2017河南省中招数学试卷
2017年河南省中考数学试卷(含答案解析版),推荐文档

2017 年河南省中考数学试卷一、选择题(每小题3 分,共30 分)1.(3 分)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣32.(3 分)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4 万亿”用科学记数法表示()A.74.4×1012 B.7.44×1013 C.74.4×1013D.7.44×10153.(3 分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.1 34.(3 分)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3 分)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分6.(3 分)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3 分)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3 分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.29.(3 分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)10.(3 分)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()3﹣32 2A.3 B.2 C.22D.4二、填空题(每小题3 分,共15 分)11.(3 分)计算:23﹣4=.{x x‒‒21<≤ 012.(3 分)不等式组 2的解集是.213.(3 分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n 的大小关系为.14.(3 分)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是.15.(3 分)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对应点B′始终落在边AC 上,若△MB′C为直角三角形,则BM 的长为.3﹣3﹣三、解答题(本题共8 个小题,满分75 分)16.(8 分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.17.(9 分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A40≤x<3016B30≤x<60aC60≤x<90Db90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.18.(9 分)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.19.(9 分)如图所示,我国两艘海监船A,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B 船在A 船的正南方向5 海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30 海里/小时,B 船的航速为25 海里/小时,问4C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈5,cos53°3 4≈5,tan53°≈3,2≈1.41)20.(9 分)如图,一次函数y=﹣x+b 与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.21.(10 分)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10 分)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E 分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点 A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.223.(11 分)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴交于点B,抛4物线y=﹣3x2+bx+c 经过点A,B.(1)求点 B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.2017 年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3 分,共30 分)1.(3 分)(2017•河南)下列各数中比1 大的数是()A.2 B.0 C.﹣1 D.﹣3【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3 分)(2017•河南)2016 年,我国国内生产总值达到74.4 万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【解答】解:将74.4 万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3 分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是(A.B.C.D.【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D 不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.1 34.(3 分)(2017•河南)解分式方程x‒ 1﹣2=1 ‒x,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1 得到结果,即可作出判断.1 3【解答】解:分式方程整理得:x‒ 1﹣2=﹣x‒ 1,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检5.(3 分)(2017•河南)八年级某同学6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分,95 分B.95 分,90 分C.90 分,95 分D.95 分,85 分【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95 分和95 分,故中位数为95 分,数据95 出现了 3 次,最多,故这组数据的众数是95 分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3 分)(2017•河南)一元二次方程2x2﹣5x﹣2=0 的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根.7.(3 分)(2017•河南)如图,在▱ABCD 中,对角线AC,BD 相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3 分)(2017•河南)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()1 A.81B.61C.41D.2【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16 种等可能的结果,两个数字都是正数的有 4 种情况,4 1∴两个数字都是正数的概率是:16=4.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3 分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2 的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为()A.(3,1)B.(2,1)C.(1,3)D.(2,3)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.1【分析】由已知条件得到AD′=AD=2,AO=2AB=1,根据勾股定理得到OD′=AD'2 ‒OA2= 3,于是得到结论.