行列式的计算方法比较及其应用_毕业论文开题报告
行列式的计算方法小论文

行列式的计算方法行列式计算方法总结及简单应用摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。
并举出了几种常见的行列式应用。
关键词:排列 行列式 行列式计 行列式计算的基本方法:基本的行列式解法包括:性质法、化三角形法、代数余子式法等1、利用行列式的性质计算例1: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称n D 为反对称行列式,证明:奇数阶反对称行列式为零.证:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式n D 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----, 由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ =n n D )1(-当n 为奇数时,得n D =n D ,因而得n D = 0.2、 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例2 计算n 阶行列式n ab b ba b D bb a=解:()[]a b b a bbb n a D n1111-+=()[]ba b a bbb n a ---+=000011()[])1()(1---+=n b a b n a3、代数余子式法在一个n 级行列式D 中,把元素ij a 所在的行与列划去后,剩下的2)1(-n 个元素按照原来的次序组成的一个)1(-n 阶行列式ij M ,称为元ij a 的余子式,ij M 带上符号)()1(j i +-称为的ij a 代数余子式,记作ij j i ij M A )()1(+-=定理1: 行列式等于其第 i 行诸元素与各自代数余子式的乘积之和 , 即ij nj ij nn nn ij ij A a A a A a A a A a A a D ∑==+++++=1131312121111证:先证特殊情况元素11a 位于第一行、第一列,而该行其余元素均为零;1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000ni iinn n nna a a D a a a a a a =+++++++++111211112111121121212120000nn n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++ 1122i i i i in in a A a A a A =++同理有:nj nj j j j j A a A a A a D +++= 2211.例3 计算四阶行列式 4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.证: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a bD a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.4、范德蒙得行列式法根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式.其中范德蒙行列式就是一种.这种变形法是计算行列式最常用的方法.例1 计算行列式1222211221212121122111111n n nn n n n n n n nx x x D x x x x x x x x x x x x ------+++=++++++解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得范德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏参考文献[1] 蒋省吾. 杨辉三角中的行列式[J],教学通报,1988,5:8-10 [2] 张禾瑞.郝新高等代数[M].北京:人民教育出版社,1996. [3] 王品超.高等代数新方法[M].济南,山东教育出版社,1989.[4] 北京大学数学系几何与代数教研室代数小组. 高等代数(第三版)[M]. 北京: 高等教育出社,2003.[5] 同济大学数学教研室.工程数学线性代数(第三版) [M].北京:高等教育出版社,1999. [6] 王萼芳, 石生明修订. 高等代数(第三版)[M]. 北京: 高等教育出版社, 2003. [7] 李宇寰.组合数学[M].北京:北京师范大学出版社,1988. [8] 杨振声.组合数学及其算法[M].北京:中国科学技术出版社,1997. [9] 陈景润.组合数学简介[M].天津:天津科学技术出版社,1988.。
行列式的计算方法及应用

