风力机变桨力矩建模分析与估计

合集下载

大型风力发电机组变桨距机构分析与实验研究

大型风力发电机组变桨距机构分析与实验研究

收稿日期:2006-08-21.基金项目:国家863计划资助项目(2100AA512022).作者简介:单光坤(1968-),女,辽宁沈阳人,副教授,博士生,主要从事大型风力发电机组变桨距技术等方面的研究.文章编号:1000-1646(2007)02-0209-04大型风力发电机组变桨距机构分析与实验研究单光坤,刘颖明,姚兴佳(沈阳工业大学风能技术研究所,沈阳110023)摘 要:旨在确定变桨距机构的结构形式,通过精炼设计校核变桨距机构的技术参数,论证变桨距机构的合理性,确保兆瓦级风力发电机组在60m 高空稳定工作.通过不同的变桨距机构方案的对比,找出各种变桨距机构的优缺点,完成兆瓦级风力发电机组变桨距结构的确定;利用数值算法进行变桨距机构参数的精炼设计;利用实验装置验证变桨距机构的合理性.最终,兆瓦级风力发电机组采用了液压变桨距结构形式,由数值算法给出了液压变桨距结构的最大负载力矩;并利用实验装置验证完成了在地面上的变桨距机构的调试工作,证明了变桨距机构在额定工况下能正常工作.在兆瓦级风力发电机组的调试过程中变桨距机构工作正常、稳定,达到了预期设计的目标.关 键 词:大型风力发电机组;变桨距机构;载荷分析;加载试验;测试工装中图分类号:T M 614 文献标识码:APitch regulated mechanism analysis and experiment of large wind turbineSHAN Guang kun,LIU Ying ming,YAO Xing jia(Wind Ener gy Institute o f T echnolog y,Shenyang U niversity of T echnology,Sheny ang 110023,China)Abstract:The research is to determine the pitch regulated mechanism of a large w ind turbine,check the technical parameters of pitch regulated mechanism by refine design,and demonstrate the rationality of pitch reg ulated mechanism,w hich w ill ensure the stable operation of the w ind turbine on the tow er of 60meters.The different pitch regulated mechanisms w ere compared to determine their advantages andshortcom ing s and select the best mechanism.T he refine desig n for the technical parameters of pitch regulated mechanism w as done by numerical analysis method.T he rationality of pitch regulated mechanism w as demonstrated by ex periments.At last,a hydraulic pitch regulated mechanism was selected for the megawatt wind turbine.T he max imum load moment of pitch regulated mechanism w as given by numerical analysis method,and the regulation and test on the ground w ere carried out.T he pitch regulated mechanism operates normally under rated condition and the desired results have been achieved.Key words:large w ind turbine;pitch regulated mechanism;load analysis;loading test;test technolog icalequipment变桨距风力发电机组,其桨叶桨距角在电气控制下可随时调整,当风速超过额定风速后,机组可通过调整叶片桨距角,保证其转速不变,输出额定功率,提高了机组利用率;变桨距型风力发电机组,在机组并网与脱网时,通过调整叶片桨距角,可使机组输出功率到最小,这样减小了机组在并网与脱网时的冲击电流,提高了机组寿命和电网质量[1];变桨距型风力发电机组,在其进行刹车制动时,由于其可先进行叶片变距气动刹车,再进行机械刹车,这样减小了机械刹车力矩,降低了刹车对机组部件的损害,提高了机组的寿命[2].由此,变桨距型风力发电机组将会成为大型风力发电机组发展的主流.沈阳工业大学风能技术研究所自主开发设计的1MW 风机采用了变桨距的形第29卷第2期2007年4月沈 阳 工 业 大 学 学 报Journal of Shenyang University of TechnologyVol 29No 2Apr.2007式.变桨距机构作为变桨距型风力发电机的关键部件直接影响到机组的正常运行,本文对1M W 风力发电机的变桨距机构从理论上进行了精炼设计分析,从实验上论证了变桨距机构的合理性.1 变桨距机构类型变桨距机构是变桨距型风力发电机组的核心.