【解答】解:∵AD′=AD=2,3 ﹣31AO=2AB=1,∴OD′= AD '2 ‒ OA 2= 3,∵C′D′=2,C′D′∥AB , ∴C (2, 3),故选 D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识 别图形是解题的关键.10.(3 分)(2017•河南)如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,点 O ,B 的对应点分别为 O′,B′,连接 BB′,则图中阴影部分的面积是()22A . 3B .2C .2 2D .4【考点】MO :扇形面积的计算;R2:旋转的性质.【分析】连接 OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接 OO′,BO′,∵将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,3﹣ 3﹣3﹣∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B 是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )160 ⋅ π × 22 12=2×1×2 3﹣(故选 C .360﹣2×2 ×3)=2 .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质, 正确的作出辅助线是解题的关键.二、填空题(每小题 3 分,共 15 分)11.(3 分)(2017•河南)计算:23﹣ 4= 6 . 【考点】22:算术平方根;1E :有理数的乘方. 【分析】明确 4表示 4 的算术平方根,值为 2. 【解答】解: 23﹣ 故答案为: 6.4=8﹣2=6,【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,{x x ‒‒21≤0① 比较简单.12.(3 分)(2017•河南)不等式组x x ‒‒21≤ 0<2 的解集是 ﹣1<x ≤2 . 【考点】CB :解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解: 2 < x ②解不等式①0 得:x ≤2,解不等式②得:x >﹣1, ∴不等式组的解集是 ﹣1<x ≤2, 故答案为 ﹣1<x ≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.213.(3 分)(2017•河南)已知点 A (1,m ),B (2,n )在反比例函数 y=﹣x 的图象上,则 m 与 n 的大小关系为 m <n .【考点】G6:反比例函数图象上点的坐标特征.2【分析】由反比例函数 y=﹣ 可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随 x 的增大而增大,根据这个判定则可.2【解答】解:∵反比例函数 y=﹣x 中 k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y 随 x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴m <n .{故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3 分)(2017•河南)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A,图2 是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是12 .【考点】E7:动点问题的函数图象.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度.【解答】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 先A 运动时,BP 的最大值为5,即BC=5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,1∴△ABC 的面积为:2×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC 的长度,本题属于中等题型.15.(3 分)(2017•河南)如图,在Rt△ABC 中,∠A=90°,AB=AC,BC= 2+1,点M,N 分别是边BC,AB 上的动点,沿MN 所在的直线折叠∠B,使点B 的对1 应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为22 1+2 或 1.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM= 2MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与 A 重合,M 是BC 的中点,1 12 1∴BM=2BC=2 +2;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=2MB′,∵沿MN 所在的直线折叠∠B,使点 B 的对应点B′,∴BM=B′M,∴CM= ∵BC=2BM,2+1,∴CM+BM=2BM+BM= 2+1,∴BM=1,121综上所述,若△MB′C为直角三角形,则BM 的长为2 +2或1,1 故答案为:22 1+2 或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8 个小题,满分75 分)16.(8 分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= 2+1,y= 2﹣1.【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy2+1,y= 2﹣1=9xy当x= 2+1,y= 2﹣1 时,原式=9(2+1)(2﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9 分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数4A0≤x<3016B30≤x<60Ca60≤x<90bD90≤x<120E2x≥120请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000 人,请估计每月零花钱的数额x 在60≤x<120 范围的人数.【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B 组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a 的值,m 的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000 乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,4A 组所占的百分比是50=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;20(2)扇形统计图中扇形 C 的圆心角度数是360°×50=144°;28(3)每月零花钱的数额x 在60≤x<120 范围的人数是1000×50=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9 分)(2017•河南)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 交AC 边于点D,过点C 作CF∥AB,与过点B 的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC 的长.【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC 即可.【解答】(1)证明:∵AB 是⊙O 的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF 切⊙O 于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,82 +42 ∴AC=10,∵CD=4,∴AD=10﹣4=6,在 Rt △ADB 中,由勾股定理得:BD= 102 ‒ 62=8,5.