Localization of Porcine Neturopetide Y-Y1 mRNA in Hypothalamus-Pituitary-Ovary Axis during Puber
外源性磷输入改变农业河岸带湿地中土壤溶解有机碳的复杂性

Exogenous phosphorus inputs alter complexity of soil-dissolved organic carbon in agricultural riparianwetlandsMeng Liu a ,Zhijian Zhang a ,⇑,Qiang He b ,Hang Wang a ,Xia Li a ,Jonathan Schoer caCollege of Natural Resource and Environmental Sciences,China Academy of West Region Development,ZheJiang University,Yuhangtang Avenue 866,HangZhou,ZheJiang Province 310058,China bDepartment of Civil and Environmental Engineering,University of Tennessee,Knoxville,TN 37996-2010,USA cDepartment of Chemistry,Valparaiso University,Valparaiso,IN 46383,USAh i g h l i g h t sExternal P input stimulated the production of sediment active C fractions.External P input decreased DOC humicity and increased its microbial-derived sources. Sediments with gradient P loading rate had a blue shift of fluorescence fingerprint. Spectra measurements were helpful for describing sediment DOC composition.a r t i c l e i n f o Article history:Received 29June 2013Received in revised form 23September 2013Accepted 25September 2013Available online 30October 2013Keywords:Dissolved organic carbon (DOC)Phosphorous (P)Riparian wetlandsStructural compositiona b s t r a c tHigh-strengthened farmland fertilization leads to mass inputs of nutrients and elements to agricultural riparian wetlands.The dissolved organic carbon (DOC)of such wetland sediments is an important inter-mediate in global carbon (C)cycling due to its role in connecting soil C pools with atmospheric CO 2.But the impact of phosphorus (P)on sediment DOC is still largely unknown,despite increasing investigations to emphasize P interception by riparian wetlands.Here,we simulated the temporal influences of exoge-nous P on sediment DOC of riparian wetlands by integrating gradient P loading at rates of 0%,5%,10%,20%,30%,and 60%relative to the initial total phosphorus content of the sediment with the purpose of illustrating the role of external P on the complexity of soil DOC in terms of its amount and composition.After incubating for nine months,a dramatic linear correlation between Olsen-P and fluorescent and ultraviolet spectral indices considered DOC skeleton was observed.Together with a more microbial-derived origin of DOC and a reduction of DOC aromaticity or humicity,the excitation-emission matrix had shown a blue shift reflecting a trend towards a simpler molecular structure of sediment DOC after P addition.Meanwhile,the content of soil DOC and its ratio with total organic carbon (TOC)were also increased by P loading,coupled with enhanced values of highly labile organic carbon and two C-related enzymes.While TOC and recalcitrant organic carbon decreased significantly.Such implications of DOC amounts and composition stimulated by external P loading may enhance its bioavailability,thereby inducing an accelerated effect on soil C cycling and a potential C loss in response to global climate change.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionSince the 1980s,as agricultural activity has intensified signifi-cantly in Eastern China,the extensive application of fertilizers to farmlands and production of livestock manure have led to great phosphorus (P)loss from agricultural areas to adjacent ecosystems (Zhang and Shan,2008).Enhanced levels of P not only have led to great eutrophication with characteristic algal blooms (Roberts et al.,2012),but have also impacted the ecological remediationand resilience of such aquatic ecosystems (Jeppesen et al.,2005;Wang et al.,2013).For this particular purpose,many riparian wet-lands have been arranged in agricultural catchments in use world-wide to reduce the concentration of nutrients in through-flowing water and improve water quality (Verhoeven et al.,2006;Hoff-mann et al.,2009).Currently,total phosphorus (TP)content in riparian wetland sediment located in the southern region of the Taihu Basin has reached 169–1200mg kg À1after interception (Wang et al.,2010).Some researchers have found the decomposi-tion of longer-term or mineral-associated soil carbon (C)fractions and soil organic C sink strengths could be enhanced by P availability (Mack et al.,2004;Cleveland and Townsend,2006;0045-6535/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.chemosphere.2013.09.117Corresponding author.Tel.:+8657186971854;fax:+8657186971719.E-mail addresses:zhangzhijian@ (Z.Zhang),qhe2@ (Q.He).Bradford et al.,2008).Other authors pointed out that undesired ef-fects such as additional risks for global warming may be induced as a result of nutrients overloading wetland sediment(Verhoeven et al.,2006;Zhang et al.,2012;Wang et al.,2013).However,the is-sue of sediment P accumulation on the sediment C pool has at-tracted less attention during past years,while policymakers mostly focus on the interception of P in riparian wetlands.Global warming significantly correlates to CO2loss from soils and creates a feedback to oceanic and land ecosystems(Cox et al.,2011).In soils,dissolved organic carbon(DOC),as the impor-tant fraction in the active soil organic C pool(Song et al.,2012), intimately correlates with CO2evolution from soil although DOC makes up only a small portion of total soil organic matter(Fang and Moncrieff,2005;Bengtson and Bengtsson,2007;Zhao et al., 2008).Meanwhile,soil DOC not only contains both substrates and end products of enzymatic reactions of varying molecular weight,but also constitutes the most bioavailable moiety for soil microorganisms(Song et al.,2012).Some researchers have also found that soil microbial respiration is significantly limited by large differences in the complexity of DOC(Fang and Moncrieff, 2005).Moreover,the microbial degradability of DOC and,there-fore,the relationship with C mineralization from soils may also be affected by its composition(Zhao et al.,2008),although not al-ways linearly dependent in amounts(Liu et al.,2012).The features of the DOC skeleton,particularly percent aromaticity,degree of structural conjugation,and humicity(Johnson et al.,2011;Guo et al.,2013),are of fundamental significance to indicating the retention or out-gassing processes for soil C pools(Wilson and Xenopoulos,2008).For instance,aromatic compounds probably derived from lignin are stable components,whereas carbohydrates are preferentially respired(Kalbitz et al.,2003).Thus,connecting DOC content variance with its structural complexity would better reflect the status and bioavailability of the soil C pool and its fur-ther retention.Among analytical characterization methods,the ra-pid,non-destructive,cost-effective,and informative density nature offluorescence spectroscopy(Guo et al.,2013)is well suited to provide informative data on the aromatic content and humicity of DOC,specific locations of differentfluorophores,andfluorescent characteristics of structure,functional group,configuration,heter-ogeneity,and molecular dynamics,which gives information about DOC composition(Fellman et al.,2008;Johnson et al.,2011;Guo et al.,2013).In soils,environmental factors such as climate(tem-perature,precipitation)and vegetation,or anthropic disturbances such as land-use,acidification,tillage,and application of fertilizer, may affect the DOC amount and composition indirectly via micro-bial consumption and lysis(Hishi et al.,2004;Jinbo et al.,2006). However,until recently,few studies have focused on the impacts of external P amendment on DOC of agricultural riparian wetland sediment,both in amount and composition,and thus the underly-ing mechanisms are largely unknown.Obviously,it is important to investigate the impact of P addition on wetland sediment DOC amounts,as well as its composition in agricultural areas.In this study,we designed a simulative experi-ment to illustrate the complex status of DOC by conducting labora-tory-scale incubation with P addition at rates of0%(P-0),5%(P-5), 10%(P-10),20%(P-20),30%(P-30),and60%(P-60)relative to the initial TP content of the sediment(0.29g kgÀ1;Supplementary Information,SI-1).Fluorescent and ultraviolet(UV)spectral mea-surements directly describe the effect on soil DOC composition. Moreover,the use of chemical or biochemical tests,with respect to their relationships withfluorescent and UV indices,gives in-sights into the complexity and biological degradability of soil DOC under disturbance of P inputs will be discussed.Further,we hypothesize that P loading could induce the variance of sediment DOC amount and