(完整word版)2017年河南省中招数学试题与答案
2017河南中考数学试题及答案word

2017河南中考数学试题及答案word一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是正整数?A. -1B. 0C. 1D. 2答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是多少?A. 5B. 6C. 7D. 8答案:A3. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 3x^2 + 2x = 0D. 2x - 3 = 0答案:B4. 圆的周长公式是什么?A. C = πrB. C = 2πrC. C = 4πrD. C = rπ答案:B5. 以下哪个是正比例函数?A. y = 3x^2B. y = 2xC. y = 3x + 1D. y = 1/x答案:B6. 如果一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 2答案:A7. 以下哪个是不等式?A. 2x + 3 = 7B. 3x - 5 > 10C. 4x + 6 ≤ 2xD. 5x = 25答案:B8. 一个数的绝对值是什么?A. 这个数B. 这个数的相反数C. 这个数的平方D. 这个数的立方答案:A9. 以下哪个是几何平均数?A. 平均数B. 中位数C. 众数D. 调和平均数答案:A10. 以下哪个是统计图?A. 条形图B. 折线图C. 饼图D. 所有选项答案:D二、填空题(本题共5小题,每小题2分,共10分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个数的立方等于27,那么这个数是______。
答案:313. 一个直角三角形的两个锐角的和是______。
答案:90°14. 一个数的平方加上这个数的两倍,再加上1等于这个数的平方,这个数是______。
答案:115. 如果一个圆的半径是2,那么它的面积是______。
答案:12π三、解答题(本题共5小题,每小题10分,共50分)16. 解一元二次方程:x^2 - 5x + 6 = 0。
河南省2017年中考数学真题试题(含扫描答案)

2017年河南省普通高中招生考试试卷数学一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是( )A .2B .0C .-1D .-32.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为( )A .1274.410⨯B .137.4410⨯C .1374.410⨯D .147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是( )A .B .C .D .4.解分式方程13211x x−=−−,去分母得( ) A .12(1)3x −−=− B .12(1)3x −−= C.1223x −−=− D .1223x −+=5.八年级某同学6此数学小测验的成绩分别为:80分,85分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A .95分,95分B .95分,90分 C. 90分,95分 D .95分,85分6.一元二次方程22520x x −−=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C. 只有一个实数根 D .没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C.AC BD = D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18B .16 C.14 D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )A .(3,1)B .(2,1) C.(13) D .3)10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .233π− C.2233π− D .2433π− 11.二、填空题(每小题3分,共15分)11.计算:324−= . 12.不等式组20,12x x x −≤⎧⎪⎨−<⎪⎩的解集是 . 13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=−的图象上,则m 与n 的大小关系为 . 14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .三、解答题 (本大题共8个小题,满分75分)16.先化简,再求值:2(2)()()5()x y x y x y x x y ++−+−−,其中21x =+,21y =−.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有 人,a b += ,m = ;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中, AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)20. 如图,一次函数y x b =−+与反比例函数(0)k y x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个 A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.23.如图,直线32y x e =−+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =−++经过点A ,B .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.。
2017河南中考真题详解版

∴ 最大时,
的面积最大,即 最大时,
∴点 在 的延长线上,
∴
,
∴
,
∴
最大
.
, 的面积最大,
23. 如图,直线
与 轴交于点
,与 轴交于点 ,抛物线
经
过点 , .
( 1 )求点 的坐标和抛物线的解析式.
(2)
为 轴上一动点,过点 且垂直于 轴的直线与直线 及抛物线分别交于点 ,
1 点 在线段 上运动,若以 , , 为顶点的三角形与
依题意得
,
,
①
时,
,所以
;
②
时,
,所以
;
③
时,
,所以
;
∴当
时,活动二更实惠;
当
时,活动一、二同样实惠;
当
时,活动一更实惠.
22. 如图 ,在
中,Leabharlann ,,点 , 分别在边 , 上,
,连接 ,点 , , 分别为 , , 的中点.
图
( 1 )观察猜想
图 中,线段 与 的数量关系是__________,位置关系是__________.