行列式的计算方法及应用行列式是线性代数中一个重要的概念,它是一个正方形矩阵的特殊的函数,用于描述线性方程组的解的唯一性、可解性以及一些几何性质。
本文将介绍行列式的计算方法及其应用。
一、行列式的计算方法1.二阶行列式的计算方法对于一个二阶的矩阵A=[[a,b],[c,d]],其行列式的计算方法为:det(A) = ad - bc。
2.三阶行列式的计算方法对于一个三阶的矩阵A=[[a,b,c],[d,e,f],[g,h,i]],其行列式的计算方法为:det(A) = aei + bfg + cdh - ceg - afh - bdi。
3.一般的行列式计算方法对于一个n阶的矩阵A,其行列式的计算方法可以通过展开定理进行计算。
展开定理的思想是通过将行列式展开为更小规模的行列式的和来计算。
假设A为n阶矩阵,其元素为a[i][j],行列式记为det(A),则行列式的计算方法为:det(A) = a[1][1] * A[1][1] + (-1)^(1+2) * a[1][2] * A[1][2] + ... + (-1)^(1+n) * a[1][n] * A[1][n]其中,A[1][k]为将矩阵A的第1行和第k列删去后的(n-1)阶矩阵,det(A)为其中的行列式。
二、行列式的应用1.线性方程组的解的唯一性和可解性判断对于一个线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b 为常数向量。
若A的行列式不为0,则方程组有唯一解;若A的行列式为0,则方程组可能有无穷多个解或无解。
2.矩阵的可逆性判断一个矩阵A为可逆矩阵的充分必要条件是其行列式不为0。
可逆矩阵在数值计算和理论推导中有着重要的应用,例如求解线性方程组的解、求逆矩阵以及解线性变换等。
3.几何性质的判断行列式可以用来判断空间中向量的线性相关性和共面性。
对于一个n 维空间中的n个向量,若这些向量的行列式为0,则说明这些向量线性相关,存在一些向量可以由其他向量线性表示;若行列式不为0,则说明这些向量线性无关,对应n维空间中的一个n维平行体。
行列式的计算方法和应用[开题报告]
![行列式的计算方法和应用[开题报告]](https://img.taocdn.com/s3/m/d3fdf277b90d6c85ed3ac636.png)
毕业论文开题报告信息与计算科学行列式的计算方法和应用一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势)1.选题的背景行列式理论产生于十七世纪末,到十九世纪末,它的理论体系已基本形成了。
1693年,德国数学家莱布尼茨(Leibnie,1646—1716)解方程组时将系数分离出来用以表示未知量,得到行列式原始概念。
当时,莱布尼兹并没有正式提出行列式这一术语。
1729年,英国数学家马克劳林(Maclaurin,1698—1746)以行列式为工具解含有2、3、4个末知量的线性方程组。
在1748年发表的马克劳林遗作中,给出了比菜布尼兹更明确的行列式概念。
1750年,瑞士数学家克拉默(Gramer,1704—1752)更完整地叙述了行列式的展开法则并将它用于解线性方程组。
即产生了克拉默法则。
1772年。
法国数学家范德蒙(Vandermonde,1735—1796)专门对行列式作了理论上的研究,建立了行列式展开法则,用子式和代数余子式表示一个行列式。
1172年,法国数学家拉普拉斯(Laplace。
1749梷1827)推广了范德蒙展开行列式的方法。
得到我们熟知的拉普拉斯展开定理。
1813一1815年,法国数学家柯西(Cauchy,1789—1857,对行列式做了系统的代数处理,对行列式中的元素加上双下标排成有序的行和列,使行列式的记法成为今天的形式。
英国数学家凯菜(Cayley,于1841年对数字方阵两边加上两条竖线。
柯西证明了行列式乘法定理。
1841年,德国数学家雅可比(jacobi)发表的《论行列式的形成与性质》一文,总结了行列式的发展。
同年,他还发表了关于函数行列式的研究文章,给出函数行列式求导公式及乘积定理。
至19世纪末,有关行列的研究成果仍在式不断公开发表,但行列式的基本理论体系已经形成。
行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的应用早已超出了代数的范围,成为解析几何、数学分析、微分方程、概率统计等数学分支的基本工具,因此对许多人来说,掌握行列式的计算是重要的。
行列式不同计算方法的比较研究

行列式不同计算方法的比较研究行列式是线性代数中的重要概念,它可以用来描述矩阵的性质、求解方程组以及计算变换的效果。
在数学的学习和实际应用中,行列式的计算是一个非常常见的问题。
不同的行列式计算方法有着各自的特点和适用范围,本文将从代数余子式展开、三角形行列式和拉普拉斯展开等几种常见的行列式计算方法进行比较研究,以帮助读者更好地理解行列式计算方法的差异和适用情况。
一、代数余子式展开代数余子式展开是计算行列式的一种常见方法,它利用代数余子式和行列式的性质来逐步简化行列式的计算过程。