composition to that of a simpler molecular struc-ture and enhance the bioavailability of soil DOC,thereby leading to a weakening effect on potential retention processes of soil C pool and accelerate soil C cycling in response to climate changes.2.Material and methods2.1.Site description and experimental designsRiparian wetland soil samples for this study were collected from the Southwest part of the Taihu Lake Basin(30°18051.8400N and119°54013.3700E).This area is one of the most productive and intensively farmed agricultural areas in the downstream delta re-gion of the Yangtze River in Southeast China.This region possesses a subtropical monsoon climate with an average summer tempera-ture of28°C and an average annual rainfall of1550mm.The most common agricultural land uses in this area include ricefields,veg-etable gardens,aquaculture,and swine farms.During the pastfive years,the annual soil P application rate has been30–85kg haÀ1-yrÀ1.In order to best profile the impact of exogenous P on soil DOC features,sediment was selected from a site(pH7.24;mois-ture57%)that contained a relatively low initial TP concentration of0.29g kgÀ1,compared to other similar wetland sediments in this region(0.17–1.20g kgÀ1of TP)(Wang et al.,2010).An average water depth around this particular sampling riparian wetland was1.4m with macrophyte plants on bank,and there was no arti-ficial channel existing nearby this natural isolated pond.The or-ganic C of this riparian wetland stored in the sediment and no other C inputs in this region,and the basic properties of the wet-land sediment were provided in Table2.The sediment samples were collected using a lab-made stain-less steel sampler at a depth of0–10cm from20different points. Samples were wiped clear of macro-particles and transported on ice to the lab within3h after collection.Plastic barrels(35cm diameterÂ35cm height)werefilled with8kg of mixed wet soil (5kg dry weight)to a depth of20cm.Water-soluble superphos-phate(CaP2H4O8)was chosen to be the external P in our study, which was recognized by Justus Liebig as P-related fertilizer and applied widely to agricultural production(Brunner,2010).Super-phosphate of different mass was dissolved with deionized water, then the mixed solution was added to those soil-filled barrels homogeneously with a spray without disturbing soil cores,of which TP concentration accounted for0%(P-0),5%(P-5),10% (P-10),20%(P-20),30%(P-30),and60%(P-60)relative to the initial sediment TP content.See supplementary information(SI-1)for the rationale for selecting the spiking levels of P in the sediment sam-ples.After several minutes,all the samples were covered with a 10cm layer of deionized water and were incubated in the labora-tory.To avoid the growth of aquatic plants and disturbance from other environmental factors,the barrels were placed in lab with dam-board to keep the samples in the dark at room temperature (20–25°C)for the nine months incubation.Deionized water was replenished every three months to maintain the liquid depth.Trip-licates of each sample were prepared.2.2.Soil samplingSoil samples for multifarious analyses were collected after incu-bating them for nine months.Each barrel was divided into four sub-barrels to minimize edge effects for grab-sampling.The soil samples for each barrel consisted of four composited2cm diame-terÂ10cm deep cores.50g fresh soil was collected from each bar-rel and then divided into two aliquots.One aliquot was stored at 4°C in the dark for microbial biomass and enzyme studies while the other was air-dried and ground to pass through a1mm mesh sieve for subsequent chemical analyses and spectral measurements.M.Liu et al./Chemosphere95(2014)572–5805732.3.Analytical methods2.3.1.Spectral measurementsBased on reported methods(Wilson and Xenopoulos,2008;Guo et al.,2013),the Solutions for UV andfluorescence measurements to determine DOC structure were prepared by water extraction of the air-dried and sieved(100mesh sieves)soil in a1:5w/w ratio to Milli-Q water,then shaking for4h at room temperature.Extracts were centrifuged at7000rpm(Hitachi Inc.,CR22G,Japan)for 10min at4°C andfiltered through a0.45l m membranefilter. The quantity of DOC in the extract was measured with a total or-ganic carbon(TOC)analyzer(Shimadzu Inc.,TOC-VCHP,Japan).Four UV andfluorescence–related indices were determined in this study:fluorescence index(FI),humification index(HI),fresh-ness index(b/a),and specific UV absorbance at280nm(E280).De-tails about the determination of these indices are provided in the supplementary information(SI-2).Briefly,FI,b/a,and HI were determined using afluorescence spectrophotometer(Hitachi Inc., F-4500,Japan).While E280was determined using a UV scanning spectrophotometer(Shimadzu Inc.,UV-2550,Japan).Milli-Q high-purity water was used as the reference for all measurements. Spectralfluorometric3D excitation-emission matrix(EEM)mea-surements were obtained for excitation wavelengths from200to 400nm and at emission wavelengths from300to600nm at 5nm increments as previously described(Wilson and Xenopoulos, 2008).Data analysis was then performed using an in-house pro-gram SigmaPlot12.0.2.3.2.Chemical and biochemical analysisMeasurements of sediment TOC,DOC,TP,and available P(pH 8.5,0.5mol LÀ1NaHCO3extractable P,i.e.,Olsen-P)were con-ducted according to standard methods of physicochemical analysis (ISSCAS,1978;Westerman,1990).Due to the susceptibility of or-ganic C to KMnO4oxidation,the contents of three fractions of labile organic components in soil samples,namely highly labile organic carbon(HLOC),mid-labile organic carbon(MLOC),and labile or-ganic carbon(LOC),were determined using33,167,and 333mmol LÀ1KMnO4,respectively(Loginow et al.,1987).Recalci-trant organic carbon(ROC)was calculated as the difference be-tween these three labile C forms and the TOC.Soil microbial biomass C(MBC)and P(MBP)were determined by the chloroform fumigation extraction method(Inubushi et al.,1991).Moist soil samples were split into two subsamples with one immediately ex-tracted with either0.5mol LÀ1K2SO4for MBC or0.5mol LÀ1 NaHCO3for MBP,while the other was fumigated with chloroform and then extracted.Following centrifugation,C and P concentra-tions of soil microbial biomass were calculated from the difference between the fumigated and non-fumigated soil samples.2.3.3.Enzyme analysisThree eco-enzymes,b-1,4-glucosidase(BG),cellobiohydrolase (CBH),and acid phosphatase(AP)(Sinsabaugh et al.,2009)were se-lected as indicators of microbial nutrient demand in the C and P cy-cles,respectively.Sample suspensions were prepared by using a vortex mixer for1min to homogenize1g(wet weight)of soil with 125mL of50mmol LÀ1sodium acetate buffer(pH6.0to match the mean soil pH of the environmental samples).Sample suspensions, buffer,references,and substrates(the substrate solutions for BG, CBH and AP are4-MUB-b-D-glucoside,4-MUB-b-D-cellobioside, and4-MUB-phosphate,respectively)were pipetted into96-well blankfluorescent plates(Corning Inc.,costar3603,USA)following the strict order and position on the well plate according to the work of Saiya-Cork(Saiya-Cork et al.,2002).The micro-plates were covered and incubated in the dark at20°C for4h.Then,10l L of 1.0mol LÀ1NaOH was added to each well to stop the reaction and increase thefluorescence of residual substrates.Finally,standard high-throughputfluorometric detection of the enzyme assays were carried out using a Bio-Tek Synergy HT microplate reader(Bio-Tek Inc.,Winooski,VT,USA)with365nm excitation and460nm emissionfilters(Saiya-Cork et al.,2002).Enzyme activities were calculated and expressed as nmol hÀ1gÀ1(Sinsab-augh et al.,2008).2.4.Statistical analysisData were tested for homogeneity of group variances using the Pearson test.Data were square root transformed if necessary.The data were analyzed by analysis of variance using SPSS16.0statis-tical software.For the enzymes analysis,each data point was char-acterized by a response ratio(RR)and the log of the response ratio (L RR).RR was calculated as the mean of the experimental samples divided by the mean of the control samples(sample P-0)to provide an index of response magnitudes,while L RR was calculated as the log10of RR.The use of L RR is preferred over the use of RR because it equally weighs the negative and positive responses and facili-tates statistical analysis(Marklein and Houlton,2012).Positive values of L RR represented an increase in enzyme activity relative to the control sample,whereas