. B.C. D.3. 计算:()23a b -=( )A.621a b B. 62a bC.521a b D. 32a b -4. 如图,点D,E 分别在线段BC ,AC 上,连接AD ,BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A. 60°B. 70°C. 75°D. 85°5. 如图,在菱形ABCD 中,60ABC ∠=︒,连接AC ,BD ,则ACBD的值为( )A.12B.2C.D.6. 在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m的值为()A. -5B. 5C. -6D. 6AC=, 7. 如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若6cm⊥,则线段CE的长度为()CD BCA. 6 cmB. 7 cmC.D. 8cm8. 下表中列出的是一个二次函数的自变量x与函数y的几组对应值:下列各选项中,正确的是A. 这个函数的图象开口向下B. 这个函数的图象与x轴无交点C. 这个函数的最小值小于-6x>时,y的值随x值的增大而增大D. 当1二、填空题(共5小题,每小题3分,计15分)9. 分解因式:32++=______.69x x x10. 正九边形一个内角的度数为______.11. 幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.12. 若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y ,2y 的大小关系是1y ______2y (填“>”,“=”或“<”) 13. 如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为______.三、解答题(共13小题,计81分解答应写出过程)14.计算:0112⎛⎫-+ ⎪⎝⎭15. 解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩16. 解方程:213111x x x --=+-. 17. 如图,已知直线12l l //,直线3l 分别与1l ,2l 交于点A ,B .请用尺规作图法,在线段AB 上求作点P ,使点P 到1l ,2l 的距离相等.(保留作图痕迹,不写作法)18. 如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.19. 一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.20. 从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.21. 一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测∠为30°,由于B,D两点间的距离不易测得,通过量知识测较长钢索AB的长度,他们测得ABD∠恰好为45°,点B与点C之间的距离约为16m.已知点B,C,D共线,探究和测量,发现ACD⊥.求钢索AB的长度.(结果保留根号)AD BD22. 今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为______,众数为______;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18②~21②的范围内(包含18②和21②)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.23. 在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ; (2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.24. 如图,AB 是O 的直径,点E,F 在O 上,且2BF BE =,连接OE ,AF ,过点B 作O 的切线,分别与OE ,AF 的延长线交于点C,D .(1)求证:COB A ∠=∠;(2)若6AB =,4CB =,求线段FD 的长.25. 已知抛物线228y x x =-++与x 轴交于点A,B (其中A 在点B 的左侧),与y 轴交于点C .(1)求点B,C 的坐标;(2)设点C '与点C 关于该抛物线的对称轴对称在y 轴上是否存在点P ,使PCC '△与POB 相似且PC 与PO 是对应边?若存在,求点P 的坐标;若不存在,请说明理由. 26. 问题提出(1)如图1,在ABCD 中,45A ∠=︒,8AB =,6AD =,E 是AD 的中点,点F 在DC 上且5DF =求四边形ABFE 的面积.(结果保留根号) 问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上建一个五边形河畔公园ABCDE 按设计要求,要在五边形河畔公园ABCDE 内挖一个四边形人工湖OPMN ,使点O,P,M,N 分别在边BC ,CD ,AE ,AB 上,且满足22BO AN CP ==,AM OC =.已知五边形ABCDE 中,90A B C ∠=∠=∠=︒,800m AB =,1200m BC =,600m CD =,900m AE =.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN ?若存在,求四边形OPMN 面积的最小值及这时点N 到点A 的距离;若不存在,请说明理由.2023年陕西省中考数学真题试卷答案一、选择题.1. B2. C3. A4. B5. D6. C7. A8. D二、填空题.9.10. 