,去分母得( ). B. D.
【答案】 A 【解析】
去分母得:
, .
5. 八年级某同学 次数学小测验的成绩分别为: 分, 分, 分, 分, 分, 分,则该同
学这 次成绩的众数和中位数分别是( ).
A. 分, 分
B. 分, 分
C. 分, 分
D. 分, 分
【答案】 A
【解析】 位于中间位置的两数分别是 分和 分, 故中位数为 分, 数据 出现了 次,最多, 故这组数据的众数是 分. 故选 .
,反比例函数的解析式为
2017年河南省中考数学试卷-答案

河南省 2017 年一般高中招生考试数学答案分析第Ⅰ 卷一、选择题1.【答案】 A【分析】3 1 0 1 2.应选A.【考点】有理数大小的比较2.【答案】 B【分析】将74.4 万亿用科学记数法表示为7.44 1013,应选B.【考点】科学记数法表示较大的数3.【答案】 D【分析】由左视图能够发现,几何体从左往右看共有 2 列,察看各选项知 D 选项中的几何体从左往右看共有 3 列, D 不切合,应选D.【考点】由三视图判断几何体 .4.【答案】 A【分析】分式方程整理得x 1 2 3 ,去分母,得 1 2 x 1 3 .应选A.1 x 1【考点】解分式方程.5.【答案】 A【分析】位于中间地点的两个数都是95 分,故中位数为95 分,数据中95 分出现了 3 次,出现次数最多,故这组数据的众数是95 分,应选 A.【考点】众数、中位数6.【答案】 B【分析】( 5)2 4 2 ( 2) 41 0 ,该方程有两个不相等的实数根,应选 B.【知识拓展】一元二次方程ax 2 bx c 0(a 0) 的根与鉴别式△ b2 4ac 有入下关系:当△0 时,方程有两个不相等的实数根;当△ =0 时,方程有两个相等的实数根;当△0 时,方程无实数根.【考点】一元二次方程根的鉴别式.7.【答案】 C【分析】对角线垂直的平行四边形是菱形;邻边相等的平行四边形是菱形;对角线相等的平行四边形是矩1 / 8四边形是菱形,练上所述,应选 C.【考点】菱形的判断、平行四边形的性质.8.【答案】 C【分析】画树状图得:共有16 种等可能的结果,两个数字都是正数的有 4 种状况,因此记录的两个数字都是正数的概率是 4 1,应选 C.16 4 【考点】列表法或画树状图法求概率.9.【答案】 DAD' AD 2,AO 1OD ' AD '2 OA2 3,C'D ' CD 2,C'D'//AB ,【分析】AB 1,2C(2, 3) ,应选D.【考点】正方形的性质、坐标与图形的性质、勾股定理10.【答案】 C【分析】连结 OD ' ,BO ' ,将半径为2,圆心角为 120 的扇形 OAB 绕点A逆时针旋转60 , OAO' 60 ,AO AO' ,△OAO' 是等边三角形,AOO ' 60 ,AOB 120 ,O 'OB 60 ,△OO'B 是等边三角形,AO 'B 120 ,AO'B' 120 ,B'O'B 120 ,O'B'B O'BB' 30 ,△OBB' 为直角三角形,BB' 2 3 ,图中暗影部分的面积S△OBB 'S扇形 O'OB 1 2 2 3 60 22 2 3 2 ,应选 C.2 360 3【考点】扇形面积的计算、等边三角形的判断和性质、旋转的性质.第Ⅱ 卷二、填空题11.【答案】 6【分析】原式8 2 6【考点】幂的运算、二次根式的运算.12.【答案】 1 x 2【分析】解不等式 x 2 0 ,得 x 2 ,解不等式x1 x ,得 x 1 ,2不等式组的解集为 1 x 2 .【考点】解不等式组 13.【答案】 m n【分析】反比率函数y2中 k2 0 , 此函效的图像在第二、四象限内,在每个象限内,y 随 x 的x增大而增大 . 0 1 2 ,A ,B 两点均在第四象限,m n .【考点】反比倒函数图像和性质 . 14.【答案】 12【分析】依据题意可知点 P 在 BC 上运动时,此时 BP 不停增大,由图像可知点P 从 B 向 A 运动时, BP 两次获得最大值 5. 即 BCBA 5 .因为 M 是曲线部分的最低点,此时 BP 最小,即 BPAC , BP 4.当BP AC 时,由勾股定理可知PC 3 . △BAC 为等腰三角形 . PA 3,AC6, △ABC 的面积为1 4 6 122【考点】动点问题、函数图像 . 15.【答案】2 1或 12【分析】①如图 1B 'MC. M 是 BC 的中点,BM1 2 1 ,当90 , B'与 A 重合BC;②如图 2,22当 MB'C 90 时, A 90 ,ABAC ,C 45 ,△CMB ' 是等腰直角三角形, CM 2MB',由折叠可知 BM B' M,CM2BM ,BC2 1,CMBM 2BM BM2 1,BM 1,综上所述,若 △MB' C 为直角三角形,则 BM 的长为2 1或1.2【考点】图形的折叠、等腰直角三角形的性质 三、解答题16.【答案】解: 原式4x 2 4xy y 2 x 2 y 2 5x 2 5xy9xy当 x 2 1 , y2 1时,原式 9 xy9( 2 1)( 2 1)9【考点】此题考察整式的混淆运算,化简求值问题17.【答案】解:( 1) 50,(2)(1 8% 32% 16% 4%) 360 40% 360 144 .即扇形统计图中扇形 C 的圆心角为144.28( 3)1000 560 .50即每个月零花费的数额x 在60 x 120 范围的人数为560.【考点】统计表、扇形统计图、用样本预计整体.18.【答案】(1)证明:AB AC ,ABC ACBCF // AB ,ABC FCBACB FCB ,即 CB 均分DCFAB是O 的直径,ADB 90 ,即 BD ACBF 是O 的切线,BF ABCF //AB ,BF CFBD BF( 2)AC AB 10 ,CD 4AD AC CD 10 4 6在 Rt ABD 中,BD2AB2AD21026264在 Rt BDC 中,2 2 2BCBD CD 64445即BC的长为4 5【分析】( 1)依据圆周定理求出BD AC ,依据切线在性质得出AB BF ,求出ACB FCB ,依据角均分线性质即可证明;( 2)由题得AC , AD ,依据勾股定理求出BD ,再依据勾股定理求出BC 即可。