negative values indicated sup-pressed activity.Before analysis,each class was summarized by the weighted mean of L RR(LÃRR).3.Results3.1.Structural complexity of soil DOC under phosphorus loadingSpectral analysis showed that P input was an excellent factor for soil DOC composition of the riparian wetlands(Table1).FI in soil solutions was raised from P-0to P-60by a range of0.65%to a max-imum6.5%.Meanwhile,the ratio of b/a was observed to follow the same trend as FI,with an increment of21–64%.As to aromatic sub-strate,E280and HI were reduced in all P loading samples by a fac-tor of3–12%and12–47%,respectively.Moreover,we found that all spectral indices changed significantly with P availability.Briefly,FI and b/a correlated positively with Olsen-P content(Fig.1A and C; p<0.05),but the relationship with respect to HI was negative (Fig.1D;p<0.05),while there existed a less linear correlation with E280(Fig.1B).Two remarkablefluorophores in3D EEMs were revealed from the tested six treatments:one at Ex/Em280–320/ 400–450nm and another at Ex/Em210–240/395–450nm(Fig.2). Usually,the peak at longer wavelengths was recognized as the humic-likefluorescence peak C in the UV region,while the other was determined to be the humic-like peak A in the visible region (Klotzbücher et al.,2012).Compared to humic-likefluorophores reported in Fig.2,a clear blue shift about the positions of the fluorophores both in the visible and UV region was observed with the increment of P loading,displaying a trend towards shorterTable1Spectral parameters of sediment dissolved organic carbon(DOC)in the tested samples,namelyfluorescence index(FI),humification index(HI),UV absorption at 280nm(E280),and freshness index(b/a).Treatment FI E280b/a HIP-0 1.53±0.05b0.63±0.08ab0.91±0.07cd0.48±0.01a P-5 1.54±0.01b0.64±0.03a0.88±0.08d0.42±0.01b P-10 1.56±0.02ab0.61±0.03ab0.90±0.03cd0.40±0.03b P-20 1.59±0.03ab0.56±0.01ab 1.00±0.06c0.32±0.01c P-30 1.59±0.05ab0.55±0.03b 1.31±0.02b0.22±0.01d P-60 1.63±0.07a0.57±0.02ab 1.49±0.03a0.22±0.01d Values in parentheses are standard deviations.Different letters listed beside the data represent significant differences at p<0.05 (Duncan test,One-way ANOVA).574M.Liu et al./Chemosphere95(2014)572–580wavelengths(black line)relative to the maximum emission of the humic-like peak which moved towards to the left side of the emis-sion axis(Fig.2).3.2.Overall C-P features and enzyme activities under P loadingThe data calculated from the mean value of three tested soils for each sampling pot(Table2)showed that soil TOC content de-creased about12–18%relative to each sample without P amend-ment.Meanwhile,DOC content increased by a factor of0.7–25.5%,as did the ratio of DOC/TOC with the incremental addition of P(Fig.3C).Soil TP and Olsen-P were significantly increased with the rate of P application.Remarkable increases were also found for MBC and MBP by a rate of22–50%and5–54%,respectively.The ratio of HLOC/TOC followed the enhanced tendency of soil MBC compared to blank treatment(Fig.3A),while the ROC/TOC ratio was found to decrease with the rate of P addition(Fig.3B).As summarized in Table3,the activities of both soil BG and CBH were stimulated consistently with P amendment.The RR of BG ranged by a factor of31–62%;at the same time an increment of 14–19%was found for CBH.The positive weighted mean of L RR illustrated an enhancement effect on the activities of these two C-related enzymes induced by external P loading.P amendment depressed AP activity due to all weighted means of L RR about AP, which showed negative values reduced by16–43%,except for P-5.3.3.Pearson correlation for soil chemical or biochemical properties in relation to soil DOC characteristicsPearson correlation analysis showed that soil chemical or bio-chemical properties had a strongly significant correlation with1.Relationships between spectral parameters and Olsen-P after incubation.Shown are selected univariate linear regressions with the highestthe structure of soil DOC(Table4).Both TP and Olsen-P greatly promoted the change of DOC composition,considering its signifi-cantly positive relationship with b/a,FI,and HI values(p<0.05).Moreover,the DOC composition intimately correlated with soil C-related features.For example,FI and b/a correlated positively to soil DOC,MBC,HLOC/TOC,DOC/TOC,and C-relatedenzymes,but negatively to the ROC/TOC ratio (p <0.05),while HI positively correlated with the ROC/TOC ratio (p <0.01),but negatively to MBC,DOC,and C-related enzymes (p <0.05).4.Discussion4.1.Structural complexity of soil DOC under external P loading The characteristics of soil DOC composition are quite different from one another in gradient P input treatments.High FI and b /a values for P amendment samples represent a ‘‘first flush’’of predominant microbial-derived sources that builds up soil DOC (Table 1)with an intimate correlation with soil DOC content and DOC/TOC ratio (Table 4;p <0.05).This increase is consistent with standard interpretation of FI values,where higher values are representative of microbial decomposition of soil C and most labile C sources have already been microbially acquired (Wilson and Xenopoulos,2008;Johnson et al.,2011).Some authors have re-ported that P availability is one of the limiting factors for microbial growth (Ahn et al.,2007).Thus,the input of external P can be responsible for the enrichment of microbial-derived origins in soil DOC (Table 4;p <0.05),which is supported by the significant linear correlation between Olsen-P and FI,as well as b /a (Fig.1A and C;p <0.05),illustrating an enhanced function of autochthonous pro-duction of soil DOC of a simpler molecular structure as well as microorganism activities after gradient P irrigation.At the same time,the humicity of soil DOC intimately correlated with soil TP content (Table 4;p <0.05)and showed a negative linear relation-ship with available P (Fig.1D;p <0.05).HI,related to the degree of condensation or conjugation (Klotzbücher et al.,2012;GuoTable 3Eco-enzymes as indicators of microbial nutrient demand in the cycles of sediment carbon (C)and phosphorus (P)respectively:b -1,4-glucosidase,acid phosphate and cellobiohydrolase in the tested sediment.TreatmentAcid phosphatase b -1,4-glucosidase Cellobiohydrolase RRL ÃRR ±ClRR L ÃRR ±Cl RR L ÃRR ±Cl P-5 1.000.002±0.013a 1.090.036±0.008c 1.360.128±0.078b P-100.83À0.082±0.005b 1.310.116±0.047b 1.340.122±0.094b P-200.84À0.076±0.015b 1.570.196±0.031a 1.590.201±0.012a P-300.63À0.201±0.020c 1.660.220±0.037a 1.560.191±0.049a P-600.57À0.247±0.014d1.770.247±0.039a1.620.209±0.047aR,the response ratio;L ÃRR ,the weighted mean;Cl,95%confidence interval.Values in parentheses are standard deviations.Different letters listed beside the data represent significant differences at p <0.05(Duncan test,One-way ANOVA).et al.,2013),was significantly smaller in the sample with the high-est P loading rate(Table1),characterized by the lowest ROC/TOC ratio(Fig.3B),and showed a positive relationship with the refrac-tory moiety(Table4;p<0.01).The same tendency is deduced for E280from UV absorbance(Table1),but without much linear sig-nificance to Olsen-P(Fig.1B).The decreased HI and E280values (Table1)indicate that soil DOC contains less aromatic compounds as gradient rates of P loading increases,which further verifies selective removal of aromatic structures with a shift towards less aromatic precursors induced by external P.A clearer trend,considered qualitative information of soil DOC composition,induced by P loading is displayed by3D EEMs (Fig.2).Previous studies have demonstrated that the humic-like component or aromatic C content is negatively correlated with bio-degradation of DOC(Fellman et al.,2008;Hassouna et al.,2012), andfluorophores with long emission wavelengths are highly con-jugated and more aromatic in nature(Klotzbücher et al.,2012; Guo et al.,2013).Thus,as the black line shifted to the left side of the emission axis(Fig.2),the weakened humicfluorescence inten-sity indicated that addition of external P drives the transition of soil DOC composition to much more labile components with a sim-pler molecular structure and a lower degree of aromatic polycon-densation,which coincided with the data collected by spectral measurements(Table1).Since the molecular structure of organic material has long been thought to determine long-term decompo-sition rates in soil humic substances(Schmidt et al.,2011),the re-duced degree of DOC humicity and aromaticity(Table1and Fig.1B)combined