2+解:如图,过点F 作FG AB ⊥于G ,由题意可知,四边形CEGF 是矩形,ACE △,BFG ∆是等腰直角三角形,2AC CF FB EG ====在Rt ACE 中,2AC =,AE CE =2AE CE AC ∴===同理BG =2BE EG BG ∴=+=+故答案为:2+11. 62°解:如图,连接BE点E 是菱形ABCD 的对称中心,56ABC ∠=︒∴点E 是菱形ABCD 的两对角线的交点AE BE ∴⊥,1282ABE ABC ∠=∠=︒ 9062BAE ABE ∴∠=︒-∠=︒.故答案为:62︒.12. 18y x=解:②四边形OABC 是矩形②3OC AB ==设正方形CDEF 的边长为m②CD CF EF m ===②2BC CD =②2BC m =②()3,2B m ,()3,E m m + 设反比例函数的表达式为k y x=②()323m m m ⨯=+解得3m =或0m =(不合题意,舍去)②()3,6B②3618=⨯=k②这个反比例函数的表达式是18y x =故答案为:18y x =.13. 解:3DE AB CD ===CDE ∆∴是等腰直角三角形作点N 关于EC 的对称点N ',则N '在直线CD 上,连接PN ',如图:4PM PN +=.4PM PN BC '∴+==,即4MN '=此时M ,P ,N '三点共线且MN AD '∥,点P 在MN '的中点处2PM PN '∴==PC ∴=故答案为:三、解答题.14. 5x <-15. 1-16. 11a - 17. 解:如图,点P 即为所求.18. 证明:在ABC ∆ 中,50B ∠=︒,20C ∠=︒180110CAB B C ∴∠=︒-∠-∠=︒.AE BC ⊥.90AEC ∴∠=︒.110DAF AEC C ∴∠=∠+∠=︒DAF CAB ∠∠∴=.在DAF ∆和CAB △中AD AC DAF CAB AF AB =⎧⎪∠=∠⎨⎪=⎩②()SAS DAF CAB ≅.DF CB ∴=.19. (1)12 (2)716【小问1详解】由题意可得,数字1,1,2,3中,数字1有2个所以,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为2142= 故答案为:12. 【小问2详解】树状图如下:由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种 ∴摸出的这两个小球上标有的数字之积是偶数的概率716. 20. 8元解:设该文具店中这种大笔记本的单价是x 元,则小笔记本的单价是()3x -元 由题意可得()46362x x +-=解得:8x =.答:该文具店中这种大笔记本的单价为8元.21. 4.8m解:过点E 作EH AB ⊥,垂足为H由题意得:EH FB =, 1.6m EF BH ==设m EH FB x ==在Rt AEH △中,26.6AEH ∠=︒tan 26.60.5(m)AH EH x ∴=⋅︒≈(0.5 1.6)m AB AH BH x ∴=+=+CD FB ⊥,AB FB ⊥90CDF ABF ∴∠=∠=︒CFD AFB ∠=∠CDF ABF ∴∽ ∴CD DF AB BF= ∴1.8 2.4AB x= 34AB x ∴= ∴30.5 1.64x x =+ 解得: 6.4x =3 4.8(m)4AB x ∴== ∴该景观灯的高AB 约为4.8m .22. (1)2515y x =+(2)22.5m【小问1详解】解:设()0y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩解之,得2515k b =⎧⎨=⎩②2515y x =+.【小问2详解】当0.3m x =时,()250.31522.5m y =⨯+=.②当这种树的胸径为0.3m 时,其树高为22.5m .23. (1)54,见解析(2)50(3)15000个【小问1详解】由题意得,201964n =---=补全频数分布直方图如下:这20个数据中,54出现的次数最多,故众数为54.故答案为:54.【小问2详解】()1281544523665020x =⨯+++=. ∴这20个数据的平均数是50.【小问3详解】所求总个数:5030015000⨯=个.∴估计这300棵西红柿植株上小西红柿的总个数是15000个. 24. (1)见解析(2)【小问1详解】证明:如图,连接DC则45BDC BAC ∠=∠=︒BD BC ⊥9045BCD BDC ∴∠=︒-∠=︒BCD BDC ∴∠=∠.BD BC ∴=.【小问2详解】如图,90DBC ∠=︒CD ∴为O 的直径26CD r ∴==.sin 62BC CD BDC ∴=⋅∠=⨯=EC ∴===BF AC ⊥90BMC EBC ∴∠=∠=︒BCM BCM ∠=∠ΔΔBCM ECB ∴∽. ∴BC BM CM EC EB CB==BC EB BM EC ⋅∴===22BC CM EC ===连接CF ,则45F BDC ∠=∠=︒,45MCF ∠=︒MF MC ∴==BF BM MF ∴=+=25. (1)21493y x x =-+ (2)218m ,12S S >【小问1详解】解:由题意知,方案一中抛物线的顶点()64P ,设抛物线的函数表达式为()264y a x =-+ 把()00O ,代入得:()20064a =-+ 解得:19a =-②()2211464993y x x x =--+=-+. ②方案一中抛物线的函数表达式为21493y x x =-+. 【小问2详解】解:在21493y x x =-+中,令3y =得:214393x x =-+ 解得3x =或9x =②()936m BC =-=②()213618mS AB BC ⋅=⨯==.