对于一个n阶行列式而言,代数余子式展开的公式可以表示为:|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \cdots + a_{1n}A_{1n}a_ij表示矩阵A中第i行第j列的元素,A_ij表示相应元素的代数余子式,它的计算公式为:A_{ij} = (-1)^{i+j}M_{ij}M_ij表示去掉第i行第j列的剩余元素构成的(n-1)阶矩阵的行列式。
由此可见,代数余子式展开的计算过程是逐步将行列式转化为更小阶的行列式,并利用其性质简化计算。
代数余子式展开的优点在于其计算过程相对直观,容易理解和掌握。
但当行列式的阶数较大时,代数余子式展开的计算过程会相当复杂,需要大量的计算步骤和耐心。
代数余子式展开不适用于特殊的行列式,比如对称矩阵、三对角矩阵等形式特殊的矩阵,此时需要采用其他更适合的方法来计算行列式。
二、三角形行列式三角形行列式是一种通过行变换将矩阵转化为上(下)三角形矩阵后直接计算行列式的方法。
对于一个n阶行列式而言,通过一系列的行变换,可以将矩阵A转化为一个上三角形矩阵U,此时行列式的计算变得十分简单,可以直接通过对角元素的乘积来得到行列式的值。
三、拉普拉斯展开在计算行列式的值时,拉普拉斯展开需要将行列式展开为一系列的子行列式,并根据它们的性质逐步简化计算过程。
这种方法的优点在于能够通过行列式的性质来简化计算,特别是对于特殊形式的矩阵,比如对称矩阵、三对角矩阵等,拉普拉斯展开可以通过行列式的性质来减少计算步骤和简化计算过程。
行列式的计算方法 毕业论文 (2)

行列式的计算方法摘要行列式最早是由解线性方程而引进的,时至今日,行列式已不止如此,在许多方面都有广泛的应用。
本文,我们学习行列式的定义、性质,化为“三角形”行列式,利用行列式的性质,使行列式化简或化为“三角形”行列式计算。
利用拉普拉斯展开定理,按某一行(列)或某几行(列)展开,使行列式降级,利用范德蒙行列式的计算公式,利用递推关系等,在计算行列式中最常用的是利用行列式的性质,和按某行(列)展开行列式,而某些方法是针对于某些特殊类型的行列代而言,对一般的n级行列式的计算,往往要利用行列式的性质和拉普拉斯展开定理,导出一个递推公式,化为2级或3级行列式,以及化为“三角形”行列式来计算。
关键词计算方法线性方程组行列式引言解方程是代数中一个基本问题,特别是在中学代数中,解方程占有重要地位。
因此这个问题是读者所熟悉的。
譬如说,如果我们知道了一段导线的电阴r,它的两端的电位差v,那么通过这段导线的电流强度i,就可以由关系式vir ,求出来。
这就是通常所谓解一元一次方程的问题。
在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组。
而n 元一次方程组,即线性方程组的理论,在数学中是基本的也是重要的内容。
在中学代数课中学过,对于二元线性方程组:⎩⎨⎧=+=+22221211212111b x a x a b x a x a 当二级行列式022211211≠a a a a 时,该方程组有唯一解,即222112112221211a a a a ab a b x =,222112112211112a a a a b a b a x =,对于三元线性方程组有相仿的结论。
为了把此结果推广到n 元线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********的情形。
我们首先要掌握n 级行列式的相关知识。
行列式的解法技巧-[开题报告]
![行列式的解法技巧-[开题报告]](https://img.taocdn.com/s3/m/3c50bd4a050876323012126e.png)
毕业论文开题报告数学与应用数学 行列式的解法技巧一、选题的背景与意义行列式理论活跃在数学的各个分支,同时也是现代物理及其他一些科学技术领域中不可缺少的工具.作为近世线性代数的一个基本分支,行列式理论却有着悠久的历史.行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同.日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨.作为行列式本身而言,我们可以发现它的两个基本特征:当行列式是一个三角形行列式时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个基本思想;行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法.这两种方法也经常一起使用,而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、因式分解法等可以看成是它们衍生出的具体方法[1].二、研究的基本内容和拟解决的主要问题本文的主要目的是通过查阅各种相关文献,寻找各种相关信息,来得到并了解行列式的一些计算技巧所涉及到的方法和概念.