在 Rt △BDC 中,由勾股定理得:BC==4 【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9 分)(2017•河南)如图所示,我国两艘海监船 A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C ,此时,B 船在A 船的正南方向 5 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里 /小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53° 4 3 4≈5,cos53°≈5,tan53°≈3, 2≈1.41)【考点】TB :解直角三角形的应用﹣方向角问题.【分析】如图作 CE ⊥AB 于 E .设 AE=EC=x ,则 BE=x ﹣5,在 Rt △BCE 中,根据E 4tan53°=B E ,可得3=x ‒ 5,求出 x ,再求出 BC 、AC ,分别求出 A 、B 两船到 C 的时间,即可解决问题.【解答】解:如图作 CE ⊥AB 于 E .在Rt△ACE 中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE 中,E∵tan53°=B E,4∴3=x‒ 5,解得x=20,∴AE=EC=20,2=28.2,∴AC=20EBC=sin53°=25,28.2 25∴A 船到C 的时间≈ 30 =0.94 小时,B 船到C 的时间=25=1 小时,∴C 船至少要等待0.94 小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9 分)(2017•河南)如图,一次函数y=﹣x+b 与反比例函数y=x(x>0)的图象交于点A(m,3)和B(3,1).3 (1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y= ;(2)点P 是线段AB 上一点,过点P 作PD⊥x 轴于点D,连接OP,若△POD 的面积为S,求S 的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k 的值,然后将A 代入反比例函数即可求出m 的,再根据B 两点的坐标即可求出一次函数的解析式.(2)设P 的坐标为(x,y),由于点P 在直线AB 上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S 的范围【解答】解:(1)将B(3,1)代入y= ,∴k=3,3将A(m,3)代入y= ,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,1∴S=2x(﹣x+4),∴由二次函数的图象可知:3S 的取值范围为:2≤S≤23故答案为:(1)y=﹣x+4;y= .【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10 分)(2017•河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100 个(其中A 种魔方不超过50 个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【考点】9A:二元一次方程组的应用.【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2 个A 种魔方和6 个B 种魔方共需130 元,购买3 个A 种魔方和4 个B 种魔方所需款数相同”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再=w 活动二和w 活动一>w 活动二,解出m 的取值范围,分别令w 活动一<w 活动二、w 活动一此题得解.【解答】解:(1)设 A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,{2 + 6 = 130根据题意得: 3 = 4 ,{ = 20解得:=15.答:A 种魔方的单价为20 元/个,B 种魔方的单价为15 元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100﹣m)个,=20m×0.8+15(100﹣m)×0.4=10m+600;根据题意得:w活动一w 活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w 活动一<w 活动二时,有10m+600<﹣10m+1500,解得:m<45;当w 活动一=w 活动二时,有10m+600=﹣10m+1500,解得:m=45;当w 活动一>w 活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45 时,选择活动一购买魔方更实惠;当m=45 时,选择两种活动费用相同;当m>45 时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y 的二元一次方程组;(2)根据两种活动方案找出w 活动一、w活动二关于m 的函数关系式.22.(10 分)(2017•河南)如图1,在Rt△ABC 中,∠A=90°,AB=AC,点D,E分别在边AB,AC 上,AD=AE,连接DC,点M,P,N 分别为DE,DC,BC 的中点.(1)观察猜想图1 中,线段PM 与PN 的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2 的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD=4,AB=10,请直接写出△ PMN 面积的最大值.【考点】RB:几何变换综合题.1 1【分析】(1)利用三角形的中位线得出PM=2CE,PN=2BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出1 1PM=2BD,PN=2BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN 最大时,△PMN 的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N 是BC,CD 的中点,1∴PN∥BD,PN=2BD,∵点P,M 是CD,DE 的中点,1∴PM∥CE,PM=2CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,1 1同(1)的方法,利用三角形的中位线得,PN=2BD,PM=2CE,∴PM=PN,∴△PMN 是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN 是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE∥BC 且DE 在顶点 A 上面,∴MN 最大=AM+AN,连接AM,AN,在△ADE 中,AD=AE=4,∠DAE=90°,∴AM=2 2,在Rt△ABC 中,AB=AC=10,AN=5 2,2+5 2=7 2,∴MN最大=21 1 1 1 49=2PM2=2×2MN2=4×(7 2)2= 2 .∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)1 1的关键是判断出PM=2CE,PN=2BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN 最大时,△PMN 的面积最大,是一道基础题目.223.(11 分)(2017•河南)如图,直线y=﹣3x+c 与x 轴交于点A(3,0),与y 轴4交于点B,抛物线y=﹣3x2+bx+c 经过点A,B.(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P,N.①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”.请直接写出使得M,P,N 三点成为“共谐点”的m 的值.{ {【考点】HF :二次函数综合题.【分析】(1)把 A 点坐标代入直线解析式可求得 c ,则可求得 B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2) ①由 M 点坐标可表示 P 、N 的坐标,从而可表示出 MA 、MP 、PN 、PB 的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于 m 的方程,可求得 m 的值;②用 m 可表示出 M 、P 、N 的坐标,由题意可知有 P 为线段 MN 的中点、M 为线段 PN 的中点或 N 为线段 PM 的中点,可分别得到关于 m 的方程,可求得 m 的值. 