②18>②12S S >.26. (1)4(2)4047.91m解:(1)如图②,连接OP ,OM ,过点O 作OM AB '⊥,垂足为M '则OP PM OM +≥. O 半径为444PM OM OM ∴≥'≥--OA OB =.120AOB ∠=︒30A ∴∠=︒tan3012tan30OM AM ∴=︒''⋅=︒=44PM OM ∴≥-='∴线段PM 的最小值为4.(2)如图②,分别在BC ,AE 上作()30BB AA r m '==='连接A B '',B O ',OP ,OE ,B E '.OM AB ⊥,BB AB '⊥,ON BB ='∴四边形BB ON '是平行四边形.'BN B O ∴=.B O OP PE B O OE B E ++≥+'≥''BN PE B E r ∴+≥-'∴当点O 在B E '上时,BN PE +取得最小值.作O ',使圆心O '在B E '上,半径()30m r =作O M AB ''⊥,垂足为M ',并与A B ''交于点H . ②O H A E ''∥∴②B O H ''∽②B EA '' ∴O H B H EA B A '''=''O '在矩形AFDE 区域内(含边界)∴当O '与FD 相切时,B H '最短即()'100006000304030m B H =-+=,此时,O H '也最短. M N O H ''='M N ∴''也最短.()()100003040304017.91m 10000EA B H O H B A -'''''⨯⋅∴=== ()304047.91m O M O H '∴+='='∴此时环道O 的圆心O 到AB 的距离OM 的长为4047.91m .2022年陕西省中考数学数学真题试卷答案一、选择题1. B2. B3. C4. D5. D6. C7. A8. B二、填空题9. 2-10. <11. 1)12. y=2 x -13.2三、解答题14. 16-+15. 1x≥-16. 1a+17. 解:如图,射线CP即为所求作.18. 证明:②DE②AB②②EDC=②B.又②CD =AB ,②DCE =②A②②CDE ②②ABC (ASA).②DE =BC .19. 【小问1详解】解:由(23)A -,,(23)A ',得 A,A '之间的距离是2-(-2)=4.故答案为:4.【小问2详解】解:由题意,得103-1B C ''(,),(,)如图,A B C '''即为所求.20. (1)25(2)见解析,15 【小问1详解】解:所选纸箱里西瓜的重量为6kg 的概率是25 故答案为:25; 【小问2详解】解:列表如下:由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg的结果有4种.②41205P==.21. 解:②AD②EG②②ADO=②EGF.又②②AOD=②EFG=90°②②AOD②②EFG.②AO OD EF FG=.②1.820152.4EF ODAOFG⋅⨯===.同理,②BOC②②AOD.②BO OC AO OD=.②15161220AO OCBOOD⋅⨯===.②AB=OA−OB=3(米).②旗杆的高AB为3米.22. (1)8 (2)26 kb=⎧⎨=⎩(3)3-【小问1详解】当x=1时,y=8×1=8;故答案为:8;【小问2详解】将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩ 解得26k b =⎧⎨=⎩; 【小问3详解】令0y =由8y x =,得08x =,②01x =<.(舍去)由26y x =+,得026x =+,②31x =-<.②输出的y 值为0时,输入的x 值为3-.23. (1)C (2)112分钟 (3)912人24. (1)见解析 (2)323 【小问1详解】证明:②AM 是O 的切线②90BAM ∠=︒.②CD AB ⊥②90CEA ∠=︒②AM CD .②CDB APB ∠=∠.②CAB CDB ∠=∠②CAB APB ∠=∠.【小问2详解】解:如图,连接AD .②AB 为直径②②ADB =90°②90CDB ADC ∠+∠=︒.②90,CAB C CDB CAB ∠+∠=︒∠=∠②ADC C ∠=∠.②8AD AC ==.②210AB r ==②6BD ==.②②BAP =②BDA =90°,②ABD =②PBA②ADB PAB △∽△. ②AB BD PB AB=. ②21005063AB PB BD ===. ②5032633DP =-=. 25.1)29(5)925y x =--+(2)(5(5A B -【小问1详解】依题意,顶点(5,9)P设抛物线的函数表达式为2(5)9y a x =-+将(0,0)代入,得20(05)9a =-+.解之,得925a =-. ②抛物线的函数表达式为29(5)925y x =--+. 【小问2详解】令6y =,得29(5)9625x --+=.解之,得125,533x x =+=-+.②(5(5A B +. 26. (1)75︒(2 (3)符合要求,理由见解析【小问1详解】解:AC AP =ACP APC ∴∠=∠2()180ACD PCD CAP ∠+∠+∠=︒2(60)30180PCD ∴⨯︒+∠+︒=︒解得:15PCD ∠=︒75ACP ACD PCD ∴∠=∠+∠=︒75APC ∴∠=︒故答案为:75︒;【小问2详解】解:如图1,连接BP .②,AP BC AP BC AC ==∥②四边形ACBP 是菱形.②6BP AC ==.②120ACB ∠=︒②60PBE ∠=︒.②l BC ⊥②cos603,sin 60BE PB PE PB =⋅︒==⋅︒=②12ABC S BC PE =⋅=△ ②30ABC ∠=︒②tan 30OE BE =⋅︒=②122OBE S BE OE =⋅=△.②ABC OBE OECA S S S =-=△△四边形. 【小问3详解】解:符合要求.