首先我们介绍一下线性方程组与行列式的关系[2-7].设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111,若常数项n b b b ,,,21Λ不全为零,则称次方程组为非齐次线性方程组;若常数项n b b b ,,,21Λ全为零,此时称方程组为齐次线性方程组.下面是著名的克拉默法则.如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111 (1) 的系数行列式不等于零,即0212222111211≠=nnn n nna a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛ那么线性方程组(1)有解,并且解是唯一的,解可以表示为DD x D Dx D D x D D x n n ====,,,,232211Λ. 其中j D 是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式,即nnj n n j n n nj j j a a b a a a a b a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ1,1,111,111,111+-+-=定理1[7]如果线性方程组(1)的系数行列式0≠D ,则(1)一定有解,且解是唯一的.定理2[7] 如果线性方程组(1)无解或有两个不同的解,则它的系数行列式必为零. 用克拉默法则解方程组的两个条件 (1)方程个数等于未知量个数. (2)系数行列式不等于零.克拉默法则建立了线性方程组的解和已知的系数与常数项之间的关系.它主要适用于理论推导.接下来我们介绍一下行列式的余子式和代数余子式的概念以及与行列式计算的关系. 定义[1]在一个n 级行列式D 中任意选定k 行k 列()n k ≤,位于这些行和列的交叉点上的2k 个元素按照原来的次序组成一个k 级行列式M ,称为行列式D 的一个k 级子式;在D 中划去这k 行k 列后余下的元素按照原来的次序组成一个k n -级行列式'M 称为k 级子式M 的余子式.例 1 在四级行列式310120012104121-=D中选定第一、三行,第二、四列得到一个二级子式M ,1042=M ;M 的余子式1042'=M .定义 设D 的k 级子式M 在D 中所在的行、列指标分别为k i i i ,,,21Λ与k j j j ,,,21Λ,则M 的余子式'M 前面加上符号()()()k k j j j i i i ,,,,,,21211ΛΛ+-后称为M 的代数余子式.引理 行列式D 的任一个子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的一项,而且符号也一致.定理 (拉普拉斯定理) 设在行列式D 中任意取定了)11(-≤≤n k k 行,由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积之和等于行列式D .定理 两个n 级行列式nnn n n n a a a a a a a a a D ΛM O M M ΛΛ2122221112111=与nnn n nn b b b b b b b b b D ΛM O M M ΛΛ2122221112112= 的乘积等于一个n 级行列式nnn n nnc c c c c c c c c C ΛM O M M ΛΛ212222111211=其中∑==n k kj ik ij b a c 1. 定义 行列式113121122322213211111----n nn n n n n x x x x x x x x x x x x ΛM M M M ΛΛΛ称为n 阶范德蒙(Vandermonde )行列式,由于行列式Tn n V V =,因此范德蒙行列式也可写为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=----121323312222112111111n n nnn n n x x x x x x x x x x x x V ΛM MM M ΛΛΛ则有∏≤<≤-=nj i i jx xV 1)(.在理解行列式有关概念及性质的基础上,我们可以通过一些合理的方法对各类型行列式的特点来求其解[1-15]。
行列式的计算技巧及其应用毕业论文.docx

