香河县实验中学2018-2019学年上学期高三数学10月月考试题
2019届高三10月月考数学(理)试卷(含答案)

2019届高三上学期十月知识总结一一理科数学、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的1 •复数z 满足Z 1 -i = 1 i ,则复数z 在复平面内的对应点位于( )A.第一象限B•第二象限 C •第三象限 D •第四象限X —122. 已知集合 A = {x | 0}, B ={ x | y = lg( -x4x 5)},则 A 「(C R B)=()x +2A. (-2,—1]B • [-2,一1]C • (-1,1]D • [-1,1]3. 给出下列四个命题: ① 若A^B ,贝U A 或B ;② -[2 * ,都有 x 2 2x ;12 2③ "a”是函数“ y =cos 2ax -sin 2ax 的最小正周期为 二”的充要条件;2④ “ x^ R, x 02 2 3x )” 的否定是“ R, x 2 2 乞 3x ”;其中真命题的个数是(立,则f (2018)的值为(A. 1A. 1A. 14.已知函数f(x)是定义在 B. 2 C. 3R 上的偶函数,且f (0) = -1,且对任意D .二-f (2-x)成5.如果实数 x - y 1 — 0,x, y,满足条件2x ,y 「2_0,,贝V z =1 x 十0,2x 3y的最大值为(6.在平行四边形A.ABCDKAD=1,. BAD =60 ,E为CD的中点•若AC BE = 1,则AB的长为(D. 22 2 27.已知数列{a .}的前n 项和为S n ,且S n ^2a n ,则使不等式a • a ? V a . :: 86成立的n 的最大值为()9.若将函数f (x ) =sin (2x •「)「、3cos (2x •「)(0”「r )的图象向左平移 1个单位长度,平移4后的图象关于点(一,0)对称,则函数g (x ) =cos (x •::)在[ / ]上的最小值2 2 6、• 3C2cosB 」3sinB =2,则a c 的取值范围是()H n =2n 1,记数列{a n -20}的前n 项和为&,则&最小值为(12.对于函数f x 和g x ,设二三:x f x = 0』,—:xg x =0』,若存在:J ,使得8.两个正实数 x, y 满足A.(-1,4)B.1 4 一 y 21,且不等式x m —3m 有解,则实数m 的取值范围是(x y 4(一①-1) (4, ::) C.(_4,1) D. (_::,0) (3,::)1 A.210.在锐角 ABC 中,角A,B,C 的对边分别为a,b,c ,若凹bA. 3,2'B. C.一2汁3D.11.对于数列{a n },定义H n=a1+2a2川2 an为的{a n }“优值”,现已知某数列的“优值”A. —70C . -64D . -68则称f X 与g x 互为“零点相邻函数” •若函数f x 二 e x4 x - 2 与g x 二 x 2 _ ax _ a 3 互为“零点相邻函数”,则实数a 的取值范围是( A. 2,41 B.汀7C.D.2,3】 二.填空题(本大题共4小题,每题5分.共20 分)13•已知数列Q =1,a n=a n,+3n (n^2,,则数列牯」的通项公式a n= .?■=•T B■“Y R. =•«14. 已知向量|a—b|=|b|, |a—2b冃b|,则向量a,b的夹角为 _____________________________15. 已知关于x的不等式2x -1 mx2 -1 ,若对于xd, •::不等式恒成立,则实数m的取值范围是In x 1 16•已知函数f x是可导函数,其导函数为 f x,且满足xf (x) • f (x),且f (e)=-x e,则不等式f (x +1) - f (e +1) AX—e的解集为 ___________________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在ABC中,角A,B,C的对边分别是a,b,c, C=60; . 2^ . 3b.(1)求角代B的大小;(2)若D为边AC上一点,且a = 4 , BCD的面积为.3,求BD的长.18. (本小题满分12分)已知数列{a n}是公差为正数的等差数列,a2和a5是方程x2-12x • 27 = 0的两个实数根,数列{bJ满足j 1 b n二na n1 -(n-1)a n(1) 求{a n}和{b n}的通项公式;(2)设T n为数列{b n}的前n项和,求T n.2 1 19.(本小题满分12 分)已知向量m = (.3cosx,1) ,n = (si nx,cos x-1),函数f(x)=m・ n -(1)若x 0, , f x 3,求cos2x 的值;IL 4 3(2)在ABC中,角A,B,C对边分别是a, b,c,且满足2bcosA乞2c-■■一3a,当B取最大值时,-3 a 亠ca=1“ABC面积为,求的值.sin A +sin C420.(本小题满分12分)已知各项均不相等的等差数列{耳}的前四项和S4 =14,且a,,a3,a7成等比.(1)求数列{耳}的通项公式;1(2)设T n为数列{ -------- }的前n项和,若’T n _ a n勺对一切n三a n a n ■+N*恒成立,求实数■的最大值.2x —121.(本小题满分12分)已知fx二ax-l nx .x(1)若函数f x在x=2处取得极值,求a的值,并求此时曲线程;(2)讨论f x的单调性•y = f x在1, f 1处的切线方22.(本小题满分12分)已知函数f(x)=xln x, g(x) =£ ax2-bx , (1)当a 0,且a为常数时,若函数h(x^x lg(x) 1对任意的成立,试用a表示出b的取值范围;(2)当 a 时,若f(x V)_2 g(x)对x € [0 ,+s)恒成立,其中a,b・R\ x2 _ 4,总有. 0X1 —X2求a的最小值.理科数学月考题答案1~5 AAAAB 6~10 BBBDB 11~12BD3n+ -713. a n 2兀14.614. m _015. -1,e17. (1 ) 18. (1 )A = 75 , B = 45 (2) BD - 13a n =2n -1,6 二4n-1 3nJ⑵ T n = 5 4n-5 2n.319.(1)6(2) 220.(1)O n =n 1(2)' max = 1611 21. a 二y = x —一2222.(1)由题意,得1 3h(x)二xg(x) x 二㊁ax2-bx x在x・[4,;)上单调递增二h'(x)二ax2-2bx 1 _0 在x [4,::)上恒成立22b乞童-=ax -在x・[4,;)上恒成立x x构造函数F(x) =ax 1 (a 0), x (0,::)x2 .