2017年河南省中考数学试卷及解析

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012 B.7.44×1013 C.74.4×1013 D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C 为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】18:有理数大小比较.【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U3:由三视图判断几何体.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)【考点】W5:众数;W4:中位数.【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线相等是平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)【考点】LE:正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】连接OO′,BO′,根据旋转的想知道的∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)【考点】22:算术平方根;1E:有理数的乘方.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)【考点】CB:解一元一次不等式组.【分析】先求出不等式的解集,再求出不等式组的公共部分,【解答】解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)【考点】G6:反比例函数图象上点的坐标特征.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)【考点】E7:动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP 先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B先A运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)【考点】MC:切线的性质;KH:等腰三角形的性质.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(【考点】9A:二元一次方程组的应用.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)【考点】RB:几何变换综合题.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道基础题目.23.(11分)【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2,∴M(2,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年河南省中考数学试卷(后附答案解析)

2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B 的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB 上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A .B .2﹣C .2﹣D .4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣=6.【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A 种魔方和买4个B 种魔方钱数相同解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=20m ×0.8+15(100﹣m )×0.4=10m +600;w 活动二=20m +15(100﹣m ﹣m )=﹣10m +1500.当w 活动一<w 活动二时,有10m +600<﹣10m +1500,解得:m <45;当w 活动一=w 活动二时,有10m +600=﹣10m +1500,解得:m=45;当w 活动一>w 活动二时,有10m +600>﹣10m +1500,解得:45<m ≤50.综上所述:当m <45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个, 根据题意得:, 解得:. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(0<m ≤50),总价格为w 元,则购进B 种魔方(100﹣m )个, 根据题意得:w 活动一=26m ×0.8+13(100﹣m )×0.4=15.6m +520;w 活动二=26m +13(100﹣m ﹣m )=1300.当w 活动一<w 活动二时,有15.6m +520<1300,解得:m <50;当w 活动一=w 活动二时,有15.6m +520=1300,解得:m=50;当w 活动一>w 活动二时,有15.6m +520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN 最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
2017年河南省中考数学试卷含答案

数学试卷第1页(共16页)数学试卷第2页(共16页)绝密★启用前河南省2017年普通高中招生考试数学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中比1大的数是()A .2B .0C .1-D .3-2.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学记数法表示为()A .1274.410⨯B .137.4410⨯C .1374.410⨯D .147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是()4.解分式方程13211x x-=--,去分母得()A .12(1)3x--=-B .12(1)3x --=C .1223x --=-D .1223x -+=5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A .95分,95分B .95分,90分C .90分,95分D .95分,85分6.一元二次方程22520x x --=的根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定□ABCD 是菱形的只有()A .AC BD ⊥B .AB BC =C .AC BD=D .12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字1-,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A .18B .16C .14D .129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O .固定点A ,B ,在正方形沿箭头方向推,使点D落在y 轴正半轴上点D '处,则点C 的对应点C '的坐标为()A .(3,1)B .(2,1)C .(1,3)D .(2,3)10.如图,将半径为2,圆心角为120 的扇形OAB 绕A 逆时针旋转60 ,点O ,B 的对应点分别为O ',B ',连接BB ',则图中阴影部分的面积是()A .2π3B .π233-C .2π233-D .2π433-第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:324=-.ABCD毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共16页)数学试卷第4页(共16页)12.不等式组20,12x x x -⎧⎪⎨-⎪⎩≤<的解集是.13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为.14.如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是.15.如图,在Rt ABC △中,90A ∠= ,AB AC =,21BC =+,点M ,N 分别是BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上.若MB C '△为直角三角形,则BM 的长为.三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中21x =+,21y =-.17.(本小题满分9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表调查结果扇形统计图组别分组(单位:元)人数A030x ≤<4B 3060x ≤<16C6090x ≤<aD90120x ≤<b E 120x ≥2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a b +=,m =;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.(本小题满分9分)如图,在ABC △中,AB AC =,以AB 为直径的O 交AC 边于点D ,过点C 作CF AB ∥,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.