【解答】解:2 (1) ∵y=﹣3x +c 与 x 轴交于点 A (3,0),与 y 轴交于点 B ,∴0=﹣2+c ,解得 c=2,∴B (0,2),4∵抛物线 y=﹣3x 2+bx +c 经过点 A ,B ,‒ 12 + 3b + c = 0 3∴c = 2,解得 == 2,410∴抛物线解析式为 y=﹣3x 2+ 3 x +2;13(3 ‒ m )332(2) ①由(1)可知直线解析式为 y=﹣3x +2,∵M (m ,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P ,N ,2 4 10∴P (m ,﹣3m +2),N (m ,﹣3m 2+ 3 m +2),2410 2 4∴PM=﹣3m +2,PA=3﹣m ,PN=﹣3m 2+ 3 m +2﹣(﹣3m +2)=﹣3m 2+4m ,∵△BPN 和△APM 相似,且∠BPN=∠APM ,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°, 当∠BNP=90°时,则有 BN ⊥MN ,∴BN=OM=m ,N PN A M PM3 ‒‒ 4m 2 + 4m3‒ 2m + 2∴ =,即= 3,解得 m=0(舍去)或 m=2,∴M (2,0);PN P当∠NBP=90°时,则有P A =MP ,2∵A (3,0),B (0,2),P (m ,﹣3m +2),222 13∴BP=+ ( ‒ m + 2 ‒ 2)3= 3 m ,AP== 3 (3﹣m ), ‒ 4m 2 + 4m1311‒ 2m + 28∴ 3=311∴M ( 8 ,0);,解得 m=0(舍去)或 m= ,综上可知当以 B ,P ,N 为顶点的三角形与△APM 相似时,点 M 的坐标为(m ‒ 3)2 + ( ‒ 223+ 2)1311(2,0)或(8 ,0);2 4 10②由①可知M(m,0),P(m,﹣3m+2),N(m,﹣3m2+ 3 m+2),∵M,P,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2 4 10当P 为线段MN 的中点时,则有2(﹣3m+2)=﹣3m2+ 3 m+2,解得m=3(三点重1合,舍去)或m=2;2 4 10当M 为线段PN 的中点时,则有﹣3m+2+(﹣3m2+ 3 m+2)=0,解得m=3(舍去)或m=﹣1;2 4 10当N 为线段PM 的中点时,则有﹣3m+2=2(﹣3m2+ 3 m+2),解得m=3(舍去)或1m=﹣4;1 1综上可知当M,P,N 三点成为“共谐点”时m 的值为2或﹣1 或﹣4.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年河南省中考数学试卷-答案

8.【答案】C【解析】画树状图得:共有16种等可能的结果,两个数字都是正数的有4种情况,所以记录的两个数字都是正数的概率是41164=,故选C. 【解析】'AD AD =,''C D CD =3),故选D 【考点】正方形的性质、坐标与图形的性质、勾股定理【答案】C连接'OD ,,将半径为逆时针旋转,AOB ∠=,''AO B ∠'120O B =︒2'602223603OBB O S π⨯--=扇形【解析】反比例函数2【解析】①如图1,当'90B MC ∠=︒,'B 与A 重合.M 是BC 的中点,12122BM BC +∴==;②如图2,当'90MB C ∠=︒时,90A ∠=︒,AB AC =,45C ∴∠=︒,'CMB △是等腰直角三角形,2'CM MB ∴=,由折叠可知'BM B M =,2CM BM ∴=,21BC =+,221CM BM BM BM ∴+=+=+,1BM ∴=,综上所述,若'MB C △为直角三角形,则BM 的长为212+或1.)证明:AB AC =//CF AB FCB =∠ACB ∴∠=CB 平分DCF ∠AB 是O 的直径,90ADB ∴∠=︒,即AC ⊥BF 是O 的切线,BF AB ∴⊥//CF AB ,BF ∴BD BF ∴=(2)AC AB ==AD AC CD ∴=-=在Rt ABD ∆中,22BD AB AD =-BDC ∆中,2BD CD +tan53BD ︒,即5)tan53︒,55tan 5345313︒≈︒-20sin53CD ≈︒)点102-<,且∴当2n =当1n =或S ∴的取值范围是即A ,B 两种魔方的单价分别为20元,15元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元,依题意得1200.8150.4(100)w m m =⨯+⨯-=10600m +22015(100)101500w m m m m =+--=-+当12w w >时,10600101500m m +>-+,45m ∴>当12w w =时,10600101500m m +=-+,45m ∴=当12w w <时,10600101500m m +<-+,45m ∴<∴当4550m <≤时,活动二更实惠;当45m =时,活动一、二同样实惠;当045m ≤<(或050m <<)时,活动一更实惠.解法二:(l )设A ,B 两种魔方的单价分别为x 元,y 元.根据题意得2613034130x y x y +=⎧⎨+=⎩解得2613x y =⎧⎨=⎩即A ,B 两种魔方的单侨分别为26元和13元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元,根据题意得1260.8130.4(100)w m m =⨯+⨯-15.6520m =+22613(1002)1300w m m =+-=15.60>,1w ∴随m 的增大而增大,∴当50m =时,1w 最大,此时115.6505201300w =⨯+=∴当050m ≤≤时,101300w ≤≤,∴当050m ≤<(或050m <<)时,活动一更实惠;0m =当50m =时,活动一、二同样实惠.【考点】二元一次方程组和一次函数的实际应用.22.【答案】解:(1)PM PN =,PM PN ⊥.(2)等腰直角三角形.理由如下:由旋转可得BAD CAE ∠=∠又AB AC =.AD AE =,BAD CAE ≅∴△△点)直线抛物线)MN x ⊥24,3m m -+①由(1)知直线3,OB =在APM △和NCB Rt BOA∆CB OA ,2m ∴=解得(舍去)或11 m=。
2017年河南省中考数学试卷(解析版)

2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB , ∴C (2,),故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )A .B .2﹣C .2﹣D .4﹣【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.计算:23﹣=6.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n 的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C 作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,5=7,∴MN最大=2+=PM2=×MN2=×(7)2=.∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.21。
2017年河南省中考数学试卷(含详细答案)