贝V F '(x)二a -吉二ax2Tx x••• F(x)在(0, a)上单调递减,在(a,;)上单调递增a a(i) 当4,即0 :::a :::去时,F(x)在[4,―彳)上单调递减,在(一乩,;)上单调递增a 16 a a•〔F(x) Lin =F(严)=2 a• 2b岂I.F(x) m in,从而 (」:,• a](ii) 当—-4,即a 一±时,F(x)在(4 ,+s )上单调递增a 162b <F (4) =4a 1,从而b (_::,2a Q] 8 分4 8综上,当0 :::a ::: 16 时,b (_::, a] , a 时,b (_::, 2a ;];(2)当b=-|a时,构造函数G(x) =f (x 1) —3g(x) =(x 1)ln(x 1)—*ax2—ax, x [0,::)由题意,有G(x)乞0对x・[0, •::)恒成立T G '(x) =ln(x 1) 1 _ax -a, x 二[0,::)(i) 当a ^0 时,G'(x)=ln(x 1) 1 —a(x 1) 0••• G(x)在[0,;)上单调递增••• G(x) G(0) =0在(0,;)上成立,与题意矛盾.(ii) 当a 0 时,令(x) =G '(x), x [0,二)则:'(x) 斗-a,由于斗(0,1)x +1 x +1①当a _1时,'(X)二丄—a:::0 , (x)在X [0,二)上单调递减x +1•(X)乞(0) =1 —a 乞0,即G'(x)E0在X [0,::)上成立• G(x)在x三[0,亠)上单调递减• G(x)乞G(0)=0在[0,;)上成立,符合题意7伙一(1一1)]②当0 ::a ::1 时,:'(x)a a,x:=[0,;)x +1 x +1•- (x)在x [0, 1 -1)上单调递增,在x ({ -1,=)上单调递减T (0) =1 -a 0•- (x) 0在x [0, 1 -1)成立,即G '(x) 0 在x [0, 1 -1)成立a a• G(x)在x [0,丄一1)上单调递增a• G(x) G(0) =0在x (0,丄-1)上成立,与题意矛盾a综上,a的最小值为1。
2019-2020学年高三数学10月月考试题(I).doc

2019-2020学年高三数学10月月考试题(I)一、填空本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上1.满足{1}⊆ A ⊆{1,2,3}的集合A 的个数为 ▲ .2.已知复数)()1(i a i z -⋅+=(i 为虚数单位)为纯虚数,则实数a 的值为 ▲ .3.已知3lg ,2lg ==b a ,则 5lg = ▲ .(用 a ,b 表示)4.函数)1ln()(+-=x x x f 的单调递减区间是 ▲ .5.命题“若实数a 满足a 2<4,则a≤2”是 ▲ 命题.(填“真”、“假”之一)6.设正项等比数列{a n }的公比为q ,且733=a S ,则q 的值为 ▲ . 7.把一个体积为27cm1的正方体木块表面涂上红漆,然后锯成体积为1 cm 3的27个小正方体,现从中任取一块,则这一块恰有两个面被涂有红漆的概率为▲ . 8.已知角a 的终边经过点P(x-6),且cosa=53-,则实数x 的值为 ▲ . 9.在平面直角坐标系中,己知A 、B 分别是椭圆13422=+y x 的左、右焦点,△ABC 的顶点C 在椭圆上,则CB A sin sin sin +的值是 ▲ . 10.已知函数||2)(x x f = ,记)5(log ),3(log 35.0f b f a ==,则a,b,c 的大小关系为 ▲ .(用“<”连接)11.曲线231x y =过点P (2,38)的切线方程为 ▲ . 12.设函数⎪⎩⎪⎨⎧≤--=,1,2,1>,1)(x x x x x f 则函数))((x f f 的值域为 ▲ .13.已知对于任意的),5()1,(+∞-∞∈ x ,都有a x a x +--)2(22>0 ,则实数a 的取值范围是 ▲ .14.已知定义在实数集R 上的偶函数)(x f 的最小值为3,且当0≥x 时,a e x f x +=3)((a为常数)。
香河县高中2018-2019学年上学期高三数学期末模拟试卷含答案

香河县高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .2. 已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C . tan35°D .tan35°3. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 4. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形5. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log zz -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 6. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.7. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .08. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个9. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数10.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 11.已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 12.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21C .π121-D .π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.二、填空题13. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.DABCO14.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .15.已知i 是虚数单位,复数的模为 .16.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 17.81()x x-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.18.计算:×5﹣1= .三、解答题19.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.20.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.21.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分) (3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.22.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.24.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.香河县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.2. 【答案】B【解析】解:∵向量=(1,),=(,x )共线,∴x====,故选:B .【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.3. 