(本小题满分9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45 方向,B 船测得渔船C 在其南偏东53 方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin535 ≈,3cos535 ≈,4tan533≈,2 1.41≈)图1图2数学试卷第5页(共16页)数学试卷第6页(共16页)20.(本小题满分9分)如图,一次函数y x b =-+与反比例函数(x )ky x=>0的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD △的面积为S ,求S的取值范围.21.(本小题满分10分)学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(本小题满分10分)如图1,在Rt ABC △中,90A ∠= ,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC的中点.图1图2(1)观察猜想图1中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN △的形状,并说明理由;(3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN △面积的最大值.23.(本小题满分11分)如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B.(1)求点B 的坐标和抛物线的解析式;(2)(,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共16页)数学试卷第8页(共16页)交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM △相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其他两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谱点”.请直接写出使得M ,P ,N 三点成为“共谱点”的m 的值.河南省2017年普通高中招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】31012-<-<<<.故选A.【考点】有理数大小的比较2.【答案】B【解析】将74.4万亿用科学记数法表示为137.4410⨯,故选B.【考点】科学记数法表示较大的数3.【答案】D【解析】由左视图可以发现,几何体从左往右看共有2列,观察各选项知D 选项中的几何体从左往右看共有3列,D 不符合,故选D .【考点】由三视图判断几何体.4.【答案】A【解析】分式方程整理得13211x x -=---,去分母,得()1213x --=-.故选A.【考点】解分式方程.5.【答案】A【解析】位于中间位置的两个数都是95分,故中位数为95分,数据中95分出现了3次,出现次数最多,故这组数据的众数是95分,故选A.【考点】众数、中位数6.【答案】B【解析】2(5)42(2)410∴∆=--⨯⨯-=>,该方程有两个不相等的实数根,故选B.【知识拓展】一元二次方程20(0)ax bx c a ++=≠的根与判别式24b ac =-△有入下关系:当0>△时,方程有两个不相等的实数根;当=0△时,方程有两个相等的实数根;当0<△时,方程无实数根.【考点】一元二次方程根的判别式.7.【答案】C【解析】对角线垂直的平行四边形是菱形;邻边相等的平行四边形是菱形;对角线相等的平行四边形是矩形,不一定是菱形;平行四边形中,对角线平分一组对角,可证明平行四边形的邻边相等,即可判定平行四边形是菱形,练上所述,故选C.【考点】菱形的判定、平行四边形的性质.8.【答案】C【解析】画树状图得:共有16种等可能的结果,两个数字都是正数的有4种情况,所以记录的两个数字都是正数的概率是41164=,故选C.【考点】列表法或画树状图法求概率.9.【答案】D【解析】'2AD AD == ,112AO AB ==,'OD ∴==,''2C D CD == ,''//C D AB,C ∴,故选D .【考点】正方形的性质、坐标与图形的性质、勾股定理10.【答案】C【解析】连接'OD ,'BO , 将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,'60OAO ∠=︒,'AO AO =,'OAO ∴△是等边三角形,'60AOO ∴∠=︒,120AOB ∠=︒ ,'60O OB ∴∠=︒,'OO B △是等边三角形,'120AO B ∴∠=︒,数学试卷第9页(共16页)数学试卷第10页(共16页)''120AO B ∠=︒ ,''120B O B ∴∠=︒,''''30O B B O BB ∴∠=∠=︒,'OBB △为直角三角形,'BB =∴图中阴影部分的面积2''16022223603OBB O OB S S ππ⨯=-=⨯⨯= 扇形△,故选C .【考点】扇形面积的计算、等边三角形的判定和性质、旋转的性质.第Ⅱ卷二、填空题11.【答案】6【解析】826=-=原式【考点】幂的运算、二次根式的运算.12.【答案】12x -<≤【解析】解不等式20x -≤,得2x ≤,解不等式12x x -<,得1x >-,∴不等式组的解集为12x -<≤.【考点】解不等式组13.【答案】m n<【解析】 反比例函数2y x=-中20k =-<,∴此函效的图像在第二、四象限内,在每个象限内,y 随x 的增大而增大.012<<,A ∴,B 两点均在第四象限,m n ∴<.