目前国际上大型风电机组的变桨距机构主要有两种实施方案[3]:机械齿轮传动变距与液压驱动变距.机械齿轮传动变距是利用伺服电机作为原动机,经过减速器通过齿轮副,带动桨叶旋转.这种变距方案,每一片桨叶都由一套独立的电动机、减速器和齿轮副驱动,因此变距力大,但电气布线困难,并且要求三个电动机运行同步,增加了控制上的难度.由于电动机、减速器、齿轮等部件均在轮毂内,增加了风轮重量和轮毂制造难度,而且维护也极不方便.液压驱动变距是利用液压缸作为源动机,通过曲柄滑块机构推动桨叶旋转.由于液压系统输出力大,变距机构可以做得很紧凑.液压驱动变距也有两种结构:一种是通过轮毂内三个液压缸和三套曲柄滑块机构分别驱动三片桨叶.这种方案变距力很大,但存在三个液压缸同步控制难,电气布线困难,风轮重量增加,轮毂制造难度加大,维护不便等问题;另一种结构是液压站,液压缸放在机舱内,通过一套曲柄滑块机构同步推动三片桨叶旋转.这种结构电气布线方便,而且降低了风轮重量和轮毂制造难度,维护也很容易,但这种结构要求传动机构的强度、刚度较高.2 大型风力发电机组变桨距机构本兆瓦级风电机组是变桨距型风力发电机组[4],采用的是液压缸作为源动机,通过一套曲柄滑块机构同步驱动三片桨叶变距的方式.2 1 变桨距机构组成本机组的变桨距机构主要由推动杆、支撑杆、导套、防转装置、同步盘、短转轴、连杆、长转轴、偏心盘、桨叶法兰等部件组成.其结构如图1所示[5].图1 变桨距机构Fig 1 Pitch regulated mechanism各组成部件作用如下:推动杆:传递动力,把机舱内液压缸的推力传递到同步盘上.支撑杆:是推动杆轮毂端径向支撑部件.导套:与支撑杆形成轴向运动副,限制支撑杆的径向运动.同步盘:把推动杆的轴向力进行分解,形成推动三片桨叶转动的动力.防转装置:防止同步盘在周向分力作用下转动,使其与轮毂同步转动.其中同步盘、短转轴、连杆、长转轴、偏心盘组成了曲柄滑块机构,将推动杆的直线运动转变成偏心盘的圆周运动.该机构的工作过程如下:控制系统根据当前风速,以一定的算法给出液压缸的位移信号,液压系统根据位移指令信号驱动液压缸,液压缸带动推动杆,同步盘运动,同步盘通过短转轴、连杆、长转轴推动偏心盘转动,偏心盘带动桨叶进行变距.2 2 变桨距机构分析该变桨距机构简图如图2所示.图2 变桨距机构运动简图F ig 2 Schematic movement of pitch regulated mechanism图中:od 摇杆;210 沈 阳 工 业 大 学 学 报第29卷df 连杆;od摇杆初始位置与水平线夹角;X 推杆位移;摇杆从初始位置转过角度;L 连杆长度.该机构的受力分析:该变桨距机构主要承受和传递来自两个方向的载荷:桨叶的旋转力矩和液压缸的输出力.桨叶旋转力矩的x轴分量传给液压缸的推动杆,y轴分量通过防转装置传给轮毂.油缸的输出载荷传递路线则相反,最后通过桨叶法兰的转动达到对桨叶变距操纵的目的.2 3 变桨距机构顺桨力的分析与计算[6]风电机组在工作状态下,作用于每个桨叶变距轴(桨叶大梁)上的阻力矩由如下几部分组成: M1=M j+M z+M m+M e+M f式中:M j 由桨叶本身质量离心力作用而产生的惯性力矩;M z 由空气动力作用而产生的气动力矩;M m 桨叶重心偏离桨叶变距轴而产生的重力矩;M e 弹性变形引起的力矩;M f 由变距机构各摩擦副而产生的摩擦阻力矩.1)由桨叶本身质量离心力作用而产生的惯性力矩M j在变距过程中,桨叶产生的最大惯性阻力矩为M j max=J22=10856 56Nm式中:J 桨叶对变距轴(大梁)的质量惯性矩,2200kg/m2;风轮回转角速度,3 1416/s.2)空气动力作用而产生的气动力矩M z空气动力作用而产生的气动力矩M z已由第602研究所得出计算结果.但其方向与M j相反,是使桨叶安装角增大的方向,且与M j相比其数值也较小,故为了安全起见,可以不考虑.3)桨叶重心偏离桨叶变距轴而产生的重力矩M m设桨叶轴均通过各截面重心,并位于风轮旋转平面内,即M m=0.4)弹性变形引起的力矩M e设桨叶不变形,即M e=0.5)由变距机构各摩擦副而产生的摩擦阻力矩M f支承桨叶轴的轴承是一个回转支承轴承,其空载摩擦阻力矩值为950Nm,其他机构摩擦阻力矩以效率计为0 95.故使桨叶绕桨叶轴转动所需的驱动力矩为M1=(M j max+950)/0 95=12427 96Nm 也就是说,在最恶劣情况下,使桨叶顺桨停机时,需作用于每支桨叶轴上的驱动力矩为M1=12427 96Nm风轮共三支桨叶,故M=M13=37283 87Nm已知驱动桨叶的曲柄长R,曲柄最大角度 =46!,故变距机构拉杆拉力为P=MR cos=82853N=8454 4kg液压站提供给变距机构的力随桨距角的变化而变化[7],其关系如图3所示;在外力矩为37283 87Nm时,变桨距系统所需要的力随桨距角的变化而变化[8],其关系如图4所示.由图3和图4可以看出,在外力矩为37283 87Nm时,变桨距系统工作正常.图3 液压系统压力与桨距角的关系Fig 3 Relationship between hydraulic pressure and pitch angle图4 变距系统需要的力与桨距角的关系(M=37283 87Nm)F ig 4 Relationship betw een necessar y pressure andpitch ang le(M=37283 87Nm)211第2期单光坤,等:大型风力发电机组变桨距机构分析与实验研究3 变桨距机构的负载试验测试目的:在设计外力矩条件下,测试机构能否准确完成顺桨及开桨工作.测试方法:通过测试工装,同时在三个变桨矩轴承内环的桨叶安装孔上加相同的重力,使三个变桨矩轴承内环产生与顺(开)桨力矩相反力矩.