【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 4. 【答案】 B【解析】解:对于A ,设圆柱的底面半径为r ,高为h ,设圆柱的过母线的截面四边形在圆柱底面的边长为a ,则截面面积S=ah ≤2rh .∴当a=2r 时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB=a ,则O 到AB 的距离为,∴截面三角形SAB 的高为,∴截面面积S==≤=.故截面的最大面积为.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.故选:B .【点评】本题考查了旋转体的结构特征,属于中档题.5. 【答案】A 【解析】考点:对数函数,指数函数性质. 6. 【答案】A 【解析】7. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 8. 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素, 故选B .9. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.10.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即s i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 11.【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 12.【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 二、填空题13.【答案】①②④ 【解析】14.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.15.【答案】 .【解析】解:∵复数==i ﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.16.【答案】31λ-<<【解析】由2211111123(1)2222n n n S n n--=+⨯+⨯++-⋅+,211112222nS =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以1242n n n S -+=-,于是由不等式12|142n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 17.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r rr r r r r T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.18.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.三、解答题19.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.20.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).【解析】试题分析:(Ⅰ)利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(Ⅰ)∵,∴,由题设得,∴;(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在是增函数,∵,,且函数图像在上不间断,∴,使得)递减极小值递增∴函数存在极小值;(Ⅲ),使得不等式成立,即,使得不等式成立……(*),令,,则,∴结合(Ⅱ)得,其中,满足,即,∴,,∴,∴,,∴在内单调递增,∴,结合(*)有,即实数的取值范围为.21.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a <e 时,∴f (x )min =f (a )=a (lna ﹣a ﹣1)当a ≥e 时,f (x )在[1,a )减函数,(a ,+∞)函数是增函数, ∴综上…(9分) (3)由题意不等式f (x )≥g (x )在区间上有解即x 2﹣2x+a (lnx ﹣x )≥0在上有解,∵当时,lnx ≤0<x ,当x ∈(1,e]时,lnx ≤1<x ,∴lnx ﹣x <0, ∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx ∴时,h ′(x )<0,h (x )是减函数,x ∈(1,e],h (x )是增函数, ∴, ∴时,,∴∴a 的取值范围为…(14分)22.【答案】(1)24y x =;(2)20x y +-=.【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分 即抛物线C 的方程为24y x =;…………5分23.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲.24.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…。
2019届高三10月月考数学(文)试题(3).docx

一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。
香河县高级中学2018-2019学年上学期高三数学10月月考试题

香河县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠02. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .133. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .64. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c5. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .6. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .417. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 4±C .D .2±8. 下列四组函数中表示同一函数的是( )A .()f x x =,2()g x =B .2()f x x =,2()(1)g x x =+C .()f x =()||g x x =D .()0f x =,()g x =1111]9. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.10.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5 C .9 D .2711.已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( ) A .{x|x >3} B .{x|﹣1<x <1} C .{x|﹣1<x <1或x >3} D .{x|x <﹣1}12.若命题“p 或q ”为真,“非p ”为真,则( ) A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)14.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .15.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.16.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .三、解答题(本大共6小题,共70分。