【考点】反比倒函数图像和性质.14.【答案】12【解析】根据题意可知点P 在BC 上运动时,此时BP 不断增大,由图像可知点P 从B向A 运动时,BP 两次取得最大值5.即5BC BA ==.由于M 是曲线部分的最低点,∴此时BP 最小,即BP AC ⊥,4BP =.当BP AC ⊥时,由勾股定理可知3PC =.BAC △为等腰三角形.3PA ∴=,6AC ∴=,ABC ∴△的面积为146122⨯⨯=【考点】动点问题、函数图像.15.【答案】12+或1【解析】①如图1,当'90B MC ∠=︒,'B 与A 重合.M 是BC 的中点,1122BM BC +∴==;②如图2,当'90MB C ∠=︒时,90A ∠=︒ ,AB AC =,45C ∴∠=︒,'CMB △是等腰直角三角形,'CM ∴=,由折叠可知'BM B M =,CM ∴=,1BC =+,1CM BM BM ∴+=+=,1BM ∴=,综上所述,若'MB C △为直角三角形,则BM 的长为12或1.【考点】图形的折叠、等腰直角三角形的性质三、解答题16.【答案】解:222224455x xy y x y x xy=+++--+原式9xy=当1x =,1y =时,91)9xy ==+=原式【考点】本题考查整式的混合运算,化简求值问题17.【答案】解:(1)50,28.8(2)(18%32%16%4%)36040%360144----⨯︒=⨯︒=︒.即扇形统计图中扇形C 的圆心角为144︒.(3)28100056050⨯=.即每月零花钱的数额x 在60120x ≤<范围的人数为560.【考点】统计表、扇形统计图、用样本估计总体.数学试卷第11页(共16页)数学试卷第12页(共16页)18.【答案】(1)证明:AB AC = ,ABC ACB ∴∠=∠//CF AB ,ABC FCB ∴∠=∠ACB FCB ∴∠=∠,即CB 平分DCF ∠AB 是O 的直径,90ADB ∴∠=︒,即BD AC ⊥BF 是O 的切线,BF AB ∴⊥//CF AB ,BF CF ∴⊥BD BF∴=(2)10AC AB == ,4CD =1046AD AC CD ∴=-=-=在Rt ABD ∆中,2222210664BD AB AD =-=-=在Rt BDC ∆中,BC ===即BC的长为【解析】(1)根据圆周定理求出BD AC ⊥,根据切线在性质得出AB BF ⊥,求出ACB FCB ∠=∠,根据角平分线性质即可证明;(2)由题得AC ,AD ,根据勾股定理求出BD ,再根据勾股定理求出BC 即可。
2017河南省数学中招考试试题及解析

2017年中招考试数学试卷
一.选择题(共10小题)
1.下列各数中比1大的数是()
A.2 B.0 C.﹣1 D.﹣3
2.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()
A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015
3.某几何体的左视图如图所示,则该几何体不可能是()
A.B.C.D.
4.解分式方程﹣2=,去分母得()
A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()
A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()
A.有两个相等的实数根B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
7.如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD 是菱形的只有()
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分
别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域
的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正
数的概率为()
A.B.C.D.
9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河南省中招数学试题与答案谷瑞林一、选择题(每小题3分,共30分)1.下列各数中比1大的数是(A)A. 2B.0C.-1D.-32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示为(B)A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10143.某几何体的左视图如下图所示,则该几何体不可能是(D)4.解分式方程132x11x-=--,去分母的(A)A.1-2(x-1)=-3B. 1-2(x-1)=3 C . 1-2x-2=-3 D. 1-2x+2=35.八年级某同学6次数学测验的成绩分别是:80分,85分,95分,95分,95分,100分,该图同学这6次成绩的众数和中位数分别是(A)A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分6.一元二次方程2x2-5x-2=0的根的情况是(B)A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根 D.没有实数根7.如图,在平行四边形ABCD中,对角线AC、BD相交于O,添加下列条件不能判定平行四边形ABCD是菱形的只有(C)A.AC⊥BDB.AB=BCC.AC=BDD.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘2次,每次转盘停止后记录指针所指区域的数字(当指针正好直在分界线上是,不计,重转),则记录的两个数字都是正数的概率是(C)A.18B.16C.14D.12第7题21OBAD第8题-12109.我们知道:四边形具有不稳定性。