with enhanced microbial-derived production of soil DOC(Table1and Fig.1A and C)may weaken the chemical stability and residence time of soil organic C components(Zhao et al.,2008),thereby accelerating cycling of the soil C pool.4.2.Is the transition of sediment DOC composition harmful for the retention of wetland sediment C pools under P loading?Previous studies have demonstrated the importance of soil DOC composition to soil microbial respiration(Fang and Moncrieff, 2005)and C mineralization(Zhao et al.,2008).As mentioned above,P input is a significant factor for the transition of soil DOC composition.Does this trend towards simpler structural complex-ity of soil DOC increase the possibility of the loss of soil C fractions and have a bad impact on C sequestration at the same time?In order to test this hypothesis,soil C-P features and enzymology were examined synchronously after incubation for a better under-standing of the complexity of soil DOC subjected to P loading and its implications for the retention of wetland sediment C pools.As P does not have a significant gaseous removal mechanism and therefore remains in the system to which it is added(Bostic et al.,2010),P loading to wetland systems results in a chemical gradient with P non-limiting conditions for microbial nutrient de-mand(Ahn et al.,2007)and mitigates the severity of P limitation to microbial biomass after enzymatic mineralization(Roberts et al., 2012).An obvious increase in content of MBC and MBP infive treatments was observed under P addition(Table2)indicating that microbial utilization of C and P might simply be stimulated by add-ing P due to the greater availability of labile organic components (Fig.3A and C),which generally implies enhanced availability of substrates for microbial growth(Lipson and Schmidt,2004).The increased microbial biomass positively correlated to DOC origins of microbial-derivation and negatively to soil humicity(Table4; p<0.05),better indicating the enhanced bioavailability of soil DOC after P incubation.Meanwhile,the response of enzyme activ-ities has provided insight into organic matter decomposition and soil Cfixing(Sinsabaugh et al.,2008).The corresponding activities of C-related enzymes(BG and CBH)were significantly stimulated after P amendment(Table3;L RR>0)due to increased DOC content (Table2and Fig.3C)since DOC contains both substrates and end products of enzymatic reactions of varying molecular weight(Bon-nett et al.,2006).In addition,enhanced DOC in soil results in en-riched substrate abundance for microbial metabolism and supports the synthesis of new enzymes(Song et al.,2012).BG and CBH are enzymes that contribute to the degradation of cellu-lose and other b-1,4glucans into glucose by deconstructing micro-bial cell walls and reducing macromolecules to soluble substrates for microbial assimilation(Sinsabaugh et al.,2008;Peoples and Koide,2012).Such mechanisms combined with the results of en-hanced microbial utilization of soil C(Table2)are highly respon-sive to changes in soil DOC composition.The Pearson analysis shown in Table4verifies that the activities of BG were closely linked to FI and b/a(p<0.05),but negatively correlated to HI and E280(p<0.05),illustrating the decomposition of soil organic mat-ter(Sinsabaugh et al.,2008)induced by P addition.Moreover,we found an average decrease of12–18%in TOC(Ta-ble2)and a reduced ROC/TOC ratio(Fig.3B)after P addition. Although this data changes little supported by the statistic analysis among the six treatments,but we can certainly predict a loss of sediment organic carbon since a more stable stage of the carbon pool appears due to the activities of microorganism during the long-term incubation.The lowest TOC content and ROC/TOC ratio in P-60,along with the highest MBC content(Table2),DOC/TOC, HLOC/DOC(Fig.3A and C),and enzymatic values(Table3),may as-sert a loss of organic resources and metabolized organic material at faster rates due to microorganism growth and activities stimulated by external P loading.Similar changes in the soil C pool subjected to P amendment are supported by Bradford et al.,who demon-strated enzyme-catalyzed depolymerization induced by P inputs would increase decomposition of soil C fractions that constituted the longer-term C pool(Bradford et al.,2008).The refractory C components comprising the C pool in the sediment were decom-posed during incubation(Fig.3B),when other interfering C-im-ports such as aquatic plants and animals were excluded,which are revealed to be positively correlated with soil humicity (p<0.01)and negatively related to b/a(Table4;p<0.05).Since humification has been defined as the conversion of fresh organic matter inputs into more stabilized substances(Kirkby et al., 2013),the reduction of the refractory moiety(Fig.3B)and TOC fractions(Table2)in our study undoubtedly caused a loss in the soil C pool,which asserts an intimate relationship with soil DOCTable4Pearson correlation coefficients between sediment chemical or biochemical proper-ties and sediment dissolved organic carbon(DOC)spectral characters responding toexogenous phosphorus(P)application of the riparian wetland.FI E280b/a HITOCÀ0.3950.318À0.802**0.804**DOC0.554*À0.4270.847**À0.830**MBC0.542*À0.485*0.551*À0.731**HLOC/TOC0.395À0.1790.717**À0.793**ROC/TOCÀ0.542*0.322À0.674**0.581*DOC/TOC0.514*À0.3900.902**À0.881**TP0.708**À0.3850.874**À0.824**Olsen-P0.580*À0.3910.864**À0.753**MBP0.736**À0.490*0.894**À0.805**APÀ0.628**0.529*À0.918**0.933**BG0.661**À0.632**0.819**À0.946**CBH0.478*À0.3720.545*À0.783**Sediment chemical or biochemical properties and DOC spectral characters aredimensionless.Pearson correlation coefficients showed by correlation matrix.Thepositive data denotes positive correlation coefficient,while the negative one rep-resents the opposite correlation coefficient;the correlation increases with theabsolute numerical value.*p<0.05.**p<0.01.578M.Liu et al./Chemosphere95(2014)572–580。
基因沉默番木瓜环斑病毒复制酶基因(PRSV-Nib)获得抗病毒病番木瓜的研究

热带作物学报2024, 45(4): 837 846Chinese Journal of Tropical Crops基因沉默番木瓜环斑病毒复制酶基因(PRSV-Nib)获得抗病毒病番木瓜的研究吴清铧1,2,贾瑞宗2*,郭静远2,杨牧之2,胡玉娟2,郝志刚2,赵辉2**,郭安平2** 1. 海南大学热带作物学院,海南海口 570228;2. 海南省南繁生物安全与分子育种重点实验室/中国热带农业科学院三亚研究院/中国热带农业科学院热带生物技术研究所,海南三亚 572024摘要:番木瓜是重要的热带经济水果。
番木瓜环斑病毒(Papaya ringspot virus, PRSV)是番木瓜的重要病毒病,经常导致严重的产量损失和质量恶化。
自从1998年第一例转基因番木瓜问世以来,使得基于“致病菌衍生的抗病性(pathogen-derived resistance, PDR)”的抗病育种策略获得成功广泛应用。
然而依赖于序列同源性的抗病性与病毒突变导致多样性增加之间的矛盾成为番木瓜育种科学家的新挑战。
本研究拟采用RNAi策略针对复制酶(nuclear inclusion b. Nib)获得广谱抗PRSV番木瓜新种质。
通过团队已建立的胚性愈伤诱导-农杆菌介导转化-再生苗诱导的番木瓜遗传转化体系,共获得经过抗性筛选的再生苗52株,通过特异性PCR进行筛选共计获得24株转基因阳性植株。
通过对T0代田间自然发病试验中,转基因番木瓜株系抗病性明显高于非转基因对照,其中NibB5-2田间抗病性最优。
通过hi TAIL-PCR方法确定NibB5-2插入位点位于第2号染色体supercontig_30的1976766的位置。
T1代接种试验中,无病毒积累且无发病症状,初步确认具有良好的病毒抗性,为番木瓜抗病育种提供新思路。
关键词:番木瓜;番木瓜环斑病毒;Nib基因;RNA介导的病毒抗性中图分类号:S436.67 文献标志码:AGene Silencing of Papaya ringspot virus Replicase Gene (PRSV-Nib) to Obtain Virus Resistant PapayaWU Qinghua1,2, JIA Ruizong2*, GUO Jingyuan2, YANG Muzhi2, HU Yujuan2, HAO Zhigang2, ZHAO Hui2**, GUO Anping2**1. College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China;2. Hainan Key Laboratory for Biosafety Monitor-ing and Molecular Breeding in Off-Season Reproduction Regions / Sanya Research Institutey, Chinese Academy of Tropical Agri-cultural Sciences / Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan 572024, ChinaAbstract: Papaya is an economically important tropical fruit. Papaya ringspot virus (PRSV) is an important virus dis-ease of papaya, often causing significant yield losses and quality deterioration. Since the introduction of the first trans-genic papaya in 1998, PDR-based breeding strategies for disease resistance have been successfully applied. The contra-diction between disease resistance based on sequence homology and increased virus genetic diversity became a new challenge for papaya breeding. In this study, we propose to use RNAi strategies aim at nuclear inclusion b gene (Nib) to obtain broad-spectrum resistance to PRSV papaya. With optimized embryo callus generation-Agrobatium meidated transformation-shoot regeneration, 52 shoots were obtained after resistance screening and a total of 24 transgenic posi-tive shoots were obtained by specific PCR screening for the T0 generation. In the T0 generation field natural disease test, 收稿日期 2022-12-16;修回日期 2023-02-15基金项目 海南省重大科技计划项目(No. ZDKJ202002);海南省重点研发计划项目(No. ZDYF2022XDNY257);崖州湾科技城菁英人才项目(No. SCKJ-JYRC-2022-67)。
贺兰山东坡直翅目昆虫群落的边缘效应英文