高三数学10月月考试题

周口中英文学校高中部2018―2019学年度高三上期10月考试题 数 学一、选择题:本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的 1。
设全集,集合, ,则 ( )A 、 B、 C。
D 。
2、命题“”的否定是( ) A 、 ﻩﻩﻩﻩB 、C 、ﻩ ﻩﻩD 、3、若将函数y =2sin (2x +π6)的图像向右平移\F(1,4)个周期后,所得图像对应的函数为(A)y =2sin(2x +π4) (B)y =2si n(2x +π3) (C)y =2sin(2x –\F(π,4)) (D)y=2si n(2x –π3)4、下列函数中,既是偶函数又在上单调递增的是( ) A 、 B 。
ﻩC 、 ﻩD 、5、若角的终边经过点,则( )A 、B 。
C、 D 、 6、函数的零点所在的区间是A 。
B、 C 、 D 。
7、函数的图象的大致形状是( ) A 、B 、C、 ﻩD 、8、设,,,则的大小关系为( )A 、B 、 C、 D 、 9、已知曲线在点处的切线的倾斜角为,则( )A、 B 、 C。
2 D、 10、设函数,则使得成立的的取值范围是 )A、ﻩB、ﻩ C、ﻩﻩD、11、(理科做)由曲线围成的封闭图形的面积为( )A、ﻩﻩﻩB。
ﻩC。
ﻩﻩﻩD、(文科做)若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小值为()A、1 B、 C。
D。
12、已知为函数的导函数,且,若则方程有且仅有一个根时,的取值范围是A、(﹣∞,0)∪{1}B、(﹣∞,1]ﻩC、(0,1] ﻩD。
[1,+∞)二、填空题(每题5分,共计20分)13、已知p:,q:,则是的条件14、函数的图象和函数且的图象关于直线y=x对称,且函数,则函数的图象必过定点___________、15、6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级、灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区、已知下面四种说法都是正确的、⑴甲轻型救援队所在方向不是C方向,也不是D方向;⑵乙轻型救援队所在方向不是A方向,也不是B方向;⑶丙轻型救援队所在方向不是A方向,也不是B方向;⑷丁轻型救援队所在方向不是A方向,也不是D方向;此外还可确定:假如丙所在方向不是D方向,那么甲所在方向就不是A方向,有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C 方向、其中判断正确的序号是。
2019届高三10月月考数学(文)试题(7).docx

一.选择题(本大题共12个小题,每小题5分,共60分)1.设集合/1 = {刎无 >一1}, B = {x\-2<x<2\,则A B =(A)[x\x>-2](B) {兀|兀>一1} (C) |x|-2<x<—1} (D) [x\-l<x<2]2.已知命题对任意x w R,总有X2 -x+l>0 ;则卜列命题为真命题的是4•已知函数f(x) = lnx + ln(2-x),则y = f(x)的图像关于点(1, 0)对称3', x<r则/(/(2))=一兀,X > 16•设兀wR,贝9 “Ovxv3” 是“F_4X +3<0”的7.设a = 60,7, b = 0.76 , c = logQ7 6 ,则a, b , c 的大小关系为(A) b> c> a(B) b> a> c(C) c> a> b(D) a> b> c&若Z^=lo»(2v+l)>则/(x)的定义域为2(\ \ ( 1 A ( i A ( i A(A) 一一,0 (B) 一一,+oo (C) 一一,0 u(0,+oo) (D) 一一,29 9 9 ' 丿9g:若a2 < b29贝>J 6/ < Z?.(A) Wq(C) -i/7 A -\C[(D) P"3.设集合A={x X2-4X+3^0}, B二{x|2x - 3W0},A. ( - g, 1]U[3, +8)B. [1, 3]C. 23则AUB=(一8,才U [3, + 00D.A. f(x)在(0, 2)单调递增B. f(x)在(0, 2)单调递减C. y = f(x)的图像关于直线x=l对称D.5.函数fM =(A) 9 (B) 6 (c)?(D) -2(A)充分不必要条件(B)必要不充分条件(D)既不充分也不必要条(A) (B) (C)(D)10. 已知函数/*(兀)在R 上是奇函数,且满足/(%)= /(X+4),当X G (0,2)时, f(x) = 2x\ 则/(7)=(A) -2(B) 212•己知定义在只上的函数f(x),若f(x)是奇函数,f(x+l)是偶函数,当OSxG 时, /(x) = X 2,贝i"(2(H5) =A. -1B. 1C. 0D. 20152二.填空题(本大题共4小题,每小题5分,共20分)13. _________________________________________ 命题“X/;cvl,lgx>2”的否定是 ______________________________________________ ・14. 函数y = lg(x-3) + ~^=的定义域为 _______ ・ V4-x15. 已知f(x) = ax 2+ bx+2015满足f(-l) = f(3),贝ljf(2) = ____ .16 •已知/(X )= l-|lgx|,则函数丿=2[/(x)]2 - 3/(%) 4-1的零点个数为 _________ 三•解答题(17题10分,18-22题每题12分,共70分) 17. 计算下列各式的值:] 了 ]、-2 了 7()(I ) (0.027)'5—— + 2- _(血-1); 17丿I 9丿(II) log s 25 + lg-^ + lnV^ + 2,o§23. 10018. 已矢nA={x|a+l<x<2a-l}, B= {x|xs3或x>5}・(1 )若a = 4,求ADB ;(2)若ACB,求的取值范围.19. 已知函数(其中爲,方为常量且日>0, aHl)的图象经过点J(l, 6),5(3, 24),(C) -98 (D) 98 11. 设定义在上的奇函数/(x)满足, 对任意X p X 2 G (0,+8), 口兀[H %都有 .心)-/(花) >0,且 /⑵=0,则不等式3疋土2/(叭。
香河县第一中学2018-2019学年上学期高三数学10月月考试题