设计顺桨力矩:37283 87Nm设计开桨力矩:12428Nm测试工装[9-10]如图5所示,该装置与桨叶轴承内环连接,其上有6个滑轮,开桨时在1、3、5滑轮处各挂上一个重量相等的重锤,使产生转矩为12428Nm;顺桨时在2、4、6滑轮处各挂上一个重量相等的重锤,使产生转矩为37283 87Nm.图5 测试工装F ig 5 T est technological equipment测试结果:1)全行程变桨距试验(开、关桨)动作到位;2)变桨速度试验,动作时间可调、机构运动平稳;3)任意变桨距位置停止准确、位置重复精度和任意位置飘移量满足设计要求.4 结 论从理论上通过数值计算方法精炼设计了兆瓦风力发电机组变桨距机构的技术参数;通过地面试验验证了1MW 兆瓦风力发电机组变桨距机构合理,各部件参数选择正确,可以实现变桨距机构设计的预期目标,为1MW 风力发电机组的安全运行提供了保障.此风机已于2005年7月完成安装和现场调试,变桨距机构工作正常.参考文献:[1]武鑫,赵斌.并网型风电机组的调节控制[J].太阳能学报,2003(4):24-25.(WU Xin,ZHA O Bin.M odulation and control grid connected w ind turbine [J].Solar Energy ,2003(4):24-25.)[2]李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报,2004(2):146-148.(L I Q iang ,Y AO Xing Jia,CHEN L ei.Pitch mecha nism analysis o f megawatt stage w ind turbine [J ].Journal of Shenyang U niversit y of T echnolog y,2004(2):146-148.)[3]Xing Z X,Chen L.T he compariso n of sever al variablespeed wind generation set construction [A ].T he Sec o nd China I nternat ional Renew able Energy Conference [C].Beijing,2005:361-369.[4]姚兴佳,单光坤.1M W 变速恒频风力电机组结构特点[J].风电新能源,2004(1):25-26.(YAO Xing jia,SHA N Guang kun.T he characteristic of 1M W variable speed and constant frequency w ind turbine [J].Wind Electricit y N ew Energy,2004(1):25-26.)[5]秦立学.兆瓦级风力发电机变桨距机构研究[D ].沈阳:沈阳工业大学,2006.(Q IN L i xue.Research on meg aw att w ind turbine pitch regulated system [D].Shenyang:Shenyang U ni versity of T echnology ,2006.)[6]Yao X J,Liu G D ,San G K ,et al.One mega watt variable speed and constant frequency w ind turbine [A ].4th World W ind Ener gy Conference &Renewable En erg y Ex hibition [C ].M elbour ne,A ustralia,2005:214-219.[7]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压,2003(1):198-200.(WAN G Dong liang ,L I Hong ren,LI Chun ping.Asymmetrical valve asymmetrical cylinder load flow load pressure stat ic and dynamic property [J].M achine T ool &Hydraulics,2003(1):198-200.)[8]Yao X J,Shan G K,Sun C Z.Character i stic analysis ofhydraulic system o n wind turbine [A].T he Great Wall World Renewable Energ y Forum and Exihibition 2006[C].Beijing,2006:110-113.[9]Shan G K ,Y ao X J.Study on variable pitch regulatedmechanism of 1megawatt w ind turbine [A].4th World Wind Energ y Conference &Renewable Energy Exhi bition [C].M elbour ne,Australia,2005:413-419.[10]Yao X J,Shan G K,Su D H.Study on variable pitch system characteristics of big wind turbine [A ].Inter national Technol ogy and Innovation Conference Advanced Manu facturing Technolog i es [C].Hangzhou,2006:647-651.(责任编辑:吉海涛 英文审校:杨俊友)212 沈 阳 工 业 大 学 学 报第29卷。