S tud y o n th e Ed g e Effe c t of O rth op te ra n C om m u n ity i n N i n g x ia H e la n M o u n ta i nHE H a i 2m i n g 1,Y AN G G u i 2ju n 2,HE L i 2ro n g 2,WAN G Xi n 2p u3,431.Sci e nce and Tech no l o gy Dep a rt m e nt,N i ng xi a U nivers i ty,Yi nchua n 750021;2.Schoo l o f L i fe Sc i en ce ,Yi nchua n 750021;3.Schoo l o fAg ri cu lt u re,N i n gxi a U n i ve rs it y,Yi nchua n 750021; 4.Ke y Labo ra t o ry f o r R es t o rat i o n a nd R econ s tru cti o n o f D eg raded Eco sy s t em i n No rth 2we s tern C h i na of M i n is try o f Edu ca ti o n,Yinchuan 750021Ab s t ra ct [O bject i ve]The s tudy a i m ed t o d iscus s the i nfl uen ce s o f ed ge effect on o rtho p t e ran comm un it y i n ea st s l o p e o f Helan Mo un t a i n.[M eth od ]Sam p l e s a re co l l e cted by u s i ng samp l e zo ne m e t ho d.The d i ffe ren t sp ecies o f o rt hop terans i n d i ffe ren t hab i ta ts are reco rded.[Resul t]Th e p ercen tage of O ed i po di d ae,C atan t op i dae and Pamp hg i dae i n t o t a l are 42.65%,29.15%a nd 12.76%re sp ecti ve l y .From scat t e red g ras s 2l a nd i n teri o r t o e dge and then t o des ert g ras s l an d,abun dance i n crea se i n t u rn,bu t d i ve rs it y i n the edge is the h i ghe s t .The d i vers i ty i nde x o f o r 2thop t e ran comm un i ty decrea se w i th the dis t a nce aw ay fr om edge i nc rea s i ng.The ri chne ss chang es w it h the dis t a nce aw ay fr om the edge.The re are 4t ype s o f edg e effect s i n cl ud i ng ha bitat gene ralis t,hab it a t gene ra l is t edge e xp l o it e r,hab i ta t spec i a l is t e dge exp l o i te r and h abitat s p ec i alist edge a vo i de r i n the sca ttered g ras s l an d 2d es ert gra s s l and eco t on e acco rd i ng t o Sisk a nd M arg ul e s πs crit e ri o n.[C on clus i on ]The re se arch p rov i de s da t a an d theo retical ba s i s fo r t he b i od i ve rs it y p ro tect i o n,devel opm en t a nd ut i li zati o n o f o rtho p t e ran ,and t he d evel opm en t o f co n se rva ti o n bi o l o 2gy .Key w o rds O rt hop tera;Edg e effec t ;D i vers i ty;Sca ttered gra s sland 2de se rt gra s s l and Eco sys tem ;He l an M oun ta i nR D , M ,S y M y f ,N y x T S (N T 22)32x @y The re se a rch o n the beha vi o ra l re spo nse s or se l e ct trends o f spe c i e s to ha bita t edge is ve ry i m po rta nt t o unde r 2stand the edge e ffec t [1].The re ac ti o ns t o the e dge a re va ri e d a cco rdi ng to t he bi o l o g i ca l a nd e xte rna l co nditi o ns,a nd m any othe r fa cto rs.B ec ause i n se c ts a re hi ghl y sen siti ve t o habita t cha nge s,som e i n sec ts a re use d a s environ m enta l i ndi ca 2t o rs [2,3].O rthop t e ra n i n e a st sl ope of He lan M ounta i n a re m a inl y distribu t e d in sc a tte red gra ssland and de se rt g ra ss 2l and .Through the s t udy o f e dge e ffec t fo r o rthop te ra i nse ct comm unitie s i n e a st sl ope of He l a n Mo un t a in,we discus s the diffe re nc e s am ong di ffe ren t o rthop te ran sp ec i e s t o the sam e ty p e of edge re a cti on so tha t we could ca rry ou t p reve nti o n a nd con tro l li ng wo rk rea sonab l y a nd app rop ri a te ly on the l o 2cu st,p re se rve a nd m a inta i n the e xisti ng ba l a nce of the e co 2system sta te ,a nd give ce rta in da ta a nd theo re ti c a l ba sis t o bi odive rsity con se rva ti on .E xp e ri m e n ta l S ite sR e se a rch a rea is l o ca te d in Ningxi a He l a n M ounta i n Na 2ti ona l Na ture R e se rve ,no rthwe st of N i ngxi a ,whi ch borde rs Inne r M ongoli a Autonom ous Re gi on i n we st a nd no rth,a nd sp i ns t he tem pe ra te steppe and de se rt i n the t wo vege ta ti o n re gi ons .Annua l a ve ra ge t em pe ra ture is -0.8℃,a nnua l a v 2e rage sunsh i ne i s ove r 3000h,fro st 2free pe ri od a re 128-175days,a ve rage ra i nfa l l is be t w e e n 200-400mm ,and a nnua l e vapo ra ti o n i s ove r 2000mm.S ca tt e re d gra ssl a nd a nd de se rt gra ss l and a re the i m po rtan t ve ge ta ti on i n ea s t sl ope of He l a n M oun ta i n .Sc a tte red gra ss l and is m a i nl y distri buted i n a lt .1500-2100m i n a ri d l ow 2mo un t a i n .Xe ri c shrub such a s U l 2m us g l a uce sc en s,P runu s m ongolica a nd A j a ni a fruti cul o sa a re spa rse l y dis tri buted,wh il e S ti pa ,Se t a ri a viri dis a nd A rt e 2m isi a su t d i gita ta e t a l .a re grow i ng th i ckl y .Ave rage ra infa ll is 250-300mm.De se rt gra ssland is i n a lt .1200-1500m ,a ve rage tem pe ra ture is 8℃,a ve rage ra infa ll is 200-250mm.M a ny pa rts of the bed r o ck e xpo se s,soil is infe rtil e si 2e ro zem.M a i n ve ge t a ti on type s a re S ti pa gra sse s,xe ri c a nd de se rt xe ri c sem i 2sh rubs a j a ni a.In a dditi on,fo re land p l uvi a l fan gra ss l and is i nc lude d .Re sea rch p l ots a re l o c a ted i n the geographica l coordi na te s of 105°56′-106°03′E,38°27′-39°50′N,e l e va ti o n ra nge i s 1400-1600m.It is the tran si 2ti ona l re gi on o f sc a tte red gra ssland a nd de se rt gra s sl a nd.M e th o d sE xp e ri m en ta l de s ignF i ve sam p l e zo ne s w it h t he width of 5m we re se l e c ted i n the ve rtica l dire c ti on of the edge.The inte rva l be t we e n eve ry zone w a s 10-20m ,9p l o ts we re cho sen i n e a ch zone.The a re a of the pl o t se l e c ted i n sca tt e re d g ra ss l a nd,de se rt g ra s s 2l a nd a nd edge l a nd wa s 5m ×5m.The inte rva l be t w ee n e a ch p l o t wa s 20m.S pec ifi c samp li ng prog ram is shown i n F i g.1(show i ng t w o zone s )[4-7].Samp li ng wo rks we re conduc te d be t we en June and August in 2008.Ac co rd i ng to the di ffe ren t spe c i e s a nd habita ts i n cap turing p roce ss,we u se d ne tm e th 2od,fre e 2ha nd c ap t u re and trapp i ng m e thod e tc .I nse ct spe c i 2m e ns we re b r o ught bac k to the l a b afte r the po isoning,i den ti 2fied a nd reco rde d t he spe c i e s a nd qua ntiti e s of orthop te ra n a cco rding t o the l ite ra ture m onograph [8].F x (I ;II )D y R f M f f 2Agri cu l tu ral Sc i ence &Techno l o gy,2010,11(2):113-116,145C op yright κ2010,I nf o r m at i o n I n s ti tu t e of HAAS.All ri gh ts res erved.Ani m a l S ciencee ce i ve d:ecem be r 242009Accep t e d:a rch 192010uppo rted b i n i s tr o Educa ti o n ew C en tur E ce ll en t al e n ts chem e C E 070470.C o rre spo n di n g au tho r .E m ail :w ang i npu i g.1E pe ri m en t p l o ts de s i gn :scatte red g ras s l an d :d es ert g ras s l an d a ta an a l s i sich ne ss o sp ec ies ea su rem ent o the nu m be r o sp ec i e s i n comm uniti e s,ofte n c ha ra cte rized w ith"S".S ha nno n2W ie ne r d ive rs ity inde x(H′) H′=-∑P i l nP iH′is the Sha nno n2W i e ne r di ve rsity inde x;P i is the p ro2 po rti on o f i th ta xa i ndividua l num be rs i n the t o ta l i ndi vidua l nu m be rs.S is the nu m be r o f spe c i e s i n comm un i ty.E ve nn es s ind ex(E) E=H′/l o g2(S)o r E=H′/ln(S)E is t he e venne ss i nde x i n t he form ul a.D om ina nc e Ind ex(D) B e rge r2P a rke r i nde x is adop ted.D=Nm a x/NTD is the dom i na nce i ndex i n the fo r m u l a;Nm ax i s the popula ti on of dom i na nt spe c i e s;NT is the popul a ti on of a ll ty p e spe c i e s i n comm un i ty.Com m u nity s i m ila rity ind ex S i m il a ri ty coe ffi c i e nt fo r m ula ra ised by Ja c ca rd(1901)is a dop ted:q=c/(a+b-c)I n the fo r m ula,q is t he comm unity inde x;c is the com2 mo n spec ie s i n sam p l e A and B;a is the tota l spe c i e s in sam2 pl e A;b is the t o ta l spe c i e s i n sam p l e B.Sp e c ie s ab unda nc e va lue The t o ta l num be r o f i ndi vidua l spe c i e s pe r25m2i n eve ry sam p l e i s counte d a s the abun2 dance of e ac h i nse c t.I ndi vi dua l a ve rage of fi ve p l o ts w ith a ce rta i n distance away from the edge is shown a s the sp ec i e s a bunda nce va lue[5].R e s u lts a n d A n a lys isCom p os ition o f O rthop te ran C omm un itySpe c i m e ns o f4874orthop te ra n w e re collec te d a nd i den2 ti fied a s28spe c i e s,be l o ng i ng to9fam ili e rge st num be r of i ndi vi dua ls a re O ed i p odida e,C a tan t opida e a nd P am pha gi2 dae,a ccoun ti ng fo r42.65%,29.15%a nd12.76%in to t a lo r2 t hop te ra n re spe c ti ve l y,they a re the dom i na nt sp ec i e s i n the su rve y a re a(F i g.1);Foll owe d by A rcyp te ri da e,a c counti ng fo r7.29%i n t o ta l o rthop te ran.B radyporida e,Te tri go i dae, Conocep ha l ida e,P yrgom o r p hi da e a nd Ac ri di da e a re the com2 mo n spe c i e s