香河县第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-2.已知双曲线的方程为﹣=1,则双曲线的离心率为( ) A.B.C.或D.或3. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q4. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β5. 正方体的内切球与外接球的半径之比为( ) A.B.C.D.6. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.7. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力. 8. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3B .6C .9D .129. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .310.复数z=的共轭复数在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 12.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点)0,43(π,则ω的最小值是( ) A .31 B . C .35D .二、填空题13.设全集______.14.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .15.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.三、解答题17.(本小题满分12分)已知函数()23cos cos 2f x x x x =++.(1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.18.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .19.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .20.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法 知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的 分数差至少是4的概率.21.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程;(2)求||||PB PA ⋅的最值.22.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点 (1)求证:直线AF ∥平面BEC 1 (2)求A 到平面BEC 1的距离.香河县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 2.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.3.【答案】C【解析】解:∵命题p:∀x∈R,32x+1>0,∴命题p为真,由log2x<1,解得:0<x<2,∴0<x<2是log2x<1的充分必要条件,∴命题q为假,故选:C.【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.4.【答案】D【解析】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.5. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C6. 【答案】C 【解析】考点:几何体的结构特征. 7. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .8. 【答案】A【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3. 故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力.9. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.10.【答案】C【解析】解:∵复数z====﹣+i ,∴ =﹣﹣i ,它在复平面上对应的点为(﹣,﹣),在第三象限, 故选C .【点评】本题主要考查复数的基本概念,复数代数形式的乘除运算,复数与复平面内对应点之间的关系,属于基础题.11.【答案】D111] 【解析】考点:相等函数的概念. 12.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换.二、填空题13.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香河县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或 D .或2. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣3. 设为虚数单位,则( )A .B .C .D .4. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .35. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(6. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0 B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定7. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件8. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .9. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm10.已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题二、填空题11.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.12.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .13.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .522-B .522-C .632-D .632-【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.14.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .15.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .三、解答题17.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.18.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.19.