风机变桨机构非线性动力学建模与分析研究

风机变桨机构非线性动力学建模与分析研究

风机变桨机构非线性动力学建模与分析研究摘要:风机变桨机构是风力发电系统中的关键部件,它负责调节桨叶的角度以最大限度地捕捉到风能。

非线性动力学建模与分析是研究风机变桨机构行为特性的重要方法。

本文通过对风机变桨机构的非线性动力学建模与分析研究,旨在提高对风机系统的性能和可靠性的理解。

1. 引言风力发电作为一种清洁和可持续的能源形式,正逐渐成为全球能源领域的重要组成部分。

在风力发电系统中,风机变桨机构扮演着重要的角色。

风机变桨机构不仅要能够有效地调节桨叶的角度以适应不同风速条件,还需要能够抵御外部风压和其他环境因素的影响。

因此,对风机变桨机构的非线性动力学建模与分析研究具有重要意义。

2. 非线性动力学建模风机变桨机构由多个复杂的部件组成,其中包括电机、减速器、桨叶、控制系统等。

这些部件之间存在着相互作用和耦合,因此风机变桨机构的动力学行为非常复杂。

为了更好地理解和预测风机变桨机构的动力学特性,我们需要对其进行非线性动力学建模。

2.1 桨叶动力学建模风机变桨机构的核心部件是桨叶,它直接受到风速和外部风压的影响。

为了建立桨叶的动力学模型,我们需要考虑风压、质量和惯性等因素。

一般来说,可以使用结构动力学方法和气动力学方法联合建模,来描述桨叶的自由度和受力情况。

2.2 机械传动系统建模风机变桨机构包含了机械传动系统,包括电机、减速器和传动轴等部件。

在建立机械传动系统的动力学模型时,需要考虑传动系统的刚度、摩擦和惯性等因素。

此外,传动轴的非线性特性也需要考虑进来,以更准确地描述风机变桨机构的动力学行为。

2.3 控制系统建模风机变桨机构的控制系统是为了调节桨叶的角度,以优化风机的性能。

通常,控制系统包括传感器、执行器和控制器等组件。

在建立控制系统的动力学模型时,需要考虑控制器的响应速度、滞后等因素,以及控制系统与其他部件之间的耦合关系。

3. 非线性动力学分析非线性动力学分析是研究风机变桨机构行为特性的重要方法。

通过对非线性动力学进行分析,我们可以得到风机变桨机构的振动模态、稳定性和动力响应等信息。

风力机统一变桨距执行机构虚拟设计及仿真

风力机统一变桨距执行机构虚拟设计及仿真

风力机统一变桨距执行机构虚拟设计及仿真
随着风力发电技术的不断发展,风力机成为一种重要的可再生能源发电设备。

风力机的变桨系统是其关键组成部分之一,能够提高风力机的发电效率和控制风机在复杂环境中的安全性能。

因此,设计一种高效、稳定的变桨距执行机构是风力机研究的重要方向之一。

在现代工程设计中,虚拟设计和仿真技术已经成为不可或缺的重要工具。

针对变桨距执行机构的虚拟设计和仿真可以有效地降低试错成本和开发时间,并且可以提高系统的可靠性和性能。

在进行虚拟设计和仿真之前,需要确定变桨距执行机构的功能需求和性能指标。

然后通过数学模型和仿真软件来模拟和分析机构的运动学、动力学和控制。

最终,可以通过虚拟实验来验证机构设计的性能指标,根据仿真结果对机构进行优化设计。

总之,风力机变桨距执行机构的虚拟设计和仿真是现代工程设计的重要手段,它可以有效地促进风力机的发展,并为提高风能利用率做出贡献。

风力发电机组变桨距控制系统的研究

风力发电机组变桨距控制系统的研究

风力发电机组变桨距控制系统的研究风力发电机组变桨距控制系统的研究近年来,随着环境问题的加剧和清洁能源的重要性逐渐凸显,风力发电作为一种潜在的可再生能源广泛应用。