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前河南省2017年普通高中招生考试数 学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中比1大的数是( )A .2B .0C .1-D .3-2.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学记数法表示为( ) A .1274.410⨯ B .137.4410⨯C .1374.410⨯D .147.4410⨯ 3.某几何体的左视图如下图所示,则该几何体不可能是( )4.解分式方程13211x x-=--,去分母得( )A .12(1)3x --=-B .12(1)3x --=C .1223x --=-D .1223x -+=5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分C .90分,95分D .95分,85分 6.一元二次方程22520x x --=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定□ABCD 是菱形的只有( ) A .AC BD ⊥ B .AB BC = C .AC BD =D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字1-,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( ) A .18B .16C .14D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O .固定点A ,B ,在正方形沿箭头方向推,使点D 落在y 轴正半轴上点D '处,则点C 的对应点C '的坐标为( )A. B .(2,1) C.D.10.如图,将半径为2,圆心角为120的扇形OAB 绕A 逆时针旋转60,点O ,B 的对应点分别为O ',B ',连接BB ',则图中阴影部分的面积是( ) A .2π3B.π3 C.2π3D.2π3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上) 11.计算:32 .ABCD 毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)组20,12x x x -⎧⎪⎨-⎪⎩≤<的解集12.不等式是 .13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为 .14.如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是 .15.如图,在Rt ABC △中,90A ∠=,AB AC =,1BC =,点M ,N 分别是BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上.若MB C '△为直角三角形,则BM 的长为 .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分8分) 先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x,1y .17.(本小题满分9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数. 18.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的O 交AC 边于点D ,过点C 作CFAB ∥,与过点B 的切线交于点F ,连接BD . (1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.(本小题满分9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45方向,B 船测得渔船C 在其南偏东53方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援? (参考数据:4sin535≈,3cos535≈,4tan533≈ 1.41)图1图2数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满分9分)如图,一次函数y x b =-+与反比例函数(x )ky x=>0的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD △的面积为S ,求S 的取值范围.21.(本小题满分10分)学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(本小题满分10分)如图1,在Rt ABC △中,90A ∠=,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.图1图2(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN △的形状,并说明理由; (3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN △面积的最大值.23.(本小题满分11分)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x b x c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)(,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB及抛物线分别-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________交于点P,N.△相似,求点M①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其他两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谱点”.请直接写出使得M,P,N三点成为“共谱点”的m的值.数学试卷第7页(共24页)数学试卷第8页(共24页)5 / 12数学试卷 第11页(共24页)数学试卷 第12页(共24页)8.【答案】C【解析】画树状图得:共有16种等可能的结果,两个数字都是正数的有4种情况,所以记录的两个数字都是正数的概率是41164=,故选C. 【解析】'AD AD =,''C D CD =(2,3),故选,将半径为,AOB ∠=,''AO B ∠''120B O B ∴∠=3, 21602223603π⨯=【解析】反比例函数2【解析】①如图1,当'90B MC ∠=︒,'B 与A 重合.M 是BC 的中点,12122BM BC +∴==;②如图2,当'90MB C ∠=︒时,90A ∠=︒,AB AC =,45C ∴∠=︒,'CMB △是等腰直角三角形,2'CM MB ∴=,由折叠可知'BM B M =,2CM BM ∴=,21BC =+,221CM BM BM BM ∴+=+=+,1BM ∴=,综上所述,若'M BC △为直角三角形,则BM 的长为212+或 1.数学试卷 第15页(共24页)数学试卷 第16页(共24页))证明:AB AC =//CF AB FCB ∠ACB ∴∠=CB 平分∠AB 是O 的直径,90ADB ∴∠=︒,即BF 是O 的切线,//CF AB ,BF ∴BD BF ∴=(2)AC AB =AC CD =-ABD ∆中,9 / 12tan53BD ︒,即5)tan53︒,55tan 534531︒≈︒-)点102-<,且∴当2n =数学试卷 第19页(共24页)数学试卷 第20页(共24页)根据题意得2613034x y x y +=⎧⎨=⎩解得2015x y =⎧⎨=⎩即A ,B 两种魔方的单价分别为20元,15元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元, 依题意得1200.8150.4(100)w m m =⨯+⨯-=10600m +22015(100)101500w m m m m =+--=-+当12w w >时,10600101500m m +>-+,45m ∴> 当12w w =时,10600101500m m +=-+,45m ∴= 当12w w <时,10600101500m m +<-+,45m ∴<∴当4550m <≤时,活动二更实惠;当45m =时,活动一、二同样实惠;当045m ≤<(或050m <<)时,活动一更实惠. 解法二:(l )设A ,B 两种魔方的单价分别为x 元,y 元.根据题意得2613034130x y x y +=⎧⎨+=⎩解得2613x y =⎧⎨=⎩ 即A ,B 两种魔方的单侨分别为26元和13元.(2)设购买A 种魔方m 个,按活动一和活动二购买所需费用分别为1w 元,2w 元, 根据题意得1260.8130.4(100)w m m =⨯+⨯-15.6520m =+22613(1002)1300w m m =+-=15.60>,1w ∴随m 的增大而增大,∴当50m =时,1w 最大,此时115.6505201300w =⨯+=∴当050m ≤≤时,101300w ≤≤,∴当050m ≤<(或050m <<)时,活动一更实惠;0m =当50m =时,活动一、二同样实惠.【考点】二元一次方程组和一次函数的实际应用. 22.【答案】解:(1)PM PN =,PM PN ⊥. (2)等腰直角三角形.理由如下: 由旋转可得BAD CAE ∠=∠11 / 12点)直线抛物线)MN x ⊥24,3m m -+数学试卷 第23页(共24页)数学试卷 第24页(共24页) 在NCB Rt BOA ∆CB OA ,2m ∴=。