如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D/处,则点C的对应点C/点的坐标是(D)A.1)B.(2,1) C.(1) D.(210.如图,将半径为2,圆心角为1200的扇形OAB绕点A 逆时针旋转600,点O,B的对应点分别是O/,B/,连接BB/,则图中阴影部分的面积是(C)A.23πB.3πC.32πD.32π二、填空题(每小题3分,共15分)11.计算:23= 612.不等式组x20x1x2-≤⎧⎪⎨-⎪⎩<的解集是-1≤x≤213.已知点A(1,m),B(2,n)在反比例函数y=-2x的图像上,则m与n的大小关系为m<n14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A.图2是点P 运动时,线段BP的长度y随时间x变化的关系图像,其中M为曲线部分的最低点,则△ABC的面积是12 。
15.如图,在Rt△ABC中,∠A=900,+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B/始终落在边AC上。
若△MB/C为直角三角形,则BM的长为1或1 2 .第9题第10题B/A第15题CAB图1第14题CB【解析】:如图(1)当B /点与A 重合时,△MB /C 为直角三角形,∠MNB /=900=∠MNB=∠B /MC,这时M 是BC 的中点,BM=12;如图(2)当MB /∥AB 时,△MB /C 为直角三角形,∠MB /N=∠MBN=∠AB /N=450,这时NB /∥BC,可证四边形MBNB /是菱形,则BM=MB /, 设BM=MB /=x ,则x ,∴+1,∴x=1,综上BM=1或12BA B三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值()()()()22x y x y x y 5x x y ++-+--,其中,-1解:原式=()()()()22x y x y x y 5x x y ++-+-- =4x 2+4xy+y 2+x 2-y 2-5x 2+5xy=9xy当+1,-1时, 原式=9+1-1)=917.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分学生,根据调查的结果,绘制出了如下两个尚步完整的统计图表:调查结果扇形统计图调查结果统计表CB D 32%16%m%4%A E根据以上图表,解答下列问题(1)填空:这次被调查的同学有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000名,请估计每月零花钱的数额x在60≤x<120范围内的人数。
解:(1)50,28,8.(2)3600×(1-32%-8%-4%-16%)=3600×40%=1440(3)1000×2850=560(人)答:每月零花钱的数额x在60≤x<120范围内的人数为560人。
18.(9分)如图,在△ABC中,AB=AC, 以AB为直径作⊙O分别交AC于点D,过C作CF∥AB,与过点B的切线交于点F,连接BD。
(1)求证:BD=BF(2)若AB=10,CD=4,求BC的长。
(1)证明:∵AB=AC,∴∠ABC=∠ACB∵AB∥CF,∴∠ABC=∠BCF,∴∠ACBE=∠BCF,又AB是直径,∴∠ADB=∠BDC=900,∵BF是⊙O切线,∴AB⊥BF,又∵AB∥CF,∴∠F=900,∴△BDC≌△BFC(AAS)∴BD=BF(2)解:∵AB=10,CD=4,∴AD=6,在Rt△ADB中,BD=8,由(1)BF=BD=8,CF=CD=4,在Rt△BCD中,=19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A的正南方向5海里处,A船测得渔船C在其南偏东450方向,B船测得渔船C在其南偏东530方向.已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin530≈45,con530≈35,tan530≈43≈1.41)FC解:过点C 作CD ⊥AB 于D,设BD 为x , 在Rt △ACD 中,∠A=450,∴AD=DC=x+5 在Rt △BDC 中,∠CBD=530,∴DC BD=tan 530, 得x 54x 3+=∴x=15, 则 ∴A 到C 所用的时间为30≈0.94(h ) B 到C 所用时间为:2525=1(h ),0.94<1,∴至少要等0.94小时。
20.(9分)如图,一次函数y=-x+b 与反比例函数y=kx (x >0)的图像交于点A(m ,3)和B (3,1)。
方共100个(其中A种魔方不超过50个)。
某商店有两种优惠活动,如图所示,请根据以上信息,说明选择哪种优惠活动购买魔方更实惠。