风力发电机组是将风能转化为电能的关键设备,而变桨距控制系统则是提高风力发电效率的重要技术手段之一。

本文将对风力发电机组变桨距控制系统的研究进行探讨,从控制系统的结构、控制策略以及实际运行效果等方面进行分析。

1. 控制系统的结构风力发电机组的变桨距控制系统主要由传感器、执行器、控制器和信号传输部分组成。

传感器用于感知风力、转速以及叶片位置等信息,将这些信息传递给控制器。

控制器根据传感器获取的信息,通过控制策略对执行器发出信号,调节叶片角度,从而实现对风力发电机组的变桨距控制。

2. 控制策略目前,常用的控制策略主要有定角度控制和最大功率控制两种。

定角度控制是通过固定叶片角度来控制风力发电机组的输出功率,通常适用于恒定风速下的风机运行。

而最大功率控制则是根据风速大小实时调整叶片角度,以实现风力发电机组在不同风速下的最佳输出功率。

最大功率控制策略可以提高风力发电机组的效率,适应不同风速环境,并降低对外部条件的敏感性。

3. 实际运行效果根据实际应用情况和研究成果分析,风力发电机组的变桨距控制系统在提高发电效率、保护设备安全方面取得了显著效果。

通过使用最大功率控制策略,风力发电机组可以根据风速变化实时调整叶片角度,充分利用风能,并在恶劣天气条件下及时响应,减轻设备负荷。

同时,变桨距控制系统的应用也大大降低了由于风电机组运行时桨叶受损引起的事故风险,增加了设备的可靠性和安全性。

4. 研究展望尽管风力发电机组变桨距控制系统已取得一定的研究进展,但仍存在一些挑战和待解决的问题。

首先,尽管最大功率控制策略可以提高发电效率,但在不同风速区间的切换问题仍需要进一步优化。

其次,传感器的稳定性和可靠性也是需要关注的焦点,特别是在恶劣环境下的应用。

另外,随着风力发电技术的发展,新型的控制策略和技术工具也需要不断研发和应用,以进一步提高风力发电机组的性能和可靠性。

永磁直驱式变桨距风力发电机组的建模与控制

永磁直驱式变桨距风力发电机组的建模与控制

永磁直驱式变桨距风力发电机组的建模与控制1 引言永磁直驱式风力发电机组是我国风力发电机组的主流机型之一。

永磁风力发电机通过增加极对数,降低发电机转速,从而能够与风力机直接相连,取消了增速齿轮箱。

由于没有传统风力发电系统故障率很高的齿轮箱,直驱式风力发电系统稳定性和效率大大提高,且有效地抑制了噪声,具有比较广泛的市场应用前景。

图1 风力发电系统结构2 永磁直驱式并网型变桨距风力发电机组的结构永磁同步发电机的同步速较低,输出电压较低。

考虑到电网电压较高,电网与电机之间的能量变换装置,必须要有较大幅度的升压能力。

考虑到变压器体积较大,实际系统中,发电机组运送到塔顶成本较高,所以本文采取方法是直流母线侧先升压再进行并网逆变。

本文采用的机组方案如图1所示。

图2 桨距调节控制系统3 风力机的建模风力机建模一般只考虑其风能利用系数而忽略风力机的空气动力学过程。

本文即采用风力机的风能利用系数来建立其仿真模型。

图3 机侧电流内环控制系统风力机仿真模型的建立主要基于以下三个方程:(1)这里Cp-λ曲线采用文献[1]中给出的公式:(2)其中: (3)采用c1=,c2=116,c3=,c4=5,c5=21,c6=。

考虑到是发电机,建模时转矩要取反。

图4 网侧逆变器电流内环控制系统4 控制系统的设计桨距调节控制系统的设计当系统存在显著的不确定因素时,设计高精度的控制系统,必须研究控制系统在不确定情况下的鲁棒性。