2017年河南省中考数学试卷及答案

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A 种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M 的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A 逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°, ∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°, ∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分) 11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x ﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC 边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E 分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M 的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
河南省2017年中考数学真题试题(含解析)

河南省2017年中考数学真题试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.下列各数中比1大的数是( )A .2B .0C .-1D .-3 【答案】A, 【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2. 2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( ) A .1274.410⨯ B .137.4410⨯ C .1374.410⨯ D .147.4410⨯ 【答案】B.考点:科学记数法.3. 某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D . 【答案】D. 【解析】试题分析:几何体的左视图是从左面看几何体所得到的图形,选项A 、B 、C 的左视图都为,选项D 的左视图不是,故选D.考点:几何体的三视图. 4. 解分式方程13211x x−=−−,去分母得( ) A .12(1)3x −−=− B .12(1)3x −−= C.1223x −−=− D .1223x −+= 【答案】A.考点:解分式方程.5. 八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分 【答案】A. 【解析】试题分析:这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.考点:众数;中位数.6. 一元二次方程22520x x −−=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根 C. 只有一个实数根 D .没有实数根 【答案】B. 【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410−−⨯⨯−=+=,即可得方程22520x x −−=有有两个不相等的实数根,故选B.考点:根的判别式.7. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠ 【答案】C.考点:菱形的判定.8. 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18 B .16 C.14 D .12【答案】C.【解析】试题分析:列表得,1 2 0 -11 (1,1)(1,2)(1,0)(1,-1)2 (2,1)(2,2)(2,0)(2,-1)0 (0,1)(0,2)(0,0)(0,-1)-1 (-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41 164=,故选C.考点:用列表法(或树形图法)求概率.9. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点'D处,则点C的对应点'C的坐标为()A.(3,1) B.(2,1) C.(1,3) D.(2,3)【答案】D.考点:图形与坐标.10. 如图,将半径为2,圆心角为120︒的扇形OAB绕点A逆时针旋转60︒,点O,B的对应点分别为'O,'B,连接'BB,则图中阴影部分的面积是()A.23πB.233π− C.2233π− D.2433π−【答案】C.【解析】试题分析:连接O'O、'O B,根据旋转的性质及已知条件易证四边形AOB'O为菱形,且∠'O OB=∠O'O B=60°,又因∠A'O'B =∠A'O B=120°,所以∠B'O'B =120°,因∠O'O B+∠B'O'B =120°+60°=180°,即可得O、'O、'B三点共线,又因'O'B='O B,可得∠'O'B B=∠'O B 'B,再由∠O'O B=∠'O'B B+∠'O B 'B=60°,可得∠'O'B B=∠'O B 'B=30°,所以△OB'B为Rt三角形,由锐角三角函数即可求得B'B=23 ,所以2''16022 =S2232323603OBB BOOS Sππ⨯−=⨯⨯−=−阴影扇形,故选C.考点:扇形的面积计算.二、填空题(每小题3分,共15分)11. 计算:324=.【答案】6.【解析】试题分析:原式=8-2=6.考点:实数的运算.12. 不等式组20,12x x x−≤⎧⎪⎨−<⎪⎩的解集是 .【答案】-1<x ≤2.考点:一元一次不等式组的解法.13. 已知点(1,)A m ,(2,)B n 在反比例函数2y x=−的图象上,则m 与n 的大小关系为 . 【答案】m<n. 【解析】试题分析:把点(1,)A m ,(2,)B n 分别代入2y x=−可得m=-2,n=-1,所以m<n. 考点:反比例函数图象上点的特征.14. 如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .【答案】12.考点:动点函数图象.15. 如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .【答案】1或212. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,2x ,所以2x =21BC =,解得x=1,即BM=1;②0'90B MC ∠=,此时点B和点C 重合,BM=12122BC =.所以BM 的长为1或212. 考点:折叠(翻折变换).三、解答题 (本大题共8个小题,满分75分) 16. 先化简,再求值:2(2)()()5()x y x y x y x x y ++−+−−,其中21x =,21y −.【答案】原式=9xy ,当21x =+,21y =−时,原式=9.考点:整式的运算.17. 为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数. 【答案】(1)50,28,8;(2) 144°;(3)560. 【解析】试题分析:(1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A 、B 、E 的人数即可求得a+b 的值;(2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形C 的圆心角度数;(3)用总人数1000乘以每月零花钱的数额x 在60120x ≤<范围的人数的百分比即可求得答案.考点:统计图.18. 如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长. 【答案】(1)详见解析;(2)45 . 【解析】试题分析:(1)根据已知条件已知CB 平分∠DCF ,再证得BD AC ⊥、BF CF ⊥,根据角平分线的性质定理即可证得结论;(2)已知AB AC ==10,4CD =,可求得AD =6,在Rt △ABD 中,根据勾股定理求得2BD 的值,在Rt △BDC 中,根据勾股定理即可求得BC 的长. 