本科生毕业论文(设计)题目:行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要 (1)关键词 (1)0、前言 (1)1、基础知识及预备引理 (2)1.1行列式的由来及定义 (2)1.2行列式的性质 (3)1.3拉普拉斯定理及范德蒙德行列式的定义 (4)2、行列式的计算方法 (4)2.1定义法 (4)2.2利用行列式的性质(化三角型)计算 (5)2.3拆行(列)法 (6)2.4加边法(升阶法) (6)2.5范德蒙德行列式的应用 (7)3、n阶行列式的计算 (8)4、行列式的应用 (9)4.1行列式在代数中的应用 (9)4.2行列式在几何中的应用 (10)参考文献 (10)致谢 (11)行列式的计算技巧及应用数学与应用数学12101班谢芳指导老师颜亮摘要:行列式的计算是高等代数中一个重要的知识点,也是我们学好高等代数的重要工具 .无论是高等数学领域还是现实生活中的实际问题,都或多或少的包含了行列式的思想,所以学好行列式尤为重要.本文主要介绍几种行列式的思想,并从实例进行具体说明,介绍方法的同时加以应用.并通过举例说明行列式在代数和几何方面的应用,从而更好的了解行列式的普遍性.关键词:行列式,线性方程组,计算,方法Abstract: the calculation of the determinant is an important part of the knowledge of higher algebra, also an important tool for us to learn advanced algebra. Both higher mathematics and practical problems in real life, more or less contains the ideas of the determinant, so learning determinant is particularly important. This paper mainly introduces several kinds of determinant, and illustrate the application of the determinant in algebra and geometry, so we can understand the universality of the determinant better.Keywords: determinant, system of linear equations, calculation, the method0前言行列式是学习线性代数的基本工具,行列式的解法有很多种,在解题过程中我们先要观察行列式的特征,然后再考虑用什么样的方法解.本文主要介绍几种常用的解行列式的方法,如定义法、化三角型法、拆行(列)法、加边法、利用范德蒙德行列式计算相关行列式的方法,并通过一定的例题对所介绍的方法进行透彻的讲解,使之更好的理解.当然,解行列式的方法还有很多,只要我们善于总结.行列式在数学的很多领域都有广泛的应用,在线性代数和高等数学中更是一个重要的解题工具.本文主要介绍行列式在代数和几何方面的应用.1 线性方程组与行列式1.1 行列式的由来及定义在中学数学中,我们学习了含有一个未知数和两个未知数的方程的解法,那在这里我们来讨论含n 个未知数n 个方程的多元一次方程组即线性方程组的解法.首先我们先来看未知数的个数不多的时候的情形.我们先讨论n=2时的二元线性方程组 {0212111=+x a x a 0222121=+x a x a (1)为了解这一类方程,我们将引入一个很重要的工具——行列式 我们把线性方程组(1)的系数作成二阶行列式,1221221122211211a a a a a a a a -=当a a a a 22211211≠0时,方程组(1)有唯一解x 1=a a a a ab a b 22211211222121x 2=a a a a b a b a 22211211221111同样的,对于三元线性方程组{b x a x a x a 1313212111=++b x a x a x a 3323222121=++b x a x a x a 3333232131=++ (2) 的系数作成三阶行列式D=a a a a a a a a a 333231232221131211= a a a a a a a a a a a a a a a a a a 322311332112312213322113312312332211---++当0D ≠时,那么方程组(3)有解D D D D D D x x x 332211,,===其中D 1=a a b a a b a a b 333232322213121,D 2=a b a a b a a b a 333312322113111,D 3=b a a b a a b a a 332312222111211我们的目的是要把二阶、三阶行列式推广到n 阶行列式,然后用这一工具来解含有n 个未知量n 个方程的线性方程组.定义1[1]用符号 ||a a a a a a a a a nnn n n n 212222111211||表示n 阶行列式指的是n!项的代数和,这些项是所有取自该行列式不同行与不同列上的n 个元素的乘积a 1j 1a 2j 2⋯a nj n ,项的符号为(−1)π(j 1j 2⋯j n ),也就是说,当j 1j 2⋯j n 为偶排列时,这一项的符号为正,当j 1j 2⋯j n 为奇排列时符号为负.