解:(1)设A种魔方的单价a元,B种魔方的单价b元则2a+6b1303a=4b=⎧⎨⎩解得:a20b15=⎧⎨=⎩答:A种魔方的单价20元,B种魔方的单价15元.(2)设A种魔方的数量x个,则B种魔方的数量(100-x)个,总费用为W元。
活动一:W1=0.8×20x+0.4×15(100-x)=10x+600活动二:W2=20x+15[(100-x)-x]=-10x+1500当W1>W2时,即10x+600>-10x+1500,解得x<45;∴当0<x<45时,活动一方案更优惠。
当W1=W2时,即10x+600=-10x+1500,解得x=45;∴当x=45时,活动一活动二均可。
当W1<W2时,即10x+600<-10x+1500,解得x>45;又x≤50,∴45<x≤50,∴当45<x≤50时,活动二方案更优惠。
综上:当0<x<45时,活动一方案更优惠;当x=45时,活动一活动二均可;当45<x≤50时,活动二方案更优惠。
22.(10分)如图1,在Rt△ABC中∠A=900,AB=AC,点D、E分别中边AB、AC 上,AD=AE,连接DC,点M,P,N分别为DE、DC、BC的中点。
(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是。
(2)探究证明把△ADE绕点A逆时针旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由。
(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10.请直接写出△PMN面积的最大值。
图2图1N N CA BA解:(1)PM=PN,PM ⊥PN,(2)(2)△PMN 是等腰直角三角形,理由如下: ∵△ABC 和△ADE 都是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=900,∴∠BAD+∠DAC=∠DAC+∠CAE,即∠BAD=∠DAE, ∴△BAD ≌△CAE (SAS ),∴BD=CE , ∠ABD=∠ACE 延长BD 交CE 于H ,交AC 于G,∵∠ABD=∠ACE ,∠AGB=∠HGC,∴∠CHG=∠BAG=900, ∴BD ⊥CE,又点M,P,N 分别为DE 、DC 、BC 的中点, ∴PM 是△CDE 的中位线,∴PM ∥CE,PM=12CE, 同理PN ∥BD,PN=12BD, 又BD=CE ,∴PM=ON ,又BD ⊥CE ,∴PM ⊥PN ∴△PMN 是等腰直角三角形。
(3)492如图,当点D 在BA 的延长线上时,△PMN 面积的最大。
这时,BD=CE=10+4=14,则PN=PM=7,△MPN 是等腰直角三角形, S=12PN ×PM=12×7×7=492. 23.(11分)如图,直线y=-23x+c 与x 轴于点A (3,0),与y 轴于点B,抛物线y=-43x 2+bx+c 经过点A,B 图2CBAB(1)求点B 的坐标及抛物线的解析式.(2)M (m ,0)为x 轴上一动点,过点M 且垂直x 轴的直线与直线AB 及抛物线分别交于P,N 。
①点M 在线段OA 上运动,若以B,P,N 为顶点的三角形与△APM 相似,求点M 的坐标。
②点M 在x 轴上自由运动,若三个点M,P,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N 三点为“共谐点”。
请直接写出使得M,P,N 三点成为“共谐点”的m 值。
0),得 y , B (0,-2)∴2033b+c 32c =-⨯+⎪⎨⎪=⎩,解得:10b 3c 2⎧=⎪⎨⎪=⎩ ∴抛物线的解析式是y=-43x 2+103x+2 (2)∵点M 的坐标为(m ,0),由题意得∴N (m ,-43m 2+103m+2),P (m ,-23m+2) 若△APM 相似于△BPN ①若△APM ~△BPN则∠AMP=∠BNP=900, ∴BN ∥x 轴, ∴B,N 的纵坐标相同为2,∴-43m 2+103m+2=2,解得:m=52或m=0(舍去) ∴M (52,0)②若△APM ~△NPB ,则∠MAP=∠BNP 过点P 作BH ⊥MN 交MN 于H,则H (m ,2), 则BH=M,OB=2,NH=-43m 2+103m+2-2,OA=3. ∵∠MAP=∠BNP ,∴tan ∠MAP=tan ∠BNP , ∴241033m23m m -+=,解得:m=118或m=0(舍去)∴M (118,0)综上:M (52,0)或M (118,0)(3) 12或14-或-1.【提示】∵点M 的坐标为(m ,0),由题意得 ∴N (m ,-43m 2+103m+2),P (m ,-23m+2) ①当点M 在OA 上时,NP=-43m 2+103m+2+23m-2=-43m 2+4m PM=-23m+2∴-43m 2+4m=-23m+2,解得:m=12或m=3(舍去)②当点M 在点A 右边(在最左边)时,MP=23m-2,PN=-23m+2+43m 2-103m-2=43m 2-4m∴23m-2=43m 2-4m ,解得:m=-1或m=3(舍去) ③当点M 在点O 左边,抛物线与x 轴左边交点之间时PN=-23m+2+43m 2-103m-2=43m 2-4m,NM=-43m 2+103m+2 ∴43m 2-4m=-43m 2+103m+2,解得:m=14-或m=3(舍去) 综上:m=12或14-或-1。