试题解析: (1)∵AB AC = ∴∠ABC=∠ACB ∵//CF AB∴∠ABC=∠FCB∴∠ACB=∠FCB,即CB平分∠DCF∵AB为⊙O直径∴∠ADB=90°,即BD AC⊥∵BF为⊙O的切线∴BF AB⊥∵//CF AB∴BF CF⊥∴BD=BF考点:圆的综合题.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45︒方向,B船测得渔船C在其南偏东53︒方向.已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈,2 1.41≈)【答案】C船至少要等待0.94小时才能得到救援.【解析】试题分析:过点C 作CD AB ⊥交AB 的延长线于点D ,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x ,则AD=CD=x ,在Rt △BDC 中,根据三角函数求得CD 、BC 的长,在Rt △ADC 中,求得AC 的长,再分别计算出B 船到达C 船处约需时间和A 船到达C 船处约需时间,比较即可求解.∴B 船到达C 船处约需时间:25÷25=1(小时)在Rt △ADC 中,AC=2x ≈1.41×20=28.2∴A 船到达C 船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C 船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.20. 如图,一次函数y x b =−+与反比例函数(0)k y x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.【答案】(1) 4y x =−+,3y x =;(2)S 的取值范围是322S ≤≤. 【解析】 试题分析:(1)把(3,1)B 分别代入y x b =−+和(0)k y x x =>,即可求得b 、k 的值,直接写出对应的解析式即可;(2)把点(,3)A m 代入3y x=求得m=1,即可得点A 的坐标设点P (n ,-n+4),,因点P 是线段AB 上一点,可得1≤n ≤3,根据三角形的面积公式,用n 表示出POD ∆的面积为S ,根据n 的取值范围即可求得S 的取值范围.而点P 是线段AB 上一点,设点P (n ,-n+4),则1≤n ≤3∴S=2111(4)(2)2222OD PD n n n ⋅=⨯⨯−+=−−+ ∵102−且1≤n ≤3 ∴当n=2时,S 最大=2,当n=1或3时,=32S 最小, ∴S 的取值范围是322S ≤≤. 考点:一次函数与反比例函数的综合题.21. 学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【答案】(1) A 、B 两种魔方的单价分别为20元、15元;(2) 当45<m ≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.试题解析:(1) 设A 、B 两种魔方的单价分别为x 元、y 元,根据题意得2613034x y x y +=⎧⎨=⎩ ,解得2015x y =⎧⎨=⎩即A 、B 两种魔方的单价分别为20元、15元;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元,依题意得1w =20m ×0.8+15×0.4×(100-m )=10m+600,2w =20m+15(100-m-m )=-10m+1500,①1w >2w 时,10m+600>-10m+1500,所以m>45;②1w =2w 时,10m+600=-10m+1500,所以m=45;③1w <2w 时,10m+600<-10m+1500,所以m<45;∴当45<m ≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.考点:二元一次方程组的应用;一次函数的应用.22. 如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492.试题解析:(1)PM=PN ,PM PN ⊥;∴PM=12CE,且//PM CE,同理可证PN=12BD,且//PN BD∴PM=PN, ∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN为等腰直角三角形.(3)492.考点:旋转和三角形的综合题.23. 如图,直线23y x c=−+与x轴交于点(3,0)A,与y轴交于点B,抛物线243y x bx c=−++经过点A,B.(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N , ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【答案】(1)B (0,2),2410233y x x =−++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14−或m=12.试题解析:(1)直线23y x c =−+与x 轴交于点(3,0)A , ∴2303c −⨯+=,解得c=2∴B (0,2), ∵抛物线243y x bx c =−++经过点(3,0)A , ∴2433203b −⨯++=,∴b=103 ∴抛物线的解析式为2410233y x x =−++; (2)∵MN x ⊥轴,M (m ,0),∴N(2410,233m m m −++ ) ①有(1)知直线AB 的解析式为223y x =−+,OA=3,OB=2 ∵在△APM 中和△BPN 中,∠APM=∠BPN, ∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°, 分两种情况讨论如下:(I )当∠NBP=90°时,过点N 作NC y ⊥轴于点C ,则∠NBC+∠BNC=90°,NC=m ,BC=22410410223333m m m m −++−=−+ ∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO ,∴Rt △NCB ∽ Rt △BOA∴NC CB OB OA = ,即24103323m m m −+= ,解得m=0(舍去)或m=118 ∴M (118,0);考点:二次函数综合题.。
2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷一、选择题(每小题 分,共 分).( 分)下列各数中比 大的数是()✌. . .﹣ .﹣.( 分) 年,我国国内生产总值达到 万亿元,数据❽万亿❾用科学记数法表示()✌. × . × . × . × .( 分)某几何体的左视图如图所示,则该几何体不可能是()✌. . . ..( 分)解分式方程﹣ ,去分母得()✌. ﹣ (⌧﹣ ) ﹣ . ﹣ (⌧﹣ ) . ﹣ ⌧﹣ ﹣ . ﹣ ⌧.( 分)八年级某同学 次数学小测验的成绩分别为: 分, 分, 分, 分, 分, 分,则该同学这 次成绩的众数和中位数分别是()✌. 分, 分 . 分, 分 . 分, 分 . 分, 分.( 分)一元二次方程 ⌧ ﹣ ⌧﹣ 的根的情况是()✌.有两个相等的实数根 .有两个不相等的实数根.只有一个实数根 .没有实数根.( 分)如图,在 ✌中,对角线✌, 相交于点 ,添加下列条件不能判定 ✌是菱形的只有()✌.✌⊥ .✌ .✌ .∠ ∠.( 分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣ , , , .若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()✌. . . ..( 分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 的正方形✌的边✌在⌧轴上,✌的中点是坐标原点 ,固定点✌, ,把正方形沿箭头方向推,使点 落在⍓轴正半轴上点 处,则点 的对应点 的坐标为()✌.(, ) .( , ) .( ,) .( ,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P 运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C 为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)【考点】22:算术平方根;1E:有理数的乘方.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)【考点】CB:解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)【考点】E7:动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(【考点】9A:二元一次方程组的应用.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.(11分)【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年河南中招数学试卷