PID控制器能够在很宽的运行条件下具有比较好的鲁棒性,并且形式简单,易于操作。

这里采用PID控制器来进行机组在高风速区的桨距调节。

变桨距风力发电系统在低风速区进行最大风能跟踪,节距角为零,即不进行变桨距调节。

图5 网侧逆变器电压外环控制系统风力机和发电机不经过增速齿轮箱而直接联接,传动系统的动态方程如下[4]:(4)式中,J是风轮转动惯量;ω是风轮转动的角速度;B是发电机的摩擦系数;Ta是风轮的气动转矩;Te是发动机获得的电磁转矩。

风力发电系统变桨控制模型建立与仿真分析

风力发电系统变桨控制模型建立与仿真分析

Vi

[1+
3R 4H0
sin(θB1+(i-1
)×
2π 3
)]n×V0
(8)
式中:R 为桨叶长度,θB1 为桨叶 1 的方位角。
权系数依据每个桨叶受风情况来进行分配,风
越大,权系数越大,桨叶节距角变化值也越大。 权系
数Ki 表达式为:
Ki =
3×[1+ 3R 4HO
sin(θB1+(i-1
)×
2π 3
第1期
崔明东等:风力发电机组的独立变桨控制
23
变发电机转子转速使风能利用系数最大; 在高风速
时,调节桨距角来改变发电机输出功率,使输出功率
稳定在额定值附近。 风轮转速或风速改变将引起叶
尖速比变化,影响风能利用系数,从而改变风轮捕获
的机械能功率 Pa,表达式为:
Pa = WrTa
(2)
式中:Ta 为风轮气动力矩,表达式为:
摘 要:为了实现风力发电机组 3 个桨叶的独立控制,依据风力机空气动力学原理和风剪切效应,提出了基于桨叶方位
角信号的权系数分配独立变桨距控制方法。 通过权系数对 3 个桨叶统一的桨距角进行重新分配,将统一变化的变桨角转化为
每个桨叶独立变化的桨距角。 以 2MW 变速变桨风力发电机组为研究对象,基 于 Bladed 软 件平 台 对 该控 制 策 略与 传 统 的变 桨
候、地形环境等因素外,风速的随机变化会因为桨叶
长度的增加而相互抵消, 高度因素的影响反而会更
明显。 风速在竖直高度方向上的变化主要是由风切
效应产生的。
风剪切是指风速随垂直高度的变化, 即风速会
随高度的增加而增加。 假设地面为零风速平面,则
有 风 切 经 验 公 式 [6]为

风力发电机组变桨矩系统的

风力发电机组变桨矩系统的

2023-11-09contents •风力发电机组概述•变桨矩系统概述•变桨矩系统的主要部件•变桨矩系统的控制策略•变桨矩系统的优化与改进建议•变桨矩系统的应用与发展趋势目录01风力发电机组概述风力发电机组是一种将风能转化为电能的系统,由风轮、发电机、塔筒等主要部件组成。

定义具有可再生、清洁、无污染等特点,是绿色能源领域的重要组成部分。

特点风力发电机组的定义与特点风轮叶片在风的驱动下旋转,将风能转化为机械能。

风的捕获机械能的转化电能的输出风轮通过主轴将机械能传递到齿轮箱,再由齿轮箱将机械能转化为电能。

发电机将机械能转化为电能,通过电缆输送到电网。

03风力发电机组的工作原理0201分类根据风力发电机组容量、功率等级、转速等因素,可以分为恒速型、变速型等不同类型。

组成风力发电机组主要由风轮、发电机、塔筒、齿轮箱、控制系统等组成。

风力发电机组的分类与组成02变桨矩系统概述变桨矩系统定义变桨矩系统是一种用于控制风力发电机组功率输出的装置,它可以根据风速和发电机组运行状态,改变桨叶的桨距角,从而控制风能捕获量。