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程; (Ⅱ)若,求实数k 的值; (Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.20.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.21.如图,⊙O 的半径为6,线段AB 与⊙相交于点C 、D ,AC=4,∠BOD=∠A ,OB 与⊙O 相交于点. (1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .22.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且)3(s i n))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆,求c b ,.香河县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.2.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.3.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C 4. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1 ∴a 2=1,b 2=3, ∴c 2=a 2+b 2=4 ∴a=1,c=2,∴离心率为e==2. 故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.5. 【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是003060α<<且045α≠,所以直线的斜率为00tan 30tan 60a <<且0tan 45α≠,即13a <<或1a << C. 考点:直线的倾斜角与斜率. 6. 【答案】 A【解析】解:∵函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),∴,∴存在x 1<a <x 2,f '(a )=0,∴,∴,解得a=,假设x 1,x 2在a 的邻域内,即x 2﹣x 1≈0.∵,∴,∴f (x )的图象在a 的邻域内的斜率不断减少小,斜率的导数为正, ∴x 0>a ,又∵x >x 0,又∵x >x 0时,f ''(x )递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.7.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.8.【答案】A【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.9.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A 与灯塔B 的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.10.【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断.二、填空题11.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.12.【答案】.【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,设点P 到CD 的距离为h ,则有 V=×2×h ××2,当球的直径通过AB 与CD 的中点时,h 最大为2,则四面体ABCD 的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.13.【答案】B 【解析】14.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C 是最大角根据余弦定理,得cosC==>0∵C ∈(0,π),∴角C 是锐角,由此可得A 、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.15.【答案】[]2,4-考点:利用函数性质解不等式1111]16.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.三、解答题17.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 18.【答案】(1)3π;(2)27. 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 19.【答案】【解析】【分析】(I )设圆心C (a ,a ),半径为r ,利用|AC|=|BC|=r ,建立方程,从而可求圆C 的方程;(II )方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l :kx ﹣y+1=0的距离,即可求得实数k 的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为, 所以,…(13分)当且仅当k=±1时,等号成立,所以S 的最大值为7.…(14分) 20.【答案】(1) 2a = (2) a ≥2(3)两个零点. 【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=, 解得:2a = 经检验 2a = 满足题意 所以 2a = ………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+所以())()1222221x m x xx x=--==′ ………12分当()1,0∈x 时,()'x m ,当()+∞∈,1x 时,()0>'x m所以()()min 140m x m ==-<, ……………………………………14分3241-e)(1+e+2e )(=0em e -<() ,8424812(21))0e e e m e e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分 考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性 【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.21.【答案】【解析】解:(1)∵OC=OD ,∴∠OCD=∠ODC ,∴∠OAC=∠ODB .∵∠BOD=∠A ,∴△OBD ∽△AOC .∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE ,CE ⊥OD .∴∠COD=∠BOD=∠A . ∴∠AOD=180°﹣∠A ﹣∠ODC=180°﹣∠COD ﹣∠OCD=∠ADO . ∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.22.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分。