2017年河南省普通高中招生考试试卷数学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟.2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.下列各数中比1大的数是( ) A. 2 B. 0 C. -1 D.-32.2016年,我国国内生产总值达到74.4万亿元,用科学计数法表示为( ) A. 74.4×1012 B. 7.44×1013 C. 74.4×1013 D. 7.44×10143.某几何体的左视图如下图所示,则该几何体不可能是( )4.解分式方程xx -=--13211去分母得 ( ) A.1-2(x-1)=-3 B.1-2(x-1)=3 C.1-2x-2=-3 D.1-2x+2=35.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分 6.一元二次方程2x2-5x-2=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,添加 下列条件不能..判定□ABCD 是菱形的只有( ) A.AC ⊥BD B.AB=BC C.AC=BD D.∠1=∠2 8.如图是一次数学活动课制作的一个转盘,盘面被等分成 四个扇形区域,并分别标有数字-1,0,1,2,若转动转盘两次,每次转盘停止后记录指针所指区域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为( )9.我们知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD 边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D`处,则点C的对应点C`坐标为()10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O`,B`,连接BB`,则图中阴影部分的面积是()A.32πB.332π- C.3232π- D.3234π-二、填空题(每题3分,共15分)11.计算=-42312.不等式组⎪⎩⎪⎨⎧〈-≤1212-xx的解集是13.已知点A(1,m),B(2,n)在反比例函数x2y-=的图像上,则m与n的大小关系为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河南省普通高中招生考试试卷
数学
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.
1.下列各数中比1大的数是( )
A .2
B .0
C .-1
D .-3
2.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( )
A .1274.410⨯
B .137.4410⨯
C .1374.410⨯
D .14
7.4410⨯
3.某几何体的左视图如下图所示,则该几何体不可能是( )
A .
B .
C .
D .
4.解分式方程13211x x
-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+=
5.八年级某同学6此数学小测验的成绩分别为:80分,85分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )
A .95分,95分
B .95分,90分 C. 90分,95分 D .95分,85分
6.一元二次方程2
2520x x --=的根的情况是( )
A .有两个相等的实数根
B .有两个不相等的实数根
C. 只有一个实数根 D .没有实数根
7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )
A .AC BD ⊥
B .AB B
C = C.AC B
D = D .12∠=∠
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个
数字都是正数的概率为( )
A .18
B .16 C.14 D .12
9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )
A .(3,1)
B .(2,1) C.(1,3) D .(2,3)
10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )
A .23π
B .233π- C.2233π- D .2433π- 二、填空题(每小题3分,共15分)
11.计算:3
24-= . 12.不等式组20,12
x x x -≤⎧⎪⎨-<⎪⎩的解集是 . 13.已知点(1,)A m ,(2,)B n 在反比例函数2y x
=-的图象上,则m 与n 的大小关系为 .
14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .
15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .
三、解答题 (本大题共8个小题,满分75分)
16.先化简,再求值:
2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.
17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有 人,a b += ,m = ;
(2)求扇形统计图中扇形C 的圆心角度数;
(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.
18.如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的
切线交于点F ,连接BD .
(1)求证:BD BF =;
(2)若10AB =,4CD =,求BC 的长.
19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533
︒≈,2 1.41≈)
20. 如图,一次函数y x b =-+与反比例函数(0)k y x x
=>的图象交于点(,3)A m 和(3,1)B .
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.
21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个 A 种魔方和6个B 种魔方共需130元,购买
3个A 种魔方和4个B 种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.
请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
22.如图1,在R t A B C ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想
图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;
(2)探究证明
把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;
(3)拓展延伸
把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.
23.如图,直线32y x e =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243
y x bx c =-++经过点A ,B .
相似,求点M的坐标;
①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),
则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.。