变桨矩系统特点变桨矩系统具有高精度、高可靠性、高效能等特点,它能够实现快速响应、平稳控制,确保风力发电机组在复杂风况下的稳定运行。

变桨矩系统的定义与特点变桨矩系统的作用与重要性变桨矩系统的作用变桨矩系统的主要作用是调节发电机组的功率输出,以适应不同的风速和负荷条件。

它可以通过改变桨叶的桨距角,控制风能捕获量,从而降低载荷、提高发电效率。

变桨矩系统的重要性由于风力发电机组面临的风况复杂多变,因此变桨矩系统的应用对于确保发电机组的稳定运行至关重要。

它不仅可以提高风能利用率,降低载荷,还可以延长发电机组的使用寿命。

变桨矩系统的组成变桨矩系统通常由变桨电机、减速箱、轴承、传感器等组成。

其中,变桨电机是驱动桨叶变桨的核心部件,减速箱用于将电机的转速降低到适合桨叶旋转的速度,轴承用于支撑桨叶并确保其灵活旋转,传感器则用于监测变桨系统的运行状态。

风力发电系统的建模与分析

风力发电系统的建模与分析

风力发电系统的建模与分析一、引言风力发电作为一种可再生能源,近年来得到了广泛关注。

随着环境保护意识的增强和对传统能源的需求逐渐减少,风力发电系统的建模与分析成为一个重要的研究领域。

本文旨在探讨风力发电系统的建模方法及其应用,为相关研究和工程实践提供参考。

二、风力发电系统的基本原理风力发电系统是将风能转化为电能的装置。

其基本原理是通过风机叶片受风力推动,驱动发电机发电。

风力发电系统包括风机、变速器、发电机、变流器、电网等组成,其中风机是核心设备。

三、风机建模与性能分析1. 风机建模风机建模是风力发电系统研究的重点之一。

在建模过程中,需要考虑风机的动力学特性、叶片气动特性以及机械传动特性等因素。

常用的建模方法包括力矩控制模型、速度控制模型和功率控制模型等。

2. 风机性能分析风机性能分析是评价风力发电系统性能的重要手段。

通过对风机的输出功率、转速和扭矩等指标进行分析,可以评估系统的运行状态和效率。

在性能分析中,常用的方法包括功率曲线分析、风机特性曲线分析和参数优化等。

四、风力发电场的建模与优化1. 风力发电场建模风力发电场是指由多台风机组成的发电系统。

为了实现更高的发电效率和经济性,需要对风力发电场进行整体建模。

建模过程中,需要考虑风机之间的相互关系、布置方式以及与电网的连接等因素。

常用的建模方法包括智能优化算法、复杂网络模型和系统动力学建模等。

2. 风力发电场优化风力发电场优化旨在提高风力发电系统的整体性能和经济效益。

优化过程中,需要考虑风机的选型、布置间距、发电机的容量等因素。

常用的优化方法包括遗传算法、粒子群算法和模拟退火算法等。

五、风力发电系统的可靠性分析风力发电系统的可靠性分析是评估系统运行稳定性和故障概率的重要手段。

通过对风力发电系统进行可靠性分析,可以为系统的设计和运营提供依据。

常用的可靠性分析方法包括故障树分析、可靠性块图分析和Monte Carlo模拟等。

六、风力发电系统的经济性分析风力发电系统的经济性分析是评估系统投资回报和运营成本的关键环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



zd
() 4
为 轴 承 类 型 和载 荷 系数 ,
为 载 荷 方 向 系 数 ,P n为
静 态 载 荷 当量 ,
为轴 承平 均 直 径 。 静 态 载 荷 当量 特 性 由
变 大 ,随着 桨距 角 增 大 ,气 动 力 矩 减 小 ,风 轮转 速 也 逐 渐


紫鼯 角 l。 0
离 ,f 弦 长 , 为 攻 角 , 为气 动 中心 系数 。 为

芝. 5
罂 邶 管
、 0
篓. z 零稆
风轮转速 // i) (r n r a 风速 / s ( ) m/
图 3 俯 仰 力矩
差- 0

35摩擦 力矩 .
角 ( 轮 旋 转 平 面 与 弦线 的夹 角 ) 风 , 为质 心 系数 ( 叶素 前
缘 到 质 心 的 距 离 与 弦 长 的 比值 ,以 下类 同 ) 为变 桨 轴 心 , 系数。
C 为俯 仰 力 矩 系 数 。方 向与 气 动力 矩相 反 。 m
34空气 加速 度 的惯性 力矩 和 阻力距 .
起主要作用。
d = I l 0 gf d ( 6)
图 2 气 动 力 矩
33俯仰 力矩 .
类 似 气 动 力 矩 .俯 仰 力 矩 是 由翼 型 的 俯 仰 中心 偏 离 变
桨 轴 造 成 的 _。俯 仰 力 矩 是 力 矩 平 衡 的 重要 参数 。 5 ]
d =一 at ,
轴 承 的轴 向力 和切 向 力 决 定 。 然 而 轴 向力 和切 向 力 在 变 桨
中 随 变 桨 的 角 度 而 变 化 ,所 以静 态 载 荷 当 量 又 是 变 桨 角 度
; 主
2 。