由作法,知AP AC =.②,45CD CA CAB =∠=︒②90ACD ∠=︒.如图2,以AC CD 、为边,作正方形ACDF ,连接PF .②AF AC AP ==.②l 是CD 的垂直平分线②l 是AF 的垂直平分线.②PF PA =.②AFP 为等边三角形.②60FAP ∠=︒②30PAC ∠=︒②15BAP ∠=︒.②裁得的ABP △型部件符合要求.2021年陕西省中考数学真题试卷答案一、选择题1. D2. B3. A4. B5. D6. A7. D8. C二、填空题9. ()23x x +10. 140°11. -212. <13. 1+ 三、解答题14. 15. 1x <- 16. 12x =- 17. 略18. 略19. 这种服装每件的标价是110元20. (1)12;(2)1621. ()16m22. (1)19.5,19;(2)20;(3)20天.23. (1)1;(2)458y x =-+;(3)13.5min24. (1)略;(2)32525. (1)()4,0B ,()0,8C ;(2)存在,()0,16P 或160,3P ⎛⎫ ⎪⎝⎭.26. (1(2)存在符合设计要求的四边形OPMN 面积的最小值为2470000m ,这时,点N 到点A 的距离为350m .。
2007年陕西省初中毕业生学业考试

2007年陕西省初中毕业生学业考试数学模拟试卷(十七)(本卷共三个大题,考试时间:120分钟;全卷满分120分)6个小题,每题3分,满分18分)1、-31=2、函数y=2-x 的自变量取值范围是3、观察下列各式:212212+=⨯, 323323+=⨯, 434434+=⨯, 545545+=⨯…想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为 4、如果反比例函数y=xk的图象经过点P (-3,1)那么k= 5、如果一个角的补角是1200,那么这个角的余角是6、如图:AB ∥CD ,直线EF 分别交AB 、CD 于E ∠1=720,则∠2= A B 二、选择题:(本大题共8个小题,每小题4分,满分32分)7、下列计算正确的是( ) A 、(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4x B 、(x+y )(x 2+y 2)=x 3+y 3 C 、(-4a -1)(4a -1)=1-16a 2 D 、(x -2y )2=x 2-2xy+4y 2 8、把x 2-1+2xy+y 2的分解因式的结果是( )A 、(x+1)(x -1)+y(2x+y)B 、(x+y+1)(x -y -1)C 、(x -y+1)(x -y -1)D 、(x+y+1)(x+y -1) 9、已知关于x 的方程x 2-2x+k=0有实数根,则k 的取值范围是( ) A 、k <1 B 、k ≤1 C 、k ≤-1 D 、k ≥110、某电视台举办的通俗歌曲比赛上,六位评委给1号选手的评分如下:90 96 91 96 95 94这组数据的众数和中位数分别是( )A 、94.5,95B 、95,95C 、96,94.5D 、2,9611、面积为2的△ABC ,一边长为x,这边上的高为y,则y 与x 的变化规律用图像表示大致是( )12、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧;(5)两圆的公切线最多有4条,其中正确结论的个数为( ) A 、1个B 、2个C 、3个D 、4个13、已知:如图梯形ABCD 中,AD ∥BC ,AB=DC,,AC 与BD 相交于点O ,那么图中全等三角形共有( )对。
2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
2007年陕西初中毕业生学业考试

2007年陕西省初中毕业生学业考试数学模拟试卷(六)班级: 姓名: 座号: 评分:一、 选择题(每小题2分,共20分) 1、︱-32︱的值是( )A 、-3B 、3C 、9D 、-9 2、下列二次根式是最简二次根式的是( ) A 、21B 、8C 、7D 、以上都不是 3、下列计算中,正确的是( ) A 、X 3+X 3=X6B 、a 6÷a 2=a 3C 、3a+5b=8abD 、(—ab)3=-a 3b 34、1mm 为十亿分之一米,而个体中红细胞的直径约为0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为( )A 、7.7×103mm B 、7.7×102mm C 、7.7×104mm D 、以上都不对 5、如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )6、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2=( ) A 、500B 、60C 、450D 、以上都不对7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。
8、下列各式中,能表示y 是x 的函数关系式是( )A 、y=x x -+-12B 、y=x3C 、y=x x21- D 、y=x ±9、如图5,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A 、43 B 、53 C 、54 D 、34 10、在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )二、 填空题(每小题2分,共20分)11、(-3)2-(л-3.14)0= 。
2024年陕西省中考数学试题(含解析)