i n t he surve y a rea,a cco unti ng fo r1%-5%.In a ll co ll e c ted spe cie s,C a lli ptam us ba rba rus ba rba rus, C.ba r2 ba ru s,O eda leu s i nfe rna lis and O.deco rus a sia ti c us a re the dom i na nt spe cie s in the surve y a re a,a cco un ti ng fo r53.48% i n tota l.D ive rs ity of O rthop te ra n Com m u n ityThe edge of sca tte red g ra s sl a nd a nd de se rt gra ssland is the comm on e dge ha bit a t type s e xi s t e d in e a st sl op e of He l a n M oun ta i n.Acco rdi ng t o the distance awa y from edge,45re2 se a rc h p l o ts(5samp l e zo ne s,ea ch zone conta i n s9p l o ts) a re ga the re d t o three gr o up s:sca tte re d gra ssl a nd habita t (p l o ts s1t o s15)conta ins three dista nce group s(40m,60m a nd80m)de ep i n t o the sc a tte red gra s sl a nd inte ri or.D e se rt g ra ss l a nd ha bita t(p l o ts s31t o s45)co nta i n s three dista nce g r o up s(40m,60m a nd80m)de ep int o the de se rt gra ssl a nd i nte ri o r;Edge l a nd habita t(p l o ts s16t o s30)co nta i ns t he o th2 e r th re e d i s tance group s(e dge l a nd,deep i nto the sca tte re d g ra ss l a nd i nte ri o r fo r25m,de ep i nto the de se rt gra ssland in2 te ri o r fo r25m)(Ta bl e2).O rthopte ra n di ve rsity inde x i n edge l a nd is sli ghtl y h i ghe r tha n t he t w o adjac en t e co system s,a nd de se rt gra ss l and inte ri or is hi ghe r tha n sca tte re d gra ss l a nd in2 te ri o r.The re i s s i gni fi c an t diffe re nc e in H′i ndex be t we en edge l a nd a nd sca tte re d gra ssl a nd(P<0.05),but no si gni fi c an td i ffe re nce be t w ee n e dge l a nd a nd de se rt gra s sl a nd(P>0.05).B e ca use the re a re so m a ny suitab l e ha bita t fra g m e nts fo r o rt hop te ra n i n sca tte re d g ra ss l a nd,no t on l y the surviva l of l ocus ts a re re stricte d,but a lso t he sp re a d a nd distr i bu ti on of them a re li m ited,so the di ve rsity is l ow.Tre nd s of e ve nne s s E is a s foll ow s:sca tte re d gra ssl a nd>e dge l a nd>de se rt g ra ss l a nd.Tab le1 Sp eci e s com po s i t i o n in su rvey area sFam i l y S p ec i e sA mo2untP e rce n2tage∥% B radypori da e Zi chya p i ec hockii Ce j cha n250.51Zi chya a l a san i ca B2B i e nk1142.34 Conocepha li da e Conoc epha l us c hi nens i s Re dtenbac he r781.60 Te tri goi dae Fo r mosa te tti x he l a nshane nsis Zhe ng410.84P a ra t e tt ix uva r ovi S eme nov701.44 Pampha gi da e Hap l otr op i s ne i m ongol e nsis Yi n1232.52F i lchne re ll a be i cki Ramme1362.79F i lchne re ll a he l a nsha nens i s Zhe ng1022.09P se udo t m e t his bra chypte rus Li480.98P se udo t m e t his a l a sha ni cus B.2B i enko1493.06Eo t me thi s ho l ane nsis Zheng e t G ow641.31 Pyrgomo r p hi da e Atra c t omorpha s i ne nsis Bo li v a r641.31 C a t a nt opida e O xya a de nt a ta W i ll e m se721.48Ca ll i p t amus ba r ba rus ba rba rus Go sta76215.63Ca ll i p t amus ba r ba rus(Co sta)52310.73 A rcypte ri da e Cho rthi p pu s a l bonemus Che ng e t Tu2074.25Cho rthi p pu s hsi a i Cheng e t Tu1483.04 O e di p odi da e O eda l e us de corus a si a ti cu s B.B i e nk o63813.09O eda l e us i nf e r na li s Sa ussure68414.03Anga ra c ri s rhodop a(Fisc he rW a l he i m)891.83Bryodema koz l oviB.B i e nk o1643.36Bryodeme l l a ho l de re ri ho l de re ri(Kr a uss)1553.18Bryodema n i g r opte ra Zheng e t G ow1072.20Ce l e s ska l o z uboviA de l.581.19Comp so r h i p i s da vi di ana(S aus sure)1072.20Sp hi ngono t us ni ngsi a nu s Zhe ng e t G ow360.74Lep t opte rni s grac il is(Eve rsma nn)410.84 Ac ri d i da e Ac ri da c i ne re a(Thunbe rg)691.42 T o ta l4874100 Ta b l e2 D i ve rs it y index o f o rthop t e ran comm unity i n s urvey a reaR i chn es s of spec i es(S)D i ve rsity i nde x(H′)E ven nes s i ndex(E)Dom i nance i nde x(D) Scatte red g ras s l and SG16 2.16050.78320.2924 Edge l and SG2DG25 2.84350.87670.1633De se rt gras s l and D G28 2.79760.84040.2183 S i m il a rity of o rt hop te ra n i n sca tte re d gra ssl a nd,edge l a nd and de se rt g ra ss l a nd a re shown i n Table3.De se rt gra ss l and ind i ca te s a hi gh si m il a rity with edge l a nd and m iddle y Sy B f y(f f2ond com po ne nts is92.32%)(F i g.2),we fi nd t ha t the re a re g re a t di ffe rence am ong sca tte red g ra ss l a nd i n te ri o r,e dge l a nd a nd de se rt gra ssland i nte ri o r,no ove rl ap i n the so rti ng m ap,y T22 y411Ag ri cu l tu ral Sc i ence&Tech no l o gy Vo l.11,No.2,2010dis si m i la rit w ith sca tt e re d g ra ss l a nd.ca tte re d gra ssl a nd show s l o w s i m ila rit with e dge l a nd.a se d on the PCA o o rthop te ra n comm unit com po siti o n a ccum ula ted va riance contri bu ti on ra te o the irst a nd se c but de se rt gra s sl a nd is re l a tive l c l o se t o e dge l a nd.he re sult show s tha t orthop t e ra n i n de se rt gra ss l a nd ha s the t e nd e nc t o sp re a d t o sca tte re d gra s sl a nd.Ta b l e 3 The s i m il a rit y co effi cient o f o rtho p t e ran i n d i ffe ren t hab it a tsScatte red gras s l andEdge g ra s sl a nd De se rt gra s sland Scatte red g ras s l and 10.52000.4643Edge g ra ss l and 0.520010.8929De se rt gras s l and0.46430.89291F ig.2 The PCA o rd i na ti on o f O rt hop tera n comm un i t i esO rthop te ra n d ive rs ity w ith d iffe re n t d is ta nc e aw a y f rom e dgeW e compa re the d i ve rsit y o f o rthop te ran a nd the com po 2siti on o f spe c i e s with di ffe ren t dista nce awa y from edge ,the re sults a re shown i n Fig .3.The re is a te nde nc y tha t the di ve r 2sity o f o rthop te ra n comm unity de c re a se s w ith t he d i s tance a 2wa y from e dge i nc rea si ng both i n sca tte re d gra s sl a nd o r de s 2e rt gra ss l and .The d i ve rs it y of sca tte re d g ra ss l a nd 80m awa y from e dge dec rea se 0.9542com pa red w ith e dge l a nd,but the re is no s i gni fican t di ffe re nce of di ve rsity i n de se rt g ra ss 2l and w ith t he dista nce aw ay from edge inc rea si ng .Sp ec i e s com po siti o n of o rthop te ran comm un i ti e s in sc a tte red gra ssl a nd dec rea se with the dista nce awa y fr om e dge inc re a s i ng .16spe c i e s a re co ll ec te d i n sc a tte red gra s sl a nd 40m aw ay from e dge ,a ccounting fo r 57.14%i n t o ta l am oun t in survey a rea ;13sp ec i e s a re co ll e c ted i n sca tte re d gra ssland 80m awa y from e dge ,a cco un ti ng fo r 46.42%i n t o t a l am ount;Sp ec i e s com po siti o n of o rthop t e ra n comm uniti e s i n de se rt gra ssl a nd i nc rea se w ith the dista nce awa y from e dge i nc rea si ng .All spe c i e s c an be fo und i n de se rt g ra ss l a nd 40m aw ay from edge.F ig.3 Comm unity d i vers i ty and n um be r o f spec i e s o f O rthop 2teran i n d i ffe ren t edg e di a tanceE dg e e ffe c t of C om m un ityEdge effe ct of comm unity is ge ne ra l ity in eco t one e co sys 2t em.Thr o ugh the s t udy of edge e ffec t,we coul d unde rstand t he e dge i m pa c t on t he spe ci e s distri buti on pa tte rn and fo r m a ti on,f y,y,y S M [],y f ff 2de se rt g ra ss l a nd e cotone (F ig .4).Eo t m e this ho l a ne ns i s,Zi c hya p i ec hockii ,P se udot m e t his bra chy p te rus a nd Sphin 2gonotu s n i ngsi a nus be l o ng t o hab it a t spe cia list e dge avo i de r .The se ki nds of i n se c ts adap t t o d i s tri bute i n de se rt xe ri c ve ge 2ta ti on w it h e xpo sed be drock i n m a ny pa rts a nd i nfe rtil e de se rt g ra ss l a nd,no distribu ti on i n the edge of sca tt e re d gra ssland 2de se rt gra ss l and .P seudo t m e this a l a sha nicus be l ongs to ha bi 2ta t sp ec i a l ist edge e x p l o i te r,distri buti ng in de se rt gra ssl a nd a nd e dge l a nd .Zi chya a l a sa ni ca ,Co nocepha lus ch i ne ns i s,F il chne re l la be i c ki ,B ryodem a koz l ovi and B ryodem e ll a ho l 2de re ri ho l de re ri be l o ng t o hab i ta t gene ra list edge e xpl o ite r,the y a dap t t o distribu t e i n the edge shrub zone of sca tte re d g ra ss l a nd 2de se rt g ra ss l a nd .It is m o re suitable fo r the ir su rvi v 2a l beca use of the abunda nt food a nd cha nge d m ic r o 2envir o n 2m e nt i n e dge land a nd becom e the i de a l e co l o g i ca l p l a ce com 2pa red with the ha bita t i nte ri o r .For m o sa te tti x he l a nsha ne ns i s,P a ra te tti x uva rovi ,Atra ctomo rpha s i nen sis,O xya a den t a ta,Ca l li p tam u s ba rba rus ba rba ru s,C a ll i p tam u s ba rba rus,C ho r 2thi pp us a l bonem us,C ho rt h i p pu s hs i a i,O e da l e us de co rus a si 2a ti