I}
, …


,,

的 函 数 。 对 于 任 一 个 角 度 平 均 值 偏 差 很 小 的 静 态 载 荷 当量
气 动 力 矩 是 由于 气 动 中 心 与 变 桨 轴 不 重 合 ,主 要 是 气 动 力 分 量 造 成 的 [。 4 ]

圣占
饕o 登

d (∞ c i 譬口d =c s+ 口I , s n ,
n = 一 b 。 厂) f
() 3
上 式 假 设 气 动 中 心 在 变 桨 轴 上 ,桨 距 角 非 变 小 。 c 为 L 升 力系 数 , 为 相 对 风 速 ,啦 为 变 桨 轴 到 气 动 中 心 的 距
卢为 桨 距 角 ,d为 二 分 弦 长 ,b为 弦 轴 偏 移 系 数 , ,变
桨 轴 心 系 数 ,C 为 terosnfnt n ( k hod r c o 动态 时 C: ) e u i k1 。
风轮转速 , 衄II ( i) £ I
图 l 离 心 力 矩

32气 动力 矩 .
以 上 适 合 桨 距 角 非 变 变 小 时 ,变 小 时 方 向取 反 ,曲线
降 低 ,离 心 力矩 逐 渐 减 小 .桨 叶 力矩 逐 渐 减 小 。 由 于 存 在
风 剪 切 ,桨 叶气 动 力 矩 出现 准 周 期 变 化 .表 现 在 合 力 距 中 出 现 波 谷 。 当 桨 叶 到 达 顺 桨 位 置 ,风轮 停 止 转 动 ,暂 态 合
力 距 主 要 是 重 力 矩 和 惯 性 力 矩 。稳 态 时 主 要 为 重 力 矩 ,表 现 在 图 6上 是 变 桨 即将 到 顺桨 位 置 时 ( ~ 2 )力 矩 的增 大 8 1s
分 量 造成 的 。
由上 面 的 分 析 .可 以 得 出结 论 :在 计 算 桨 叶扰 动 力 矩
时 可 以 忽 略摩 擦 力 矩 、空 气 加 速 度 的气 动 力 矩 和 阻 ,距 的 『 丁
d =一 ・ s o・ i ・ d g,i sn 口 n p
() 8
影 响 ; 桨 叶 位 置 突 变 时 ,惯 性 力 矩 起 主要 作 用 ;用 .桨 叶扰 动 力矩 还 在 波 动 ,所
轴 承 的摩 擦 力 矩 包 括 与 载 荷 无 关 部 分 和 与 载荷 相 关 部 分 。 与 载 荷无 关 部 分 是 由润 滑 剂 的 流 动 损 失 造 成 的 ,它 受 润滑 剂 的 粘度 、多 少 和 轴 的 旋 转 速 度 影 响 ,一 般 在 轻 载 快 速 的轴 承运 动 中起 主 要 作 用 。 因 桨 距 角 变 化 很 慢 ,轴 承 载
可 以 简化 为常 量 。 对 于 多 ( )级 轴 承 , n




ta / i es t


=∑ d T
t=l
() 7
5结 论
6 关 桨 桨 叶 力 矩 曲线
36重 力 矩 .
重 力 矩 是 当 质 心 与 变 桨 轴 不 重 合 时 .桨 叶 自身 的重 力
风速 / s ( ) m/



风轮转速 / ,I ) (Ii rI n
荷 很 大 ,所 以与 载 荷 无 关 的摩 擦 力 矩 可 以忽 略 不 计 。 与 载 荷 相 关 的 摩擦 力 矩 主 要 是 由 轴 承 接 触 面 的 弹性 形 变 和 局 部 的滑 动造 成 的 。 这 部 分 在 轴 承 的 慢 速 负 载 情 况 下
乏0



錾一 4

蔫 - 6

和 停止 后 (2 之 后 )稳 定 的力 矩 曲 线 。 1s
1 。
、‘ 、 , , ,

… … ・一
桨距角/a td 桨叶扰动力矩

图 4 空 气 加 速 度 的 惯 性力 矩 和阻 力



t ;


当桨 叶 变 桨 轴 心 在 叶 素 的 四 分 之 一 弦 长 、在 扭 转 方 向
和轴 向 是 刚性 的 时 。空 气 加 速 度 的 惯 性 力 矩 和阻 力距 可 以
用下式表示 :


害。
05 .
饕: 主,

桨距角 / 。 0 0
6=
= f一 a
相关文档
最新文档