这一定义还可以表示成||a a a a a a a a a nnn n n n212222111211||=∑(−j 1j 2⋯j n 1)π(j 1j 2⋯j n )a 1j 1a 2j 2⋯a nj n1.2 n 阶行列式性质:[2]引理1 把行列式的行变成列、列变成行,行列式的值不变.引理2 把一个行列式的两行(或两列)交换位置,行列式的值改变符号.引理3 把行列式的某一行(或一列)的所有元素乘以某个数c,等于用数c 乘原行列式.引理4 若一个行列式的两行(或两列)的对应元素成比例,那么行列式的值等于零.引理5 把行列式某一行(或列)的所有元素同乘以一个数c,加到另一行(或一列)的对应元素上,所得行列式的值与原行列式的值相等.引理6 行列式某一行(或列)的各元与另一行(或列)对应元的代数余子式的乘积之和等于零.1.3 拉普拉斯定理及范德蒙德行列式的定义拉普拉斯定理]3[ 设D 为一n 阶行列式,任意取定D 中的k (≤1k<n )行,由这k 行元素所构成的一切k 阶子式与它们所对应的代数余子式的乘积的和等于行列式D 的值.用符号可以表示为D=A i mi i ∑=1N ,其中m=C k n行列式||a a a a a a a a a n nn n n n 112112222121111---||叫作一个n 阶范德蒙德行列式. 2 行列式的计算2.1 定义法例1 计算行列式D=|d hc g f b e a 0000000|解 由定义可知,D 是一个4!=24项的和,展开式的一般项为a 1j 1a 2j 2⋯a nj n ,在这个行列式中,除了abcd,afgd,ebch,efgh 外,其余各项均含有0,故乘积为0,与上面四项相对应列标的排列依次为1234,1324,4231,4321,而π(1234)=0,π(1324)=1,π(4231)=5, π(4321)=6,故D=abcd+efgh-afgd-ebch.利用定义法求解行列式时,只适合一些比较简单的行列式,如对角线行列式,三角行列式等,定义法常用于解低阶的行列式,对于一些高阶的行列式,我们将介绍其他方法来求解.2.2 利用行列式的性质计算例2 证明n 阶上三角行列式(主对角线以下的元素都为零)]4[|a a a a a a nnnn 0022211211|=a a a nn 2211证明 在这个行列式中,当j i <i 时,元素a j ii =0,由定义可知所有取自各行各列的项的乘积除了a a a nn 2211外,其余项中均含有因子0,故乘积为零,又π(a a a nn 2211)=0,故|a a a a a a nn nn00022211211|=a a a nn 2211特别的λλλn00021=λλλn 21 由性质1可知,下三角行列式也等于主对角线上元素的积.那么对于可化为三角行列式的计算,就可先利用行列式的性质把它变成三角行列式例3 计算行列式2111121********* 解 把行列式除开第一行外其他行上的对应元素分别减去第一行上的元素,得原式=1000010000101111=1 如果一个行列式可化为三角行列式,我们可以优先考虑化成三角形后再进行计算,计算起来更简便.2.3 按行(列)展开按行(列)展开又称降阶法,按某一行展开时,可以使行列式降一阶,更一般的,如果可以用拉普拉斯定理就可以降很多阶了.但为了让计算更加简便,我们一般先利用行列式的性质使行列式中的元出现尽可能多的零,然后再展开.例4 计算行列式4122743221010113-=D 解 原行列式c c 31- 41217432-210001-14c c c 334__21211-432-010021-14=)(1-32+2211-32214=-2213706-7-0=-376-7-=-21对于这种阶数稍微高点的行列式用定义法一般比较复杂,这时我们考虑利用行列式的性质降阶后再按行或列展开.2.4 加边法(升阶法)加边法即把行列式添加一行和一列,使升阶(加边)后的行列式的值与原行列式相等,这种方法叫加边法.这种方法一般适用于所加边的元素和原行列式的元素有直接关系,如相等或倍数关系,或原来的行列式中有大片元素相同的行列式.例5 计算行列式D =a xx x x a x x xx a x xxx a n321(x a a a n ,,21≠) 解 原行列式中存在“大片”的x,故用加边法把原行列式变成n+1阶行列式,则有a x xxx a x x x x a x x x x a x x x x D n0001321=r r k n k 1)1,,3,2(-+==xa x a x a x a x x x x n ----001-0001-0001-0001-1321c a c ii x n i -++==11,,3,21 xa x a x a xa x xxxx a x n ni -----+∑=000000000000132111=(1+)()11x a x a xni i ni i --∏∑==利用加边法把行列式化为n+1阶行列式后,再利用行列式的性质把该行列式化为可直接计算的行列式,从而简便计算.2.5 范德蒙德行列式的应用由于范德蒙德行列式]5[=D n ||a a a a a a a a a n nn n n n 112112222121111---||=)1x x m nk m k -∏≤<≤( 范德蒙德行列式是一个很特殊的行列式,从第二行起每一行与前一行对应元素的比都等于同一个常数.