cu s,Oe da l e us infe rna lis,C e le s ska l oz ubo vi,Com p so rhi p is da vi di a na,Lep top te rnis g ra c i lis,Ac ri da cine re a ,Hap l o tr op is ne i m ongo l e nsis,Anga ra cris rhodopa and B ryodem a ni g r op 2te ra be l ong t o ha bita t gene ra list,the y d i s tri bute i n sca tte re d g ra ss l a nd 2de se rt g ra ss l a nd a nd edge land w it h e xten si ve a 2dap tab i lity .The i ndi vi dua l c an succ e ssfu ll y c ro ss the bo unda 2ri e s be t we e n fragm e nts a nd a dap t the cha nge d e nviron m en t d i ffe re nt fr om the inte rna l hab i ta t .The y rega rd t his type of ha bita t a s a ne a r 2homo ge neous w it h s m a ll envir onm e nta l c ha nge ,ha ving no si gni fica nt e ffe ct o n t he ir survi va l .B ut they do n πt show a ve ry uniform distribu ti on of adap tab i lity i n sca t 2te re d g ra s sl a nd 2de se rt g ra ss l a nd a nd e dge l a nd.W hen the d i s t a nce awa y from e dge i nc rea se s,the amo unt of Ca l li p ta 2m u s ba rba rus ba rba rus a nd C a lli p tam us ba rba rus i nc re a se i n de se rt g ra s sl a nd i ncre a se ,but de c re a se i n sca tt e re d g ra s s 2l a nd.The dis tri buti o n of O eda leu s de co ru s a si a ti c us a nd O e da leu s i nfe rna lis show oppo site trend w ith t hem.The d i s tri 2buti o n of Hap l o trop is ne i m ongo l e nsis,F il chne re lla he lan s 2hane nsis,Anga ra c ris rho dop a and B ry odem a ni grop t e ra i n sca tt e re d g ra ss l a nd is few.D is c u s s io nThe s tudy shows tha t o rt hop te ra n comm unity ha s s i gn i fi 2c ant di ffe rence s be t w e e n sca tte red g ra ss l a nd a nd de se rt g ra ss l a nd.The re a re appa re nt di ffe re nti a ti o n i n e dge land a nd sca tt e re d gra ss l a nd comm unit y com pos iti on,be i ng a m ixtu re of f o re st spe cie s and de se rt gra ss l a nd spe c i e s .Edge a nd de se rt gra s sl a nd comm unity com pos iti on a re si m il a r .B a sed on the compo siti on a ttri bute so rt of orthop te ra n comm uniti e s,orthop t e ra n i n de se rt gra ssland have the t e nd 2e nc y t o sp re a d t o the sca tte re d g ra s sl a nd .Edge e ffe ct of o rthop te ra n dec re a se s w ith the dista nce awa y from edge i ncre a si ng .Spe c i e s com po siti on of o rt hop te r 2a n comm un i ti e s in sca tte re d gra ssland de cre a se s w it h the d is 2tance aw ay fr om e dge inc re a s i ng,w hi le show i ng the oppo site trend i n de se rt gra ss l and .The re is no endem i c spe c i e s i n sca tt e re d g ra ss l a nd .The re a re 4ty p e s of e dge e ffe c ts for o rthopte ran i n sca t 2te re d gra s s 2de se rt gra ssl a nd e co t o ne.The a na l ysis of d i ffe r 2x f ff f ff x ff [35]N ff f y ,x yz ff f y T 511HE Ha i 2m i ng e t a l .Study o n the Ed ge Effect o f O rt hop t e ran Comm un it y in Ningx i a He l a n M ou nta i n t h i s w i ll provi de a theo re ti ca l ba sis o r conse rva ti on bi o l og bi odi ve rsit bi ol ogi ca l contr o l a nd i nse ct p e stm a na gem ent .Acco rdi ng t o the c rite ri on ra ised b isk a nd a rgu l e s 9the re a re 4t p e s o e dge e ec ts i n the sc a tte red gra ssl a nd e nt t a a o o rt hop te ra n to e dge e e c t shows tha t re sults romd ie re nt ta a a re di e re nt -.e vill e e t a l .po i n ted tha t ba se d on the di e rence o t h is ana l s is we m u st e nsure the ta a wh il e a na l i ng the edge e ec t o bi o l o g .he conc ep tF i g.4 4t ype s of respo n se of O rtho p t e ran t o e dge"Anca nc e li ng 2out e ffe ct"we re propose d when the y ana l yze dorde rs taxa of inse c ts [10].The study fi nds tha t suc h p he nom e 2non e xists i n P am phagida e a nd O ed i p odida e ,it i ndica te s tha t dom i na nt popul a ti on m a y de te r m i ne the em e rge nce of t h is phe nom e non.The re fore ,the study of b i o l ogy rea c ti on t ype s t o e dge e ffec t ha s g rea t sign i fi ca nce on eco sys tem re s t o ra ti o n a fte r la rge 2sca le disturba nce a nd the e col ogica l re se a rc h inc l u 2di ng t he ana lys is of bi o 2a rea trend .A t the sam e ti m e w e ca n se e tha t diffe re nt spe c i e s of gra sshoope r ha ve d i ffe re nt re a c 2ti on t o the sam e edge type ,re fl e c ti ng ha bi ta t se lec ti ve diffe r 2e nc e of gra s shoope r .R e fe re n c e s[1]HA I L A Y,H ANSKI I K,N I E M ELA J ,e t a l .Fo res try and bo real fau 2na:m atchi ng m ana gem ent w it h na t u ral f o re s t dynam i cs [J ].Ann Zoo l Fenn i ci ,1994,30:17-30.[2]EY R E MD,LO TT DA,GAR S I D E A.As se ss i ng the po t en ti a l fo r en 2v i ronm en t a l mo n i t o ri ng us i ng ground beetl e s (Co l eop t e ra:C arab i 2dae )wit h ri ve rs i de and Sco tti sh da ta[J ].Ann Zoo l Fenn i ci ,1996,33:157-163.[3]L I A N Z M (廉振民),Y U GZ (于广志).Edge effect and b i od i ve rs it y(边缘效应与生物多样性)[J ].C h i nese B i od i vers it y (生物多样性),2000,8(1):120-125.[4]L I U C M (刘缠民),L I A N Z M (廉振民).The s tudy o n d i versity o fg ra sshopp ers com m unit y i n No rth Shaanxi(陕西北部蝗虫群落多样性研究)[J ].J ou rnal of Xuzho u No r m a lU ni vers i ty (徐州师范大学学报),2001,19(2):63-65.[5]L I U C M (刘缠民),L I A N Z M (廉振民).Gras shoppe r comm unit ys truct u re o n the no rt he rn s l ope of Tai ba iM oun t a i n of Q inli ng (秦岭太白山北坡蝗虫的群落结构)[J ].Zoo l og i cal R es earch (动物学研究),2002,23(4):301-305.[6]L I A N Z M (廉振民),Y U GZ (于广志).Ana l ys i s o n t he edge re s po n 2se s of g ras shoppe rs t o the edge zone bet ween fi e l dl an d andwas tel and (农田-荒地边缘地带中蝗虫边缘反应分析)[J ].Acta Eco l o gi ca Si n i ca (生态学报),2001,21(8):1270-1277.[7]Y U X D (于晓东),LUO TH(罗天宏),ZHOU HZ (周红章),et a l .I n 2fl uence o f edge effect o n d i versity o f g r o und 2dwe l li ng be etl e s a cr o s s a fo res t 2g ras s l and eco t o ne i n Wo l o ng Na t u ral Re se rve ,S (边缘效应对卧龙自然保护区森林草地群落交错 带地表甲虫多样性的影响)[J ].Ac t a En t om o l og i ca Si n i ca (昆虫学报),2006,49(2):277-286.[8]ZHENG Z M (郑哲民),WAN LS (万力生).Gras shopp er i n N i ngxi a(宁夏蝗虫)[M ].Xi ’an:Shaanxi Norma l Unive rs i ty Pre s s (西安:陕西师范大学出版社),1993:1-147.[9]S I SK TD,MAR GULES CR.Hab i tat edge s an d re sto rati on:m e t h 2o ds fo r quantifyi ng edge effects an d p red i c ti ng the re sults of r e s t o 2ra ti o n eff o rts [M ]//SA UNDERS DA,HOBB S RJ ,EHRL I CH PR .Na t u re con serva ti o n 3-t he recon s tructi on o f fragm en t e d eco sys 2tem s .Pert h:Su rrey B eatty a nd Son s,1993:57-68.[10]NEV I L LE PJD,B LAC KDG.An i m a l s on t he edge:the can ce l i n g 2o ut effect[J ].Mem o irs o f t he M us eum of Vi ct o ri a,1997,56(2):623-630.[11]L I S M (李淑梅),MA KS (马克世),L I J P (李季平).Study o n the bi od i versit y o f so il fauna i n d i ffe rent l and use type (土地不同利用类型下土壤动物群落多样性研究)[J ].J o urna l o f Anhui Ag ri cu l tur 2al Sci ences (安徽农业科学),2008,36(2):309-310,358.[12]WA N G Y H (王玉红).S t ud i e s on p es tspec i es of Hem i p tera a nd O r 2thop teran on fruit trees i n Q i nhuangd ao area (秦皇岛地区半翅目、直翅目果树害虫种类研究)[J ].Heb ei Fruits (河北果树),2009(6):6.[13]TENG Z Q (滕兆乾),L I N YZ (林育真),WANG Y W (王裕文).Studi e s o n comm un i ty d i ve rs it y of O rt hop teran s i n J i nan (济南市郊直翅目(O rt hop tera )昆虫群落多样性研究)[J ].Ludo ng Un i versit y J ou rna l (鲁东大学学报):Na t u ral Sci ence Ed i ti on (自然科学版),2003,19(1):35-40.[14]XI E GL (谢广林),WAN G W K (王文凯).A p reli m inary study onO rthop t e ra i n Houhe N ati ona l Na t u re R es erve (后河国家自然保护区直翅目昆虫初步研究)[J ].J ou rnal o f Yangtze Un i ve rs it y (长江大学学报):Na t u ral Sci ence Ed i ti o n (自科版),2006,3(1):110-112.[15]ZHEN G Z M (郑哲民),ZHONG Y L (钟玉林).Three new s p eci e so f O rthop t e ra fr om Hube i P r o vi nce (湖北省直翅目三新种(直翅目))[J ].En t om o t a xonom i a (昆虫分类学报),2005,27(4):249-256.