2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.3-的倒数是()A.3B.13 C.13- D.3-2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B. C. D.3.如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为()A.25︒B.35︒C.45︒D.55︒4.不等式()216x -≥的解集是()A.2x ≤ B.2x ≥ C.4x ≤ D.4x ≥5.如图,在ABC 中,90BAC ∠=︒,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有()A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点()2,A m 和点(),6B n -,若点A 与点B 关于原点对称,则这个正比例函数的表达式为()A.3y x = B.3y x =- C.13y x = D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为()A .2 B.3 C.52 D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,x…4-2-035…y …24-8-03-15-…则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9.分解因式:2a ab -=_______________.10.小华探究“幻方”时,提出了一个问题:如图,将0,2-,1-,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.12.已知点()12,A y -和点()2,B m y 均在反比例函数5y x=-的图象上,若01m <<,则12y y +________0.13.如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.三、解答题(共13小题,计81分。
23年陕西中考数学试卷

选择题
下列数中,是无理数的是:
A. 3/4
B. √2(正确答案)
C. -1
D. 0
在平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是:
A. (-2,-3)
B. (2,-3)(正确答案)
C. (-2,3)
D. (3,2)
已知等腰三角形的两边长分别为3和5,则它的周长为:
A. 8
B. 11
C. 13(正确答案)
D. 11或13
函数y = -2x + 1的图象不经过:
A. 第一象限
B. 第二象限(正确答案)
C. 第三象限
D. 第四象限
下列计算正确的是:
A. 3a + 2b = 5ab
B. a6 ÷ a3 = a2
C. (a2)3 = a6(正确答案)
D. 2a-2 = 1/4a2
若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:
A. -1
B. 0
C. 1(正确答案)
D. 2
下列图形中,既是轴对称图形又是中心对称图形的是:
A. 等边三角形
B. 平行四边形
C. 正方形(正确答案)
D. 梯形
已知圆O的半径为5cm,圆心O到直线l的距离为4cm,则直线l与圆O的位置关系是:
A. 相离
B. 相切
C. 相交(正确答案)
D. 无法确定
在比例尺为1:10000的地图上,测得某两地的距离为3cm,则这两地的实际距离为:
A. 3m
B. 30m
C. 300m(正确答案)
D. 3000m。
07年中考全真试题及答案北师

O CA B D E2007年中考数学复习同步检测(1)(圆的基本性质1)一.填空题:1.有长、宽分别为4 cm 、3 cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 至少与一点且至少只有一点在圆内,则圆的半径R 的取值范围是 ;2.圆的一条弦与直径相交成︒30的角,且把直径分为1 cm 和5 cm ,那么这弦的弦心距为 cm ,弦长为 cm ;3.⊙O 的半径为2 cm ,P 为⊙O 内一点,且PO = 1 cm ,则⊙O 过P 点的弦中,最短的弦长为 cm ,它所对的劣弧为 度;4.内接于圆的特殊四边形是 ; 5.如图2,AB 、AC 为⊙O 的两条弦,延长CA 到D ,使AD = AB ; 如果∠ADB =︒30,那么∠BOC = ; 6.一个半径是5cm 的圆,它的一条弦长是6cm ,则弦心距是 ; 7.已知,等边ΔABC 内接于⊙O ,AB=10cm,则⊙O 的半径是 ; 8.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是 ; 9.已知圆O 的弦AB 经过弦CD 的中点P ,若AP=2cm,CD=8cm,则PB 的长是 ;10.如图(5),弧AC 的度数是040,则_______=∠B ; 11.如图(6),085=∠A ,则________=∠DCE ;12.如图(7),BC AC =,043=∠CAB ,则_________=∠AOB 。
13.已知某圆的半径是6,请写出它的其中一条弦的长度____________。
14.如图(8),弦CD AB //,O Θ的半径为10,cm AB 12=,cm CD 16=,则AB 、CD 之间的距离是___________cm ; 15.如图(9),PO 是直径所在的直线,且PO 平分BPD ∠,AB OE ⊥,CD OF ⊥,则: ①CD AB =;②弧AC 等于弧CD ;③PE PO =;④弧AB 等于弧CD ;⑤PD PB =;其中结论正确的是________________(填序号) 。