那么对于可化为范德蒙德行列式的计算我们可先把它化成范德蒙德行列式后再进行计算.例6 计算D n =nn nnn n n323232333322221111解 从该行列式的第k (k=2,3,…,n )行中提取公因子后,得到n nnn D nnn n2221333122211111!=该行列式为范德蒙德行列式的转置行列式,故D n=n!(n-1)!2!1!.3 n 阶行列式的计算对于n 阶行列式的计算,除了以上的方法外,我们还会根据行列式的特征采用递推法和归纳法来求解. 例1 计算D n =ba ab b a b a ab b a ++++100000100解 将D n 按第一行展开,再将按第一行展开的第二个行列式按第一列展开得abD D b a D n n n 21)(---+=,整理得aD D n 1-n -=b (D a D n n 21---)由递推关系可以得出:aD D n 1-n -=)(122D D b n --=][)()(22b a a ab b a b n +--+-=b n 在上式中,a 和b 的地位是相等的,因此有D D n 1-n -=a n两式联立解得ab a b D n n --=1-n ,可以得出a b a b D n n n --=++11递推法一般用于n 阶行列式的求解,递推法的关键是找出D D D D D n n n n n 211,---与或与的关系.除了上面讲到的递推法,我们还常用归纳法来证明某些行列式. 例2]6[ 证明αααααcos 211cos 200000cos 210001cos 210001cos=D n =cos(αn )证明 当n=1时,D 1=αcos ,等式成立当n=2时,ααcos 211cos 2=D =2cos 2α-1=cos2α,等式成立假设n=k 时等式仍然成立,即αk D k cos =,α)1cos(1-=-k D k那么,当n=k+1时,把行列式按最后一行展开得D D D k k k 211cos 2--+-=α 代入得α)1cos(1k +=+k D 由归纳法得αn D cos n =行列式的计算方法多种多样,本文中所提到的方法也只是解题过程中的一些常用方法,不同的题目有不同的计算方法,至于要采用哪种方法要视具体题目而定,只要我们多观察行列式的特征就能找到合适的方法来计算.4 行列式的应用4.1 行列式在代数中的应用行列式在代数中的应用主要有利用行列式解含n 元线性方程组b x a x a x a n n 11212111=+++ b x a x a x a n n 22222121=+++……b x a x a x a n n nn n n =+++ 2211当系数行列式D ≠0时,有唯一解:D D x k k =(k=1,2,…,n).对于齐次线性方程组,若D ≠0,则对应的方程组只有零解.4.2 行列式在几何中的应用我们还可以用行列式来表示直线方程,例如过两点M (y x 11,),N (y x 22,)的直线方程1112211y x y x y x=0 (1) 证明 由两点式,我们可以得出过MN 的直线方程为y y y y x x x x 211211--=-- 把上式化简得012212121=-+-+-y x y x y x y x y x y x再进一步进行化简得y x y x x x y y y x221121211111+-=0即为(1)式按第一行展开所得的结果,命题得证.行列式有着很广泛的应用,上面只是讲的比较特殊的两种,在几何方面,还有许多应用,还可利用行列式表示三角形的面积例如 以平面内三点P (y x 11,),Q(y x 22,),R (y x 33,)为顶点的△PQR 的面积S 是11121332211y x y x y x参考文献[1]张禾瑞,郝鈵新·高等代数(第五版)[M]·北京:高等教育出版社,2000[2]任功全,封建湖,薛仁智·线性代数[M]·北京:科学出版社,2005 [3]姚慕生·高等代数[M]·上海:复旦大学出版社,2002.8[4]马菊霞,吴云天·线性代数题型归纳与方法点拔考研辅导[M]·北京:国防工业出版社,2000[5]毛纲源·线性代数解题方法技巧归纳[M]·武汉:华中科技大学出版社,2000[6]王丽霞· N阶行列式的几种常见的计算方法[J]山西大同大学学报(自然科学版),2008致谢本文是在我的论文指导老师颜亮老师的精心指导下完成的.在整个论文写作的过程,颜老师给我提供了很多新颖的思路,并对我进行了耐心的指导和帮助,老师开阔的视野和广博的知识使我深受启发.颜老师严谨的治学态度、高度的敬业精神和大胆创新的精神让我深深的敬佩,在此,我向我的指导老师表示最诚挚的谢意.在这次本科毕业论文设计中我学到了许多关于行列式的知识,视野得到了很大的开阔.同时,我也要感谢我们小组的同学,感谢她们给我提出的建议,让我更好的完成了此次论文.。