[16]ZHENG Z M (郑哲民),L IM (李敏),W EIXJ (魏秀娟).A new spe 2ci es of the genu s cho rthi ppu s fi ebe r fr om Q i nli ng Mou ntai n Area (O rt hop t e ra:A rcyp te ri dae)(秦岭地区雏蝗属1新种记述(直翅目:网翅蝗科))[J ].J o urna l o f Huazhong Ag ri cult u ral Un i versit y (华中农业大学学报),,(3)66R Z NG 2 R YI N 2 R f WU X 2y (下转第5页)611Ag ri cu l tu ral Sc i ence &Tech no l o gy Vo l .11,No.2,2010ou thwes t C hi na -200928:28-29.es p o n s i b le e d it o r:HA C a i l i e s p o n s ib le t ra n s la to r:J i a n l i e s p o n s ib l e p ro o rea d e r:iao an14Ne t B e an s I D E5.0wa s deve l opm en t langua ge.The co rre 2spo nd i ng re tri e va l sys tem a i m i ng a t c rop p e sts w a s c re a te d a nd com pa re d w it h tra diti ona l se a rch e ngine (Ta bl e 1).The first 20e ffec ti ve info r m a ti on we re a dopte d .Ta b l e 1 Com pa rison o f re trieval sys tem p e rf o rm ance %D i s eas es and i n se ct p es ts Goo g l e B a i du Yahoo C I S B acte ri a l s talk r o t30352560Dac t y l ispa se ti fe ra (chap uis )30453570R ou nd spo t35352565He l o tr o pha l euco s ti gm a l aw is40553060 AC I S ga ve the fu l l con si de ra ti ons t o u se r re quirem e nt a ndit wa s cons truc te d on the ba s is of g ramm a r,sem a ntic a ndpragm a ti c.The re tri e va l e nvi ronm e nt and ta rge t w e re unde r 2st ood t o som e e xt e nt,the refo re ,the required i nfo r m a ti o n could be found mo re a cc ura te.C o n c lu s io n sThe com p re he ns i ve i nfo r m a ti on t heo ry is sta rti ng sta ge inCh i na a nd fo re i gn co un tri e s,whil e di ffi cu l ty is the comp lex conve rs i o n p roce ss fr om i nf o r m a ti on t o know l e dge a nd from know l edge t o i n te lli ge nce ,be side s;the re i s no unive rsa l prin 2c i p l e a l go rith m w ith str o ng m a ne uve rability t o suppo rt .S tud 2yi ng conve rsi o n a l go ri thm o f i nf o r m a ti on,know l e dge a nd inte l 2li gence by re fe rri ng da ta m i ni ng a nd re la ted tec hno l ogy of know l edge d iscove ry w ill becom e a re sea rch focu s .R e fe re n c e s[1]WANG SQ (王世耆).R evi ew o f i nforma ti on t echno l o gy app li ca ti oni n agri cult u re (信息技术农业应用述评)[J ].C om pu t e r and Agri cul 2t u re (计算机与农业),1996(3):1-5.[2]ZH ONG YX(钟义信).Pri nci p l es o f i nf o r m ati on sc i ence (信息科学原理)[M ].3r ded (第3版).B eij i n g:B e i ji ng Un i versit y of Po s ts and Tel e comm un i cati on s Pre ss (北京:北京邮电大学出版社),2002:45-48.[3]H AN J W ,K A MBER M.Da t a m ini ng co ncep ts and t echn i que s[M ].San Ma t eo ,CA:Mo rgan Kauf mm an Publi s hers,2000.[4]DUB O I S D,PRADE H .Fuzzy se ts and s ystem s (t h eo ry an d app l i 2ca ti o n)[M ].O xf o rd,U K :Academ i c Pre ss ,1980.R es p o n s i b le e d it o r:C HEN Xiu 2ch e n R es p o n s ib le t ran s la to r:L I Zh u 2le R e s p o n s ib l e p ro o fread er:WU Xiao 2y an基于全信息理论的农业信息检索系统吴启明3 (河池学院,广西宜州546300)摘要 通过分析语法、语义、语用信息,建立了基于全信息的农业信息检索系统AC IS 。
新发现!这种真菌可以低成本解决土地盐碱化问题

新发现!这种真菌可以低成本解决土地盐碱化问题人们常说,土质的好坏会影响植株的生长。
越是肥沃的土壤,其种出的作物收成往往越是喜人。
但是,并不是所有的土壤都适宜种植植物,比如盐碱化土地,就会造成农作物减产甚至绝产。
为了解决这一问题,全世界的科学家们都做出了很多的尝试和努力。
近日,来自阿卜杜拉国王科技大学HeribertHirt课题组的研究人员在《Scientia Horticulturae》杂志上就发表了一篇文章,论述了他们最新的研究成果。
论文题目:Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress在实验过程中,为了模拟自然状态下植物在盐碱土中的生长情况,科学家将无土栽培番茄植株暴露于浓度为200 mM NaCl (盐)溶液中达一个月之久。
这是什么概念呢,给大家举两个例子类比一下:200mM NaCl (盐)溶液就是1.17%的NaCl 溶液,这可了不得,名震海外的海水稻最多也就能耐受0.6%的盐溶液。
而我们常用的番茄栽培品种对盐类非常敏感(这也就是为什么盐碱地长不了番茄,未经脱盐处理的鸡粪不能用于番茄种植田),一般在50 mM NaCl下其种子发芽率就会减少,150 mM NaCl下幼苗的生长就会受到严重抑制。
既然如此,这些番茄为什么还能长得这么好呢?因为在番茄根部接种了真菌——印度梨形孢Piriformospora indica!印度梨形孢是一种植物根部内生真菌,最早在印度沙漠的灌木根上被分离出来,它能定殖于包括单子叶植物和双子叶植物在内的多种植物上。
并且,这种菌可离体培养!以前,科学家们就发现根部有印度梨形孢的植物,更耐盐、更抗旱、更抗病,吸收养分的能力也更高!本实验中,科学家以纯水作为对照,之后观察并测定在两种处理下,番茄的生长发育和一系列生理生化指标变化情况,以期进一步说明这种菌对植物的作用机理。
蔬菜作物果实和叶片表皮蜡质研究进展

蔬菜作物是人们日常生活中不可或缺的食物之一,据统计,2016年我国蔬菜播种总面积约2.23×107hm 2,产量7.98亿t [1]。
基于生产生活的实际需求,对蔬菜作物重要农艺性状的研究具有重要现实意义。
植物蜡质又称蜡粉、蜡被,是一种附着于植物表皮组织的非细胞结构物质,作为植物组织的第一道保护性屏障,在抵御环境胁迫、保证植物正常生长发育等方面发挥着积极作用。
植物蜡质具有晶体状结构,能够防止水分散失,同时在紫外线辐射和病虫侵害等环境胁迫条件下起到了保护植物的作用。
目前,在模式植物拟南芥中,已经对蜡质性状进行了深入的生理生化作用及遗传机制研究,同时对水稻、甘蓝、柑橘等多种作物不同组织部位表皮蜡质的研究不断深入。
蜡质广泛存在于黄瓜、甘蓝、大白菜等多种蔬菜作物的果实、叶片等组织上,并在一定程度上提高了作物的品质、产量和抗性。
笔者对蔬菜作物果实和叶片表皮蜡质的生物学功能、结构与成分、性状的遗传机制以及植物蜡质合成与代谢调控几个方面的研究进展进行综述,以期为遗传育种和生产实践提供理论参考。
1蔬菜作物果实和叶片表皮蜡质的生物学功能蜡质的结构与生物学功能息息相关,SIEBER 等[2]研究表明,植物蜡质具有防止非气孔性水分流失和调控表皮渗透性的作用。
MULLER [3]等发现,表皮蜡质层较薄的植物一般能抵挡小于10%的太阳辐射,而较厚的蜡质层能够抵挡20%~80%的辐射,进而有效减轻了太阳辐射造成的伤害。
李俊等[4]研究表明,UV-B 辐射处理后马铃薯叶片的蜡质层厚度增加,且蜡质晶体的量增多。
表皮的蜡质层的厚薄可能与抗病性有关,如研究者发现抗灰斑病蔬菜作物果实和叶片表皮蜡质研究进展龚成胜,刘文革(中国农业科学院郑州果树研究所郑州450009)摘要:植物蜡质是附着于植物组织表面的一层疏水性屏障,在蔬菜作物中,表皮蜡质是重要的农艺性状,存在于甘蓝、黄瓜、西瓜等蔬菜作物的组织器官上,对植物生长发育和适应外界环境起到重要作用。
葡萄籽原花青素提取物预灌胃对造影剂诱导糖尿病大鼠急性肾损伤的预防作用观察

葡萄籽原花青素提取物预灌胃对造影剂诱导糖尿病大鼠急性肾损伤的预防作用观察翟志红1,张海俊2,黄辉1,牛强31 石河子大学医学院第一附属医院心内科,新疆石河子 832000;2 石河子大学医学院第一附属医院病理科;3 石河子大学医学院预防医学系摘要:目的 观察葡萄籽原花青素提取物预灌胃对造影剂诱导糖尿病大鼠急性肾损伤的预防作用,并探讨可能作用机制。
方法 50只SD 肥胖大鼠,腹腔注射1%链脲佐菌素(40 mg /kg ),41只成功建成糖尿病大鼠模型,随机分为DM 组8只、CM 组9只、葡萄籽原花青素提取物低剂量组8只、中剂量组8只、高剂量组8只,另取10只肥胖大鼠为空白对照组(NC 组),1 mL /kg 腹腔注射柠檬酸缓冲液;低、中、高剂量组大鼠每日分别用50、250、500 mg /kg 的葡萄籽原花青素提取物灌胃1次,连续3天,第3天灌胃24 h 时尾静脉注射碘海醇(1.8 g I /kg );NC 组、DM 组、CM 组大鼠每日用10 mL /kg 生理盐水灌胃1次,第3天灌胃24 h 时,NC 组、DM 组尾静脉注射5 ml /kg 生理盐水;CM 组尾静脉注射碘海醇(1.8 g I /kg )。
末次给药48 h 时各组大鼠断尾采血,检测血清肌酐(SCr )和尿素氮(BUN ),采血后处死各组大鼠,取肾组织检测肾组织氧化应激指标超氧化物歧化酶(SOD )、丙二醛(MDA ),采用原位缺口末端标记法测算各组大鼠肾小管上皮细胞凋亡指数,采用Western Blotting 法检测各组大鼠肾组织核因子E2相关因子2(Nrf2)-Kelch 样ECH 关联蛋白1(Keap1)通路相关醌氧化还原酶 1(NQO1)、血红素单加氧酶-1(HO -1)、Nrf2、Keap1蛋白。
结果 与NC 组比较,CM 组及低剂量组血清SCr 、BUN 水平高(P 均<0.05)。
与CM 组比较,NC 组、DM 组、低中高剂量组血清SCr 、BUN 水平低(P 均<0.05);与低剂量组比较,中、高剂量组大鼠血清SCr 、BUN 水平低(P 均<0.05)。
实验十六地衣门 - 华中师范大学精品课程

上层:由紧密交织的菌丝的组成。 中层:由蔬松交织的菌丝和藻类细胞组成,注意藻类 细胞是成层排列,还是分散在菌丝之间? 下层:也是由紧密交织的菌丝组成,并有成束菌丝形 成的假根。 注意观察,能否区分出明显的藻胞层。
地衣的构造
1.列表区别三种类型地衣的主要形态特 征。
植物学实验
孢子植物部分
华中师范大学生命科学学院
实验十六
地衣门(Lichenes)
观察识别三种不同类型的地衣的形 态特征。
显微镜、解剖镜、载玻片、盖玻片、镊子、解剖 针、蒸馏水、滴瓶、吸水纸三种不同类型的地衣 标本,叶状地衣玻片标本。
观察三种类型的地衣标本,注意区别它们的 外形。
(1)壳状地衣——原植体紧贴于基质上,很难采下。 (2)叶状地衣——原植体仅由菌丝形成假根,固着于基质
上,便于采取。 (3)枝状地衣——原植体多分枝,直立或悬垂。
壳状地衣
茶渍衣属(Lecanora)
文字衣属(Graphis)
叶状地衣
地卷衣属(Peltigera)
脐衣属(Umbilicaria )
枝状地衣
石蕊属(Cladonia)
松萝属(Usnea)
用镊子取少许叶状地衣,置载玻片水滴中,并用解 剖针轻轻将材料分开,加上盖玻片,用显微镜观察,在视 野中你能看到组成叶状地衣的真菌菌丝和藻类细胞吗?
白洋淀流域蒸散发增加的驱动因素(英文)

DOI: 10.12357/cjea.20220121MUSHIMIYIMANA C, LIU L L, YANG Y H, LI H L, WANG L N, SHENG Z P, ITANGISHAKA A C. Drivers of evapotranspira-tion increase in the Baiyangdian Catchment[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 598−607Drivers of evapotranspiration increase in the Baiyangdian Catchment*Christine Mushimiyimana 1,2, LIU Linlin 1,2, YANG Yonghui 1,2**, LI Huilong 1,2, WANG Linna 2, SHENG Zhuping 3,Auguste Cesar Itangishaka1,2(1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences / Key Labor-atory of Agricultural Water Resources, Chinese Academy of Sciences / Hebei Key Laboratory of Water-saving Agriculture, Shijiazhuang 050022, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Texas A & M AgriLife Research Center, El Paso,Texas 79927, USA)Abstract: The Baiyangdian Catchment is facing a growing shortage of water resources. Identifying the sensitive drivers of evapotran-spiration (ET) changes from land and crop management will be critical to understanding the reasons for mountainous runoff reduc-tion and depletion of groundwater resources in the plain. It will also be important for making Xiong’an become a Future Example City for green and sustainable development. In this study, remotely sensed ET data from PML V2 products with a spatial resolution of 500 m was used to analyze the trend of ET at the pixel level and to understand its influence on vegetation such as GPP (Gross Primary Production) and NDVI (Normalized Difference Vegetation Index) under different land-use types for 2002‒2018. Results showed that there was a significant increase in ET in mountain regions and a slight increase in plain regions of the catchment. The spatial pattern of mean annual ET was very much relevant to the changing trend of GPP and NDVI. For the whole catchment, the average increasesof ET, GPP, and NDVI were respectively 2.4 mm∙a −1, 9.8 g∙cm −2∙a −1, and 0.0021 at an annual rate. In the mountainous region, changes in annual precipitation and vegetation recovery together caused a total increase of ET by 56.5 mm over the period and negatively af-fected the runoff. In the plain region, there were 3 factors influencing the change of ET. While intensification of urbanization and re-duction in the cultivation of wheat, the water consumptive crop, had both resulted in the decrease of ET and water consumption, ET or water consumption in most irrigated fields increased. Since the beneficial effects from urbanization and crop adjustment were not enough to offset the increase of ET in irrigated fields, an overall ET increase of 6.4 mm over the period was found. In conclusion,both in the mountainous and plain regions, ET increased. And therefore, more efforts are needed to control the ET increase in natural vegetation and cropland for a green and sustainable catchment.Keywords: Evapotranspiration; Vegetation change; Urbanization; Winter wheat; Irrigated land; Baiyangdian Catchment Chinese Library Classification: P426.2Open Science Identity:白洋淀流域蒸散发增加的驱动因素*Christine Mushimiyimana 1,2, 刘林林1,2, 杨永辉1,2**, 李会龙1,2, 王林娜2, 盛祝平3,Auguste Cesar Itangishaka1,2(1. 中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室/河北省节水农业重点实验室石家庄 050022 中国; 2. 中国科学院大学 北京 100049 中国; 3. 德州农工大学埃尔帕索研究中心 德克萨斯州 79927美国)摘 要: 白洋淀流域位于雄安新区上游, 山区植被和下垫面变化、平原区农业灌溉加大了区域蒸散发, 造成山区产流减少和平原区地下水超采。