行列式计算开题报告

行列式计算开题报告行列式计算开题报告摘要:行列式是线性代数中的重要概念,具有广泛的应用价值。
本文旨在探讨行列式的计算方法及其在实际问题中的应用。
首先介绍行列式的定义和性质,然后讨论行列式的计算方法,包括按定义计算、代数余子式法和高斯消元法等。
最后通过实例分析,展示行列式在解线性方程组、计算矩阵的逆等问题中的应用。
1. 引言行列式是线性代数中的基本概念,广泛应用于数学、物理、工程等领域。
它在解线性方程组、计算矩阵的逆、求解特征值等问题中起到重要作用。
本文将对行列式的计算方法进行探讨,并展示其在实际问题中的应用。
2. 行列式的定义和性质行列式是由方阵中的元素按照特定规则计算得到的一个标量值。
对于n阶方阵A,其行列式记作det(A)或|A|。
行列式具有以下性质:- 互换行列式的行列式值变号。
- 行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。
- 行列式的某一行(列)的倍数加到另一行(列)上,行列式的值不变。
3. 行列式的计算方法3.1 按定义计算按定义计算行列式是最直接的方法,但对于较高阶的方阵,计算量较大。
该方法通过对方阵的各个元素进行排列组合,计算每一项的代数乘积,最后求和得到行列式的值。
3.2 代数余子式法代数余子式法是一种递归的计算行列式的方法。
它通过将方阵的元素划分为余子式,利用代数余子式的定义和性质,将行列式的计算转化为较小阶的行列式的计算,从而简化计算过程。
3.3 高斯消元法高斯消元法是一种通过初等行变换将方阵化为上三角形矩阵的方法。
在高斯消元过程中,对方阵进行一系列的行变换,使得方阵的下三角部分元素全为0,从而简化行列式的计算。
4. 行列式的应用4.1 解线性方程组行列式在解线性方程组中起到重要作用。
通过将线性方程组的系数矩阵的行列式计算得到的值与零比较,可以判断线性方程组是否有唯一解或无解。
4.2 计算矩阵的逆矩阵的逆可以通过行列式的计算得到。
若一个矩阵的行列式不为零,则该矩阵存在逆矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另外,理论用于实践,对这些计算方法实际在解线性方程组、初等代数、解析几何等方面的应用进行探讨。
4.本课题的实行方案、进度及预期效果
2月13日--3月18日(第九学期第1-5周)毕业论文(设计)背景调查及资料收集
3月19日--3月25日(第九学期第 6周)第六周完成开题报告
3月26日–4月15日(第九学期第7-9周)
毕业论文(设计)撰写,并完成毕业论文中期考核
4月16日–4月29日(第九学期第10-11周)完成初稿
行列式的计算方法比较及其应用
毕业设计(论文)开题报告
1.本课题的目的及研究意义
目的:行列式起源于解二、三元线性方程组,然而它的应用早已超过代数的范围、成为研究数学领域各分支的基本工具。本文主要对行列式的计算方法进行总结归纳,对行列式的应用做一定范围的探讨。
从行列式的的定义和性质入手,以具体实例为依据,对行列式的各种计算方法进行总结、归纳和比较。对行列式在解线性方程组、初等代数、解析几何等方面的应用进行探讨。
研究意义:行列式经常被用于科学和工程计算中,如涉及到的电子工程、控制论、数学物理方程及数学研究等,都离不开行列式.计算行列式的方法非常的多,在实际的计算过程中不同的方法往往适合于不同特征的行列式,本论文主要研究其中最常用的也是最重要的方法.在行列式的计算过程中,这其中的的每一种方法都有它们各自的优点及其独特之处,因此具有非常重要的研究价值.
指导教师意见
指导教师:
年月日
系审核意见
系领导:
年月日
4月30日--5月6日(第九学期第12周)初稿修改
5月7日--5月13日(第九学期13周)毕业论文定稿
5月14日--5月20日(第九学期14周)整理填写论文的各项材料,14周周五前由指导老师写好评语后提交完整的毕业论文答辩材料至答辩组
5月26日、27日(第九学期15周周末)毕业论文(设计)正常答辩
毕业设计(论文)开题报告
5、已查阅参考文献:
[1]北京大学数学系几何与代数教研室编. 高等代数.北京:高等教育出版社,2003.03第三版.
[2]张禾瑞、郝炳新编.高等代数. 北京:高等教育出版社,1983.07第三版
[3].同济大学数学系编: 工程数学.线性代数. 北京:高等教育出版社,2007.05第五版
[411.02
2.本课题的研究现状
行列式的计算一直是代数研究的一个重要课题,国内外学者专家已经总结了很多常用的技巧及方法,研究成果颇为丰硕。
对不同行列式,要针对其特征,选取适当的方法求解。总结出来的计算方法主要有:定义法、化三角形法、拆行(列)法、降阶法、升阶法(加边法)等等。